summaryrefslogtreecommitdiff
path: root/kernel/bpf/verifier.c
AgeCommit message (Collapse)AuthorFilesLines
2021-07-16bpf: Remove superfluous aux sanitation on subprog rejectionDaniel Borkmann1-34/+0
Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller1-19/+360
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-07-15 The following pull-request contains BPF updates for your *net-next* tree. We've added 45 non-merge commits during the last 15 day(s) which contain a total of 52 files changed, 3122 insertions(+), 384 deletions(-). The main changes are: 1) Introduce bpf timers, from Alexei. 2) Add sockmap support for unix datagram socket, from Cong. 3) Fix potential memleak and UAF in the verifier, from He. 4) Add bpf_get_func_ip helper, from Jiri. 5) Improvements to generic XDP mode, from Kumar. 6) Support for passing xdp_md to XDP programs in bpf_prog_run, from Zvi. =================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-07-16bpf: Add bpf_get_func_ip helper for kprobe programsJiri Olsa1-0/+2
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_KPROBE programs, so it's now possible to call bpf_get_func_ip from both kprobe and kretprobe programs. Taking the caller's address from 'struct kprobe::addr', which is defined for both kprobe and kretprobe. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-5-jolsa@kernel.org
2021-07-16bpf: Add bpf_get_func_ip helper for tracing programsJiri Olsa1-0/+43
Adding bpf_get_func_ip helper for BPF_PROG_TYPE_TRACING programs, specifically for all trampoline attach types. The trampoline's caller IP address is stored in (ctx - 8) address. so there's no reason to actually call the helper, but rather fixup the call instruction and return [ctx - 8] value directly. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210714094400.396467-4-jolsa@kernel.org
2021-07-15bpf: Teach stack depth check about async callbacks.Alexei Starovoitov1-3/+15
Teach max stack depth checking algorithm about async callbacks that don't increase bpf program stack size. Also add sanity check that bpf_tail_call didn't sneak into async cb. It's impossible, since PTR_TO_CTX is not available in async cb, hence the program cannot contain bpf_tail_call(ctx,...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
2021-07-15bpf: Implement verifier support for validation of async callbacks.Alexei Starovoitov1-3/+120
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on PTR_TO_FUNC infra in the verifier to validate addresses to subprograms and pass them into the helpers as function callbacks. In case of bpf_for_each_map_elem() the callback is invoked synchronously and the verifier treats it as a normal subprogram call by adding another bpf_func_state and new frame in __check_func_call(). bpf_timer_set_callback() doesn't invoke the callback directly. The subprogram will be called asynchronously from bpf_timer_cb(). Teach the verifier to validate such async callbacks as special kind of jump by pushing verifier state into stack and let pop_stack() process it. Special care needs to be taken during state pruning. The call insn doing bpf_timer_set_callback has to be a prune_point. Otherwise short timer callbacks might not have prune points in front of bpf_timer_set_callback() which means is_state_visited() will be called after this call insn is processed in __check_func_call(). Which means that another async_cb state will be pushed to be walked later and the verifier will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit. Since push_async_cb() looks like another push_stack() branch the infinite loop detection will trigger false positive. To recognize this case mark such states as in_async_callback_fn. To distinguish infinite loop in async callback vs the same callback called with different arguments for different map and timer add async_entry_cnt to bpf_func_state. Enforce return zero from async callbacks. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15bpf: Relax verifier recursion check.Alexei Starovoitov1-2/+6
In the following bpf subprogram: static int timer_cb(void *map, void *key, void *value) { bpf_timer_set_callback(.., timer_cb); } the 'timer_cb' is a pointer to a function. ld_imm64 insn is used to carry this pointer. bpf_pseudo_func() returns true for such ld_imm64 insn. Unlike bpf_for_each_map_elem() the bpf_timer_set_callback() is asynchronous. Relax control flow check to allow such "recursion" that is seen as an infinite loop by check_cfg(). The distinction between bpf_for_each_map_elem() the bpf_timer_set_callback() is done in the follow up patch. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-8-alexei.starovoitov@gmail.com
2021-07-15bpf: Prevent pointer mismatch in bpf_timer_init.Alexei Starovoitov1-3/+28
bpf_timer_init() arguments are: 1. pointer to a timer (which is embedded in map element). 2. pointer to a map. Make sure that pointer to a timer actually belongs to that map. Use map_uid (which is unique id of inner map) to reject: inner_map1 = bpf_map_lookup_elem(outer_map, key1) inner_map2 = bpf_map_lookup_elem(outer_map, key2) if (inner_map1 && inner_map2) { timer = bpf_map_lookup_elem(inner_map1); if (timer) // mismatch would have been allowed bpf_timer_init(timer, inner_map2); } Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
2021-07-15bpf: Add map side support for bpf timers.Alexei Starovoitov1-3/+27
Restrict bpf timers to array, hash (both preallocated and kmalloced), and lru map types. The per-cpu maps with timers don't make sense, since 'struct bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that the number of timers depends on number of possible cpus and timers would not be accessible from all cpus. lpm map support can be added in the future. The timers in inner maps are supported. The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free bpf_timer in a given map element. Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate that map element indeed contains 'struct bpf_timer'. Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when map element data is reused in preallocated htab and lru maps. Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single map element. There could be one of each, but not more than one. Due to 'one bpf_timer in one element' restriction do not support timers in global data, since global data is a map of single element, but from bpf program side it's seen as many global variables and restriction of single global timer would be odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with timers, since user space could have corrupted mmap element and crashed the kernel. The maps with timers cannot be readonly. Due to these restrictions search for bpf_timer in datasec BTF in case it was placed in the global data to report clear error. The previous patch allowed 'struct bpf_timer' as a first field in a map element only. Relax this restriction. Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free the timer when lru map deletes an element as a part of it eviction algorithm. Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store. The timer operation are done through helpers only. This is similar to 'struct bpf_spin_lock'. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com
2021-07-15bpf: Introduce bpf timers.Alexei Starovoitov1-0/+109
Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded in hash/array/lru maps as a regular field and helpers to operate on it: // Initialize the timer. // First 4 bits of 'flags' specify clockid. // Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed. long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags); // Configure the timer to call 'callback_fn' static function. long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); // Arm the timer to expire 'nsec' nanoseconds from the current time. long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags); // Cancel the timer and wait for callback_fn to finish if it was running. long bpf_timer_cancel(struct bpf_timer *timer); Here is how BPF program might look like: struct map_elem { int counter; struct bpf_timer timer; }; struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, 1000); __type(key, int); __type(value, struct map_elem); } hmap SEC(".maps"); static int timer_cb(void *map, int *key, struct map_elem *val); /* val points to particular map element that contains bpf_timer. */ SEC("fentry/bpf_fentry_test1") int BPF_PROG(test1, int a) { struct map_elem *val; int key = 0; val = bpf_map_lookup_elem(&hmap, &key); if (val) { bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME); bpf_timer_set_callback(&val->timer, timer_cb); bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0); } } This patch adds helper implementations that rely on hrtimers to call bpf functions as timers expire. The following patches add necessary safety checks. Only programs with CAP_BPF are allowed to use bpf_timer. The amount of timers used by the program is constrained by the memcg recorded at map creation time. The bpf_timer_init() helper needs explicit 'map' argument because inner maps are dynamic and not known at load time. While the bpf_timer_set_callback() is receiving hidden 'aux->prog' argument supplied by the verifier. The prog pointer is needed to do refcnting of bpf program to make sure that program doesn't get freed while the timer is armed. This approach relies on "user refcnt" scheme used in prog_array that stores bpf programs for bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is paired with bpf_timer_cancel() that will drop the prog refcnt. The ops->map_release_uref is responsible for cancelling the timers and dropping prog refcnt when user space reference to a map reaches zero. This uref approach is done to make sure that Ctrl-C of user space process will not leave timers running forever unless the user space explicitly pinned a map that contained timers in bpffs. bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't have user references (is not held by open file descriptor from user space and not pinned in bpffs). The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel and free the timer if given map element had it allocated. "bpftool map update" command can be used to cancel timers. The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because '__u64 :64' has 1 byte alignment of 8 byte padding. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com
2021-07-15bpf: Fix potential memleak and UAF in the verifier.He Fengqing1-11/+16
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to insert new instructions, then use adjust_insn_aux_data() to adjust insn_aux_data. If the old env->prog have no enough room for new inserted instructions, we use bpf_prog_realloc to construct new_prog and free the old env->prog. There have two errors here. First, if adjust_insn_aux_data() return ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data() return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has been freed in bpf_prog_realloc, but we will use it in bpf_check(). So in this patch, we make the adjust_insn_aux_data() never fails. In bpf_patch_insn_data(), we first pre-malloc memory for the new insn_aux_data, then call bpf_patch_insn_single() to insert new instructions, at last call adjust_insn_aux_data() to adjust insn_aux_data. Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns") Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
2021-07-13bpf: Fix tail_call_reachable rejection for interpreter when jit failedDaniel Borkmann1-0/+2
During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable is never true. Commit ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT") added a tracker into check_max_stack_depth() which propagates the tail_call_reachable condition throughout the subprograms. This info is then assigned to the subprogram's func[i]->aux->tail_call_reachable. However, in the case of the rejection check upon JIT failure, env->prog->aux->tail_call_reachable is used. func[0]->aux->tail_call_reachable which represents the main program's information did not propagate this to the outer env->prog->aux, though. Add this propagation into check_max_stack_depth() where it needs to belong so that the check can be done reliably. Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT") Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT") Co-developed-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com> Link: https://lore.kernel.org/bpf/618c34e3163ad1a36b1e82377576a6081e182f25.1626123173.git.daniel@iogearbox.net
2021-07-09bpf: Track subprog poke descriptors correctly and fix use-after-freeJohn Fastabend1-39/+21
Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com
2021-06-30Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski1-2/+4
Trivial conflict in net/netfilter/nf_tables_api.c. Duplicate fix in tools/testing/selftests/net/devlink_port_split.py - take the net-next version. skmsg, and L4 bpf - keep the bpf code but remove the flags and err params. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-23bpf: Fix null ptr deref with mixed tail calls and subprogsJohn Fastabend1-2/+4
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the individual JITs. The poke_tab[] to use is stored in the insn->imm by the code adding it to that array slot. The JIT then uses imm to find the right entry for an individual instruction. In the x86 bpf_jit_comp.c this is done by calling emit_bpf_tail_call_direct with the poke_tab[] of the imm value. However, we observed the below null-ptr-deref when mixing tail call programs with subprog programs. For this to happen we just need to mix bpf-2-bpf calls and tailcalls with some extra calls or instructions that would be patched later by one of the fixup routines. So whats happening? Before the fixup_call_args() -- where the jit op is done -- various code patching is done by do_misc_fixups(). This may increase the insn count, for example when we patch map_lookup_up using map_gen_lookup hook. This does two things. First, it means the instruction index, insn_idx field, of a tail call instruction will move by a 'delta'. In verifier code, struct bpf_jit_poke_descriptor desc = { .reason = BPF_POKE_REASON_TAIL_CALL, .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), .tail_call.key = bpf_map_key_immediate(aux), .insn_idx = i + delta, }; Then subprog start values subprog_info[i].start will be updated with the delta and any poke descriptor index will also be updated with the delta in adjust_poke_desc(). If we look at the adjust subprog starts though we see its only adjusted when the delta occurs before the new instructions, /* NOTE: fake 'exit' subprog should be updated as well. */ for (i = 0; i <= env->subprog_cnt; i++) { if (env->subprog_info[i].start <= off) continue; Earlier subprograms are not changed because their start values are not moved. But, adjust_poke_desc() does the offset + delta indiscriminately. The result is poke descriptors are potentially corrupted. Then in jit_subprogs() we only populate the poke_tab[] when the above insn_idx is less than the next subprogram start. From above we corrupted our insn_idx so we might incorrectly assume a poke descriptor is not used in a subprogram omitting it from the subprogram. And finally when the jit runs it does the deref of poke_tab when emitting the instruction and crashes with below. Because earlier step omitted the poke descriptor. The fix is straight forward with above context. Simply move same logic from adjust_subprog_starts() into adjust_poke_descs() and only adjust insn_idx when needed. [ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload ' [ 82.623001] loop10: detected capacity change from 0 to 8 [ 88.487424] ================================================================== [ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290 [ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295 [ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386 [ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019 [ 88.487490] Call Trace: [ 88.487498] dump_stack+0x93/0xc2 [ 88.487515] kasan_report.cold+0x5f/0xd8 [ 88.487530] ? do_jit+0x184a/0x3290 [ 88.487542] do_jit+0x184a/0x3290 ... [ 88.487709] bpf_int_jit_compile+0x248/0x810 ... [ 88.487765] bpf_check+0x3718/0x5140 ... [ 88.487920] bpf_prog_load+0xa22/0xf10 Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") Reported-by: Jussi Maki <joamaki@gmail.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
2021-06-19Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski1-7/+61
Trivial conflicts in net/can/isotp.c and tools/testing/selftests/net/mptcp/mptcp_connect.sh scaled_ppm_to_ppb() was moved from drivers/ptp/ptp_clock.c to include/linux/ptp_clock_kernel.h in -next so re-apply the fix there. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-06-17Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller1-6/+6
Daniel Borkmann says: ==================== pull-request: bpf-next 2021-06-17 The following pull-request contains BPF updates for your *net-next* tree. We've added 50 non-merge commits during the last 25 day(s) which contain a total of 148 files changed, 4779 insertions(+), 1248 deletions(-). The main changes are: 1) BPF infrastructure to migrate TCP child sockets from a listener to another in the same reuseport group/map, from Kuniyuki Iwashima. 2) Add a provably sound, faster and more precise algorithm for tnum_mul() as noted in https://arxiv.org/abs/2105.05398, from Harishankar Vishwanathan. 3) Streamline error reporting changes in libbpf as planned out in the 'libbpf: the road to v1.0' effort, from Andrii Nakryiko. 4) Add broadcast support to xdp_redirect_map(), from Hangbin Liu. 5) Extends bpf_map_lookup_and_delete_elem() functionality to 4 more map types, that is, {LRU_,PERCPU_,LRU_PERCPU_,}HASH, from Denis Salopek. 6) Support new LLVM relocations in libbpf to make them more linker friendly, also add a doc to describe the BPF backend relocations, from Yonghong Song. 7) Silence long standing KUBSAN complaints on register-based shifts in interpreter, from Daniel Borkmann and Eric Biggers. 8) Add dummy PT_REGS macros in libbpf to fail BPF program compilation when target arch cannot be determined, from Lorenz Bauer. 9) Extend AF_XDP to support large umems with 1M+ pages, from Magnus Karlsson. 10) Fix two minor libbpf tc BPF API issues, from Kumar Kartikeya Dwivedi. 11) Move libbpf BPF_SEQ_PRINTF/BPF_SNPRINTF macros that can be used by BPF programs to bpf_helpers.h header, from Florent Revest. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-06-15bpf: Fix leakage under speculation on mispredicted branchesDaniel Borkmann1-4/+40
The verifier only enumerates valid control-flow paths and skips paths that are unreachable in the non-speculative domain. And so it can miss issues under speculative execution on mispredicted branches. For example, a type confusion has been demonstrated with the following crafted program: // r0 = pointer to a map array entry // r6 = pointer to readable stack slot // r9 = scalar controlled by attacker 1: r0 = *(u64 *)(r0) // cache miss 2: if r0 != 0x0 goto line 4 3: r6 = r9 4: if r0 != 0x1 goto line 6 5: r9 = *(u8 *)(r6) 6: // leak r9 Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier concludes that the pointer dereference on line 5 is safe. But: if the attacker trains both the branches to fall-through, such that the following is speculatively executed ... r6 = r9 r9 = *(u8 *)(r6) // leak r9 ... then the program will dereference an attacker-controlled value and could leak its content under speculative execution via side-channel. This requires to mistrain the branch predictor, which can be rather tricky, because the branches are mutually exclusive. However such training can be done at congruent addresses in user space using different branches that are not mutually exclusive. That is, by training branches in user space ... A: if r0 != 0x0 goto line C B: ... C: if r0 != 0x0 goto line D D: ... ... such that addresses A and C collide to the same CPU branch prediction entries in the PHT (pattern history table) as those of the BPF program's lines 2 and 4, respectively. A non-privileged attacker could simply brute force such collisions in the PHT until observing the attack succeeding. Alternative methods to mistrain the branch predictor are also possible that avoid brute forcing the collisions in the PHT. A reliable attack has been demonstrated, for example, using the following crafted program: // r0 = pointer to a [control] map array entry // r7 = *(u64 *)(r0 + 0), training/attack phase // r8 = *(u64 *)(r0 + 8), oob address // [...] // r0 = pointer to a [data] map array entry 1: if r7 == 0x3 goto line 3 2: r8 = r0 // crafted sequence of conditional jumps to separate the conditional // branch in line 193 from the current execution flow 3: if r0 != 0x0 goto line 5 4: if r0 == 0x0 goto exit 5: if r0 != 0x0 goto line 7 6: if r0 == 0x0 goto exit [...] 187: if r0 != 0x0 goto line 189 188: if r0 == 0x0 goto exit // load any slowly-loaded value (due to cache miss in phase 3) ... 189: r3 = *(u64 *)(r0 + 0x1200) // ... and turn it into known zero for verifier, while preserving slowly- // loaded dependency when executing: 190: r3 &= 1 191: r3 &= 2 // speculatively bypassed phase dependency 192: r7 += r3 193: if r7 == 0x3 goto exit 194: r4 = *(u8 *)(r8 + 0) // leak r4 As can be seen, in training phase (phase != 0x3), the condition in line 1 turns into false and therefore r8 with the oob address is overridden with the valid map value address, which in line 194 we can read out without issues. However, in attack phase, line 2 is skipped, and due to the cache miss in line 189 where the map value is (zeroed and later) added to the phase register, the condition in line 193 takes the fall-through path due to prior branch predictor training, where under speculation, it'll load the byte at oob address r8 (unknown scalar type at that point) which could then be leaked via side-channel. One way to mitigate these is to 'branch off' an unreachable path, meaning, the current verification path keeps following the is_branch_taken() path and we push the other branch to the verification stack. Given this is unreachable from the non-speculative domain, this branch's vstate is explicitly marked as speculative. This is needed for two reasons: i) if this path is solely seen from speculative execution, then we later on still want the dead code elimination to kick in in order to sanitize these instructions with jmp-1s, and ii) to ensure that paths walked in the non-speculative domain are not pruned from earlier walks of paths walked in the speculative domain. Additionally, for robustness, we mark the registers which have been part of the conditional as unknown in the speculative path given there should be no assumptions made on their content. The fix in here mitigates type confusion attacks described earlier due to i) all code paths in the BPF program being explored and ii) existing verifier logic already ensuring that given memory access instruction references one specific data structure. An alternative to this fix that has also been looked at in this scope was to mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as well as direction encoding (always-goto, always-fallthrough, unknown), such that mixing of different always-* directions themselves as well as mixing of always-* with unknown directions would cause a program rejection by the verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else { x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this would result in only single direction always-* taken paths, and unknown taken paths being allowed, such that the former could be patched from a conditional jump to an unconditional jump (ja). Compared to this approach here, it would have two downsides: i) valid programs that otherwise are not performing any pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are required to turn off path pruning for unprivileged, where both can be avoided in this work through pushing the invalid branch to the verification stack. The issue was originally discovered by Adam and Ofek, and later independently discovered and reported as a result of Benedict and Piotr's research work. Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Adam Morrison <mad@cs.tau.ac.il> Reported-by: Ofek Kirzner <ofekkir@gmail.com> Reported-by: Benedict Schlueter <benedict.schlueter@rub.de> Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-15bpf: Do not mark insn as seen under speculative path verificationDaniel Borkmann1-2/+18
... in such circumstances, we do not want to mark the instruction as seen given the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable from the non-speculative path verification. We do however want to verify it for safety regardless. With the patch as-is all the insns that have been marked as seen before the patch will also be marked as seen after the patch (just with a potentially different non-zero count). An upcoming patch will also verify paths that are unreachable in the non-speculative domain, hence this extension is needed. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-15bpf: Inherit expanded/patched seen count from old aux dataDaniel Borkmann1-1/+3
Instead of relying on current env->pass_cnt, use the seen count from the old aux data in adjust_insn_aux_data(), and expand it to the new range of patched instructions. This change is valid given we always expand 1:n with n>=1, so what applies to the old/original instruction needs to apply for the replacement as well. Not relying on env->pass_cnt is a prerequisite for a later change where we want to avoid marking an instruction seen when verified under speculative execution path. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-27Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski1-37/+57
cdc-wdm: s/kill_urbs/poison_urbs/ to fix build Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-05-25bpf: No need to simulate speculative domain for immediatesDaniel Borkmann1-1/+5
In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under speculation") we replaced masking logic with direct loads of immediates if the register is a known constant. Given in this case we do not apply any masking, there is also no reason for the operation to be truncated under the speculative domain. Therefore, there is also zero reason for the verifier to branch-off and simulate this case, it only needs to do it for unknown but bounded scalars. As a side-effect, this also enables few test cases that were previously rejected due to simulation under zero truncation. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25bpf: Fix mask direction swap upon off reg sign changeDaniel Borkmann1-10/+12
Masking direction as indicated via mask_to_left is considered to be calculated once and then used to derive pointer limits. Thus, this needs to be placed into bpf_sanitize_info instead so we can pass it to sanitize_ptr_alu() call after the pointer move. Piotr noticed a corner case where the off reg causes masking direction change which then results in an incorrect final aux->alu_limit. Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25bpf: Wrap aux data inside bpf_sanitize_info containerDaniel Borkmann1-7/+11
Add a container structure struct bpf_sanitize_info which holds the current aux info, and update call-sites to sanitize_ptr_alu() to pass it in. This is needed for passing in additional state later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25bpf: Fix spelling mistakesZhen Lei1-6/+6
Fix some spelling mistakes in comments: aother ==> another Netiher ==> Neither desribe ==> describe intializing ==> initializing funciton ==> function wont ==> won't and move the word 'the' at the end to the next line accross ==> across pathes ==> paths triggerred ==> triggered excute ==> execute ether ==> either conervative ==> conservative convetion ==> convention markes ==> marks interpeter ==> interpreter Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210525025659.8898-2-thunder.leizhen@huawei.com
2021-05-21bpf, offload: Reorder offload callback 'prepare' in verifierYinjun Zhang1-6/+6
Commit 4976b718c355 ("bpf: Introduce pseudo_btf_id") switched the order of resolve_pseudo_ldimm(), in which some pseudo instructions are rewritten. Thus those rewritten instructions cannot be passed to driver via 'prepare' offload callback. Reorder the 'prepare' offload callback to fix it. Fixes: 4976b718c355 ("bpf: Introduce pseudo_btf_id") Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com> Signed-off-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com
2021-05-19bpf: Introduce fd_idxAlexei Starovoitov1-10/+37
Typical program loading sequence involves creating bpf maps and applying map FDs into bpf instructions in various places in the bpf program. This job is done by libbpf that is using compiler generated ELF relocations to patch certain instruction after maps are created and BTFs are loaded. The goal of fd_idx is to allow bpf instructions to stay immutable after compilation. At load time the libbpf would still create maps as usual, but it wouldn't need to patch instructions. It would store map_fds into __u32 fd_array[] and would pass that pointer to sys_bpf(BPF_PROG_LOAD). Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-9-alexei.starovoitov@gmail.com
2021-05-19bpf: Prepare bpf syscall to be used from kernel and user space.Alexei Starovoitov1-16/+18
With the help from bpfptr_t prepare relevant bpf syscall commands to be used from kernel and user space. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-4-alexei.starovoitov@gmail.com
2021-05-19bpf: Introduce bpf_sys_bpf() helper and program type.Alexei Starovoitov1-0/+8
Add placeholders for bpf_sys_bpf() helper and new program type. Make sure to check that expected_attach_type is zero for future extensibility. Allow tracing helper functions to be used in this program type, since they will only execute from user context via bpf_prog_test_run. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-2-alexei.starovoitov@gmail.com
2021-05-12bpf: Add deny list of btf ids check for tracing programsJiri Olsa1-0/+14
The recursion check in __bpf_prog_enter and __bpf_prog_exit leaves some (not inlined) functions unprotected: In __bpf_prog_enter: - migrate_disable is called before prog->active is checked In __bpf_prog_exit: - migrate_enable,rcu_read_unlock_strict are called after prog->active is decreased When attaching trampoline to them we get panic like: traps: PANIC: double fault, error_code: 0x0 double fault: 0000 [#1] SMP PTI RIP: 0010:__bpf_prog_enter+0x4/0x50 ... Call Trace: <IRQ> bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 ... Fixing this by adding deny list of btf ids for tracing programs and checking btf id during program verification. Adding above functions to this list. Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429114712.43783-1-jolsa@kernel.org
2021-05-11bpf: Fix alu32 const subreg bound tracking on bitwise operationsDaniel Borkmann1-13/+9
Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor") Reported-by: Manfred Paul (@_manfp) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-11bpf: verifier: Allocate idmap scratch in verifier envLorenz Bauer1-31/+15
func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
2021-05-11bpf: verifier: Use copy_array for jmp_historyLorenz Bauer1-8/+5
Eliminate a couple needless kfree / kmalloc cycles by using copy_array for jmp_history. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429134656.122225-3-lmb@cloudflare.com
2021-05-11bpf: verifier: Improve function state reallocationLorenz Bauer1-96/+101
Resizing and copying stack and reference tracking state currently does a lot of kfree / kmalloc when the size of the tracked set changes. The logic in copy_*_state and realloc_*_state is also hard to follow. Refactor this into two core functions. copy_array copies from a source into a destination. It avoids reallocation by taking the allocated size of the destination into account via ksize(). The function is essentially krealloc_array, with the difference that the contents of dst are not preserved. realloc_array changes the size of an array and zeroes newly allocated items. Contrary to krealloc both functions don't free the destination if the size is zero. Instead we rely on free_func_state to clean up. realloc_stack_state is renamed to grow_stack_state to better convey that it never shrinks the stack state. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429134656.122225-2-lmb@cloudflare.com
2021-05-03bpf: Fix leakage of uninitialized bpf stack under speculationDaniel Borkmann1-10/+17
The current implemented mechanisms to mitigate data disclosure under speculation mainly address stack and map value oob access from the speculative domain. However, Piotr discovered that uninitialized BPF stack is not protected yet, and thus old data from the kernel stack, potentially including addresses of kernel structures, could still be extracted from that 512 bytes large window. The BPF stack is special compared to map values since it's not zero initialized for every program invocation, whereas map values /are/ zero initialized upon their initial allocation and thus cannot leak any prior data in either domain. In the non-speculative domain, the verifier ensures that every stack slot read must have a prior stack slot write by the BPF program to avoid such data leaking issue. However, this is not enough: for example, when the pointer arithmetic operation moves the stack pointer from the last valid stack offset to the first valid offset, the sanitation logic allows for any intermediate offsets during speculative execution, which could then be used to extract any restricted stack content via side-channel. Given for unprivileged stack pointer arithmetic the use of unknown but bounded scalars is generally forbidden, we can simply turn the register-based arithmetic operation into an immediate-based arithmetic operation without the need for masking. This also gives the benefit of reducing the needed instructions for the operation. Given after the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask"), the aux->alu_limit already holds the final immediate value for the offset register with the known scalar. Thus, a simple mov of the immediate to AX register with using AX as the source for the original instruction is sufficient and possible now in this case. Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-03bpf: Fix masking negation logic upon negative dst registerDaniel Borkmann1-8/+4
The negation logic for the case where the off_reg is sitting in the dst register is not correct given then we cannot just invert the add to a sub or vice versa. As a fix, perform the final bitwise and-op unconditionally into AX from the off_reg, then move the pointer from the src to dst and finally use AX as the source for the original pointer arithmetic operation such that the inversion yields a correct result. The single non-AX mov in between is possible given constant blinding is retaining it as it's not an immediate based operation. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-28bpf: Implement formatted output helpers with bstr_printfFlorent Revest1-1/+1
BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf and bpf_snprintf. Their signatures specify that all arguments are provided from the BPF world as u64s (in an array or as registers). All of these helpers are currently implemented by calling functions such as snprintf() whose signatures take a variable number of arguments, then placed in a va_list by the compiler to call vsnprintf(). "d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced a bpf_printf_prepare function that fills an array of u64 sanitized arguments with an array of "modifiers" which indicate what the "real" size of each argument should be (given by the format specifier). The BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to its real size. However, the C promotion rules implicitely cast them all back to u64s. Therefore, the arguments given to snprintf are u64s and the va_list constructed by the compiler will use 64 bits for each argument. On 64 bit machines, this happens to work well because 32 bit arguments in va_lists need to occupy 64 bits anyway, but on 32 bit architectures this breaks the layout of the va_list expected by the called function and mangles values. In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem had been solved for bpf_trace_printk only with a "horrid workaround" that emitted multiple calls to trace_printk where each call had different argument types and generated different va_list layouts. One of the call would be dynamically chosen at runtime. This was ok with the 3 arguments that bpf_trace_printk takes but bpf_seq_printf and bpf_snprintf accept up to 12 arguments. Because this approach scales code exponentially, it is not a viable option anymore. Because the promotion rules are part of the language and because the construction of a va_list is an arch-specific ABI, it's best to just avoid variadic arguments and va_lists altogether. Thankfully the kernel's snprintf() has an alternative in the form of bstr_printf() that accepts arguments in a "binary buffer representation". These binary buffers are currently created by vbin_printf and used in the tracing subsystem to split the cost of printing into two parts: a fast one that only dereferences and remembers values, and a slower one, called later, that does the pretty-printing. This patch refactors bpf_printf_prepare to construct binary buffers of arguments consumable by bstr_printf() instead of arrays of arguments and modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the bpf_printf_prepare usage but there are a few gotchas that change how bpf_printf_prepare needs to do things. Currently, bpf_printf_prepare uses a per cpu temporary buffer as a generic storage for strings and IP addresses. With this refactoring, the temporary buffers now holds all the arguments in a structured binary format. To comply with the format expected by bstr_printf, certain format specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6. Because vsnprintf subroutines for these specifiers are hard to expose, we pre-format these arguments with calls to snprintf(). Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org
2021-04-27bpf: Fix propagation of 32 bit unsigned bounds from 64 bit boundsDaniel Borkmann1-5/+3
Similarly as b02709587ea3 ("bpf: Fix propagation of 32-bit signed bounds from 64-bit bounds."), we also need to fix the propagation of 32 bit unsigned bounds from 64 bit counterparts. That is, really only set the u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit space. For example, the register with a umin_value == 1 does /not/ imply that u32_min_value is also equal to 1, since umax_value could be much larger than 32 bit subregister can hold, and thus u32_min_value is in the interval [0,1] instead. Before fix, invalid tracking result of R2_w=inv1: [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0 [...] After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)): [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0 [...] Thus, same issue as in b02709587ea3 holds for unsigned subregister tracking. Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in b02709587ea3 to make them uniform again. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: Manfred Paul (@_manfp) Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-26Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller1-0/+84
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-04-23 The following pull-request contains BPF updates for your *net-next* tree. We've added 69 non-merge commits during the last 22 day(s) which contain a total of 69 files changed, 3141 insertions(+), 866 deletions(-). The main changes are: 1) Add BPF static linker support for extern resolution of global, from Andrii. 2) Refine retval for bpf_get_task_stack helper, from Dave. 3) Add a bpf_snprintf helper, from Florent. 4) A bunch of miscellaneous improvements from many developers. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-04-23bpf: Remove unnecessary map checks for ARG_PTR_TO_CONST_STRFlorent Revest1-2/+1
reg->type is enforced by check_reg_type() and map should never be NULL (it would already have been dereferenced anyway) so these checks are unnecessary. Reported-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210422235543.4007694-3-revest@chromium.org
2021-04-23bpf: Notify user if we ever hit a bpf_snprintf verifier bugFlorent Revest1-2/+4
In check_bpf_snprintf_call(), a map_direct_value_addr() of the fmt map should never fail because it has already been checked by ARG_PTR_TO_CONST_STR. But if it ever fails, it's better to error out with an explicit debug message rather than silently fail. Reported-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210422235543.4007694-2-revest@chromium.org
2021-04-20bpf: Refine retval for bpf_get_task_stack helperDave Marchevsky1-0/+1
Verifier can constrain the min/max bounds of bpf_get_task_stack's return value more tightly than the default tnum_unknown. Like bpf_get_stack, return value is num bytes written into a caller-supplied buf, or error, so do_refine_retval_range will work. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210416204704.2816874-2-davemarchevsky@fb.com
2021-04-20bpf: Add a bpf_snprintf helperFlorent Revest1-0/+41
The implementation takes inspiration from the existing bpf_trace_printk helper but there are a few differences: To allow for a large number of format-specifiers, parameters are provided in an array, like in bpf_seq_printf. Because the output string takes two arguments and the array of parameters also takes two arguments, the format string needs to fit in one argument. Thankfully, ARG_PTR_TO_CONST_STR is guaranteed to point to a zero-terminated read-only map so we don't need a format string length arg. Because the format-string is known at verification time, we also do a first pass of format string validation in the verifier logic. This makes debugging easier. Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210419155243.1632274-4-revest@chromium.org
2021-04-20bpf: Add a ARG_PTR_TO_CONST_STR argument typeFlorent Revest1-0/+41
This type provides the guarantee that an argument is going to be a const pointer to somewhere in a read-only map value. It also checks that this pointer is followed by a zero character before the end of the map value. Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210419155243.1632274-3-revest@chromium.org
2021-04-17Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski1-74/+156
drivers/net/ethernet/stmicro/stmmac/stmmac_main.c - keep the ZC code, drop the code related to reinit net/bridge/netfilter/ebtables.c - fix build after move to net_generic Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-04-17bpf: Tighten speculative pointer arithmetic maskDaniel Borkmann1-29/+44
This work tightens the offset mask we use for unprivileged pointer arithmetic in order to mitigate a corner case reported by Piotr and Benedict where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of-bounds in order to leak kernel memory via side-channel to user space. Before this change, the computed ptr_limit for retrieve_ptr_limit() helper represents largest valid distance when moving pointer to the right or left which is then fed as aux->alu_limit to generate masking instructions against the offset register. After the change, the derived aux->alu_limit represents the largest potential value of the offset register which we mask against which is just a narrower subset of the former limit. For minimal complexity, we call sanitize_ptr_alu() from 2 observation points in adjust_ptr_min_max_vals(), that is, before and after the simulated alu operation. In the first step, we retieve the alu_state and alu_limit before the operation as well as we branch-off a verifier path and push it to the verification stack as we did before which checks the dst_reg under truncation, in other words, when the speculative domain would attempt to move the pointer out-of-bounds. In the second step, we retrieve the new alu_limit and calculate the absolute distance between both. Moreover, we commit the alu_state and final alu_limit via update_alu_sanitation_state() to the env's instruction aux data, and bail out from there if there is a mismatch due to coming from different verification paths with different states. Reported-by: Piotr Krysiuk <piotras@gmail.com> Reported-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Benedict Schlueter <benedict.schlueter@rub.de>
2021-04-17bpf: Move sanitize_val_alu out of op switchDaniel Borkmann1-6/+11
Add a small sanitize_needed() helper function and move sanitize_val_alu() out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu() as well out of its opcode switch so this helps to streamline both. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-17bpf: Refactor and streamline bounds check into helperDaniel Borkmann1-16/+33
Move the bounds check in adjust_ptr_min_max_vals() into a small helper named sanitize_check_bounds() in order to simplify the former a bit. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-17bpf: Improve verifier error messages for usersDaniel Borkmann1-23/+63
Consolidate all error handling and provide more user-friendly error messages from sanitize_ptr_alu() and sanitize_val_alu(). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-17bpf: Rework ptr_limit into alu_limit and add common error pathDaniel Borkmann1-8/+13
Small refactor with no semantic changes in order to consolidate the max ptr_limit boundary check. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>