Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 07b87f9eea0c30675084d50c82532d20168da009 ]
When offloading xfrm states to hardware, the offloading
device is attached to the skbs secpath. If a skb is free
is deferred, an unregister netdevice hangs because the
netdevice is still refcounted.
Fix this by removing the netdevice from the xfrm states
when the netdevice is unregistered. To find all xfrm states
that need to be cleared we add another list where skbs
linked to that are unlinked from the lists (deleted)
but not yet freed.
Fixes: d77e38e612a0 ("xfrm: Add an IPsec hardware offloading API")
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 97d833ceb27dc19f8777d63f90be4a27b5daeedf ]
ACLs in Spectrum-2 and newer ASICs can reside in the algorithmic TCAM
(A-TCAM) or in the ordinary circuit TCAM (C-TCAM). The former can
contain more ACLs (i.e., tc filters), but the number of masks in each
region (i.e., tc chain) is limited.
In order to mitigate the effects of the above limitation, the device
allows filters to share a single mask if their masks only differ in up
to 8 consecutive bits. For example, dst_ip/25 can be represented using
dst_ip/24 with a delta of 1 bit. The C-TCAM does not have a limit on the
number of masks being used (and therefore does not support mask
aggregation), but can contain a limited number of filters.
The driver uses the "objagg" library to perform the mask aggregation by
passing it objects that consist of the filter's mask and whether the
filter is to be inserted into the A-TCAM or the C-TCAM since filters in
different TCAMs cannot share a mask.
The set of created objects is dependent on the insertion order of the
filters and is not necessarily optimal. Therefore, the driver will
periodically ask the library to compute a more optimal set ("hints") by
looking at all the existing objects.
When the library asks the driver whether two objects can be aggregated
the driver only compares the provided masks and ignores the A-TCAM /
C-TCAM indication. This is the right thing to do since the goal is to
move as many filters as possible to the A-TCAM. The driver also forbids
two identical masks from being aggregated since this can only happen if
one was intentionally put in the C-TCAM to avoid a conflict in the
A-TCAM.
The above can result in the following set of hints:
H1: {mask X, A-TCAM} -> H2: {mask Y, A-TCAM} // X is Y + delta
H3: {mask Y, C-TCAM} -> H4: {mask Z, A-TCAM} // Y is Z + delta
After getting the hints from the library the driver will start migrating
filters from one region to another while consulting the computed hints
and instructing the device to perform a lookup in both regions during
the transition.
Assuming a filter with mask X is being migrated into the A-TCAM in the
new region, the hints lookup will return H1. Since H2 is the parent of
H1, the library will try to find the object associated with it and
create it if necessary in which case another hints lookup (recursive)
will be performed. This hints lookup for {mask Y, A-TCAM} will either
return H2 or H3 since the driver passes the library an object comparison
function that ignores the A-TCAM / C-TCAM indication.
This can eventually lead to nested objects which are not supported by
the library [1].
Fix by removing the object comparison function from both the driver and
the library as the driver was the only user. That way the lookup will
only return exact matches.
I do not have a reliable reproducer that can reproduce the issue in a
timely manner, but before the fix the issue would reproduce in several
minutes and with the fix it does not reproduce in over an hour.
Note that the current usefulness of the hints is limited because they
include the C-TCAM indication and represent aggregation that cannot
actually happen. This will be addressed in net-next.
[1]
WARNING: CPU: 0 PID: 153 at lib/objagg.c:170 objagg_obj_parent_assign+0xb5/0xd0
Modules linked in:
CPU: 0 PID: 153 Comm: kworker/0:18 Not tainted 6.9.0-rc6-custom-g70fbc2c1c38b #42
Hardware name: Mellanox Technologies Ltd. MSN3700C/VMOD0008, BIOS 5.11 10/10/2018
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:objagg_obj_parent_assign+0xb5/0xd0
[...]
Call Trace:
<TASK>
__objagg_obj_get+0x2bb/0x580
objagg_obj_get+0xe/0x80
mlxsw_sp_acl_erp_mask_get+0xb5/0xf0
mlxsw_sp_acl_atcam_entry_add+0xe8/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370
Fixes: 9069a3817d82 ("lib: objagg: implement optimization hints assembly and use hints for object creation")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Amit Cohen <amcohen@nvidia.com>
Tested-by: Alexander Zubkov <green@qrator.net>
Signed-off-by: Petr Machata <petrm@nvidia.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5e514f1cba090e1c8fff03e92a175eccfe46305f ]
tcp_reset() ends with a sequence that is carefuly ordered.
We need to fix [e]poll bugs in the following patches,
it makes sense to use a common helper.
Suggested-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Link: https://lore.kernel.org/r/20240528125253.1966136-2-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 853c3bd7b791 ("tcp: fix race in tcp_write_err()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1a7b7326d587c9a5e8ff067e70d6aaf0333f4bb3 ]
Commit 9a427556fb8e ("vmlinux.lds.h: catch compound literals into
data and BSS") added catches for .data..L* and .rodata..L* but missed
.bss..L*
Since commit 5431fdd2c181 ("ptrace: Convert ptrace_attach() to use
lock guards") the following appears at build:
LD .tmp_vmlinux.kallsyms1
powerpc64-linux-ld: warning: orphan section `.bss..Lubsan_data33' from `kernel/ptrace.o' being placed in section `.bss..Lubsan_data33'
NM .tmp_vmlinux.kallsyms1.syms
KSYMS .tmp_vmlinux.kallsyms1.S
AS .tmp_vmlinux.kallsyms1.S
LD .tmp_vmlinux.kallsyms2
powerpc64-linux-ld: warning: orphan section `.bss..Lubsan_data33' from `kernel/ptrace.o' being placed in section `.bss..Lubsan_data33'
NM .tmp_vmlinux.kallsyms2.syms
KSYMS .tmp_vmlinux.kallsyms2.S
AS .tmp_vmlinux.kallsyms2.S
LD vmlinux
powerpc64-linux-ld: warning: orphan section `.bss..Lubsan_data33' from `kernel/ptrace.o' being placed in section `.bss..Lubsan_data33'
Lets add .bss..L* to BSS_MAIN macro to catch those sections into BSS.
Fixes: 9a427556fb8e ("vmlinux.lds.h: catch compound literals into data and BSS")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202404031349.nmKhyuUG-lkp@intel.com/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 522018a0de6b6fcce60c04f86dfc5f0e4b6a1b36 ]
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in fscache_withdraw_volume+0x2e1/0x370
Read of size 4 at addr ffff88810680be08 by task ondemand-04-dae/5798
CPU: 0 PID: 5798 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #565
Call Trace:
kasan_check_range+0xf6/0x1b0
fscache_withdraw_volume+0x2e1/0x370
cachefiles_withdraw_volume+0x31/0x50
cachefiles_withdraw_cache+0x3ad/0x900
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
Allocated by task 5820:
__kmalloc+0x1df/0x4b0
fscache_alloc_volume+0x70/0x600
__fscache_acquire_volume+0x1c/0x610
erofs_fscache_register_volume+0x96/0x1a0
erofs_fscache_register_fs+0x49a/0x690
erofs_fc_fill_super+0x6c0/0xcc0
vfs_get_super+0xa9/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
Freed by task 5820:
kfree+0xf1/0x2c0
fscache_put_volume.part.0+0x5cb/0x9e0
erofs_fscache_unregister_fs+0x157/0x1b0
erofs_kill_sb+0xd9/0x1c0
deactivate_locked_super+0xa3/0x100
vfs_get_super+0x105/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
==================================================================
Following is the process that triggers the issue:
mount failed | daemon exit
------------------------------------------------------------
deactivate_locked_super cachefiles_daemon_release
erofs_kill_sb
erofs_fscache_unregister_fs
fscache_relinquish_volume
__fscache_relinquish_volume
fscache_put_volume(fscache_volume, fscache_volume_put_relinquish)
zero = __refcount_dec_and_test(&fscache_volume->ref, &ref);
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
cachefiles_withdraw_volumes
list_del_init(&volume->cache_link)
fscache_free_volume(fscache_volume)
cache->ops->free_volume
cachefiles_free_volume
list_del_init(&cachefiles_volume->cache_link);
kfree(fscache_volume)
cachefiles_withdraw_volume
fscache_withdraw_volume
fscache_volume->n_accesses
// fscache_volume UAF !!!
The fscache_volume in cache->volumes must not have been freed yet, but its
reference count may be 0. So use the new fscache_try_get_volume() helper
function try to get its reference count.
If the reference count of fscache_volume is 0, fscache_put_volume() is
freeing it, so wait for it to be removed from cache->volumes.
If its reference count is not 0, call cachefiles_withdraw_volume() with
reference count protection to avoid the above issue.
Fixes: fe2140e2f57f ("cachefiles: Implement volume support")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240628062930.2467993-3-libaokun@huaweicloud.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 85b08b31a22b481ec6528130daf94eee4452e23f ]
Export fscache_put_volume() and add fscache_try_get_volume()
helper function to allow cachefiles to get/put fscache_volume
via linux/fscache-cache.h.
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240628062930.2467993-2-libaokun@huaweicloud.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Stable-dep-of: 522018a0de6b ("cachefiles: fix slab-use-after-free in fscache_withdraw_volume()")
Stable-dep-of: 5d8f80578907 ("cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f1a8f402f13f94263cf349216c257b2985100927 upstream.
This fixes the following deadlock introduced by 39a92a55be13
("bluetooth/l2cap: sync sock recv cb and release")
============================================
WARNING: possible recursive locking detected
6.10.0-rc3-g4029dba6b6f1 #6823 Not tainted
--------------------------------------------
kworker/u5:0/35 is trying to acquire lock:
ffff888002ec2510 (&chan->lock#2/1){+.+.}-{3:3}, at:
l2cap_sock_recv_cb+0x44/0x1e0
but task is already holding lock:
ffff888002ec2510 (&chan->lock#2/1){+.+.}-{3:3}, at:
l2cap_get_chan_by_scid+0xaf/0xd0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&chan->lock#2/1);
lock(&chan->lock#2/1);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by kworker/u5:0/35:
#0: ffff888002b8a940 ((wq_completion)hci0#2){+.+.}-{0:0}, at:
process_one_work+0x750/0x930
#1: ffff888002c67dd0 ((work_completion)(&hdev->rx_work)){+.+.}-{0:0},
at: process_one_work+0x44e/0x930
#2: ffff888002ec2510 (&chan->lock#2/1){+.+.}-{3:3}, at:
l2cap_get_chan_by_scid+0xaf/0xd0
To fix the original problem this introduces l2cap_chan_lock at
l2cap_conless_channel to ensure that l2cap_sock_recv_cb is called with
chan->lock held.
Fixes: 89e856e124f9 ("bluetooth/l2cap: sync sock recv cb and release")
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa2690af573dfefb47ba6eef888797a64b6b5f3c upstream.
The below bug was reported on a non-SMP kernel:
[ 275.267158][ T4335] ------------[ cut here ]------------
[ 275.267949][ T4335] kernel BUG at include/linux/page_ref.h:275!
[ 275.268526][ T4335] invalid opcode: 0000 [#1] KASAN PTI
[ 275.269001][ T4335] CPU: 0 PID: 4335 Comm: trinity-c3 Not tainted 6.7.0-rc4-00061-gefa7df3e3bb5 #1
[ 275.269787][ T4335] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 275.270679][ T4335] RIP: 0010:try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.272813][ T4335] RSP: 0018:ffffc90005dcf650 EFLAGS: 00010202
[ 275.273346][ T4335] RAX: 0000000000000246 RBX: ffffea00066e0000 RCX: 0000000000000000
[ 275.274032][ T4335] RDX: fffff94000cdc007 RSI: 0000000000000004 RDI: ffffea00066e0034
[ 275.274719][ T4335] RBP: ffffea00066e0000 R08: 0000000000000000 R09: fffff94000cdc006
[ 275.275404][ T4335] R10: ffffea00066e0037 R11: 0000000000000000 R12: 0000000000000136
[ 275.276106][ T4335] R13: ffffea00066e0034 R14: dffffc0000000000 R15: ffffea00066e0008
[ 275.276790][ T4335] FS: 00007fa2f9b61740(0000) GS:ffffffff89d0d000(0000) knlGS:0000000000000000
[ 275.277570][ T4335] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 275.278143][ T4335] CR2: 00007fa2f6c00000 CR3: 0000000134b04000 CR4: 00000000000406f0
[ 275.278833][ T4335] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 275.279521][ T4335] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 275.280201][ T4335] Call Trace:
[ 275.280499][ T4335] <TASK>
[ 275.280751][ T4335] ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
[ 275.281087][ T4335] ? do_trap (arch/x86/kernel/traps.c:112 arch/x86/kernel/traps.c:153)
[ 275.281463][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.281884][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.282300][ T4335] ? do_error_trap (arch/x86/kernel/traps.c:174)
[ 275.282711][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283129][ T4335] ? handle_invalid_op (arch/x86/kernel/traps.c:212)
[ 275.283561][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283990][ T4335] ? exc_invalid_op (arch/x86/kernel/traps.c:264)
[ 275.284415][ T4335] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:568)
[ 275.284859][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.285278][ T4335] try_grab_folio (mm/gup.c:148)
[ 275.285684][ T4335] __get_user_pages (mm/gup.c:1297 (discriminator 1))
[ 275.286111][ T4335] ? __pfx___get_user_pages (mm/gup.c:1188)
[ 275.286579][ T4335] ? __pfx_validate_chain (kernel/locking/lockdep.c:3825)
[ 275.287034][ T4335] ? mark_lock (kernel/locking/lockdep.c:4656 (discriminator 1))
[ 275.287416][ T4335] __gup_longterm_locked (mm/gup.c:1509 mm/gup.c:2209)
[ 275.288192][ T4335] ? __pfx___gup_longterm_locked (mm/gup.c:2204)
[ 275.288697][ T4335] ? __pfx_lock_acquire (kernel/locking/lockdep.c:5722)
[ 275.289135][ T4335] ? __pfx___might_resched (kernel/sched/core.c:10106)
[ 275.289595][ T4335] pin_user_pages_remote (mm/gup.c:3350)
[ 275.290041][ T4335] ? __pfx_pin_user_pages_remote (mm/gup.c:3350)
[ 275.290545][ T4335] ? find_held_lock (kernel/locking/lockdep.c:5244 (discriminator 1))
[ 275.290961][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.291353][ T4335] process_vm_rw_single_vec+0x142/0x360
[ 275.291900][ T4335] ? __pfx_process_vm_rw_single_vec+0x10/0x10
[ 275.292471][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.292859][ T4335] process_vm_rw_core+0x272/0x4e0
[ 275.293384][ T4335] ? hlock_class (arch/x86/include/asm/bitops.h:227 arch/x86/include/asm/bitops.h:239 include/asm-generic/bitops/instrumented-non-atomic.h:142 kernel/locking/lockdep.c:228)
[ 275.293780][ T4335] ? __pfx_process_vm_rw_core+0x10/0x10
[ 275.294350][ T4335] process_vm_rw (mm/process_vm_access.c:284)
[ 275.294748][ T4335] ? __pfx_process_vm_rw (mm/process_vm_access.c:259)
[ 275.295197][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.295634][ T4335] __x64_sys_process_vm_readv (mm/process_vm_access.c:291)
[ 275.296139][ T4335] ? syscall_enter_from_user_mode (kernel/entry/common.c:94 kernel/entry/common.c:112)
[ 275.296642][ T4335] do_syscall_64 (arch/x86/entry/common.c:51 (discriminator 1) arch/x86/entry/common.c:82 (discriminator 1))
[ 275.297032][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.297470][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.297988][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.298389][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.298906][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299304][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299703][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.300115][ T4335] entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
This BUG is the VM_BUG_ON(!in_atomic() && !irqs_disabled()) assertion in
folio_ref_try_add_rcu() for non-SMP kernel.
The process_vm_readv() calls GUP to pin the THP. An optimization for
pinning THP instroduced by commit 57edfcfd3419 ("mm/gup: accelerate thp
gup even for "pages != NULL"") calls try_grab_folio() to pin the THP,
but try_grab_folio() is supposed to be called in atomic context for
non-SMP kernel, for example, irq disabled or preemption disabled, due to
the optimization introduced by commit e286781d5f2e ("mm: speculative
page references").
The commit efa7df3e3bb5 ("mm: align larger anonymous mappings on THP
boundaries") is not actually the root cause although it was bisected to.
It just makes the problem exposed more likely.
The follow up discussion suggested the optimization for non-SMP kernel
may be out-dated and not worth it anymore [1]. So removing the
optimization to silence the BUG.
However calling try_grab_folio() in GUP slow path actually is
unnecessary, so the following patch will clean this up.
[1] https://lore.kernel.org/linux-mm/821cf1d6-92b9-4ac4-bacc-d8f2364ac14f@paulmck-laptop/
Link: https://lkml.kernel.org/r/20240625205350.1777481-1-yang@os.amperecomputing.com
Fixes: 57edfcfd3419 ("mm/gup: accelerate thp gup even for "pages != NULL"")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: <stable@vger.kernel.org> [6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e8343410ddf08fc36a9b9cc7c51a4e53a262d4c6 ]
Sometimes the stream may be stopped due to XRUN events, in which case
the userspace can call snd_pcm_drop() and snd_pcm_prepare() to stop and
start the stream again.
In these cases, we must wait for the DMA channel to synchronize before
marking the stream as prepared for playback, as the DMA channel gets
stopped by drop() without any synchronization. Make sure the ALSA core
synchronizes the DMA channel by adding a sync_stop() hook.
Reviewed-by: Peter Ujfalusi <peter.ujfalusi@gmail.com>
Signed-off-by: Jai Luthra <j-luthra@ti.com>
Link: https://lore.kernel.org/r/20240611-asoc_next-v3-1-fcfd84b12164@ti.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d6a711a898672dd873aab3844f754a3ca40723a5 ]
Add OCTAL mode support.
Issue detected using "--octal" spidev_test's option.
Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Link: https://msgid.link/r/20240618132951.2743935-4-patrice.chotard@foss.st.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 22d6d060ac77955291deb43efc2f3f4f9632c6cb ]
HUTRR94 added support for a new usage titled "System Do Not Disturb"
which toggles a system-wide Do Not Disturb setting. This commit simply
adds a new event code for the usage.
Signed-off-by: Aseda Aboagye <aaboagye@chromium.org>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Link: https://lore.kernel.org/r/Zl-gUHE70s7wCAoB@google.com
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0c7dd00de018ff70b3452c424901816e26366a8a ]
HUTRR116 added support for a new usage titled "System Accessibility
Binding" which toggles a system-wide bound accessibility UI or command.
This commit simply adds a new event code for the usage.
Signed-off-by: Aseda Aboagye <aaboagye@chromium.org>
Acked-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Link: https://lore.kernel.org/r/Zl-e97O9nvudco5z@google.com
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9fad9d560af5c654bb38e0b07ee54a4e9acdc5cd ]
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer produces this report:
[ 65.194362] ------------[ cut here ]------------
[ 65.197752] UBSAN: signed-integer-overflow in ../drivers/scsi/sr_ioctl.c:436:9
[ 65.203607] -2147483648 * 177 cannot be represented in type 'int'
[ 65.207911] CPU: 2 PID: 10416 Comm: syz-executor.1 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 65.213585] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 65.219923] Call Trace:
[ 65.221556] <TASK>
[ 65.223029] dump_stack_lvl+0x93/0xd0
[ 65.225573] handle_overflow+0x171/0x1b0
[ 65.228219] sr_select_speed+0xeb/0xf0
[ 65.230786] ? __pm_runtime_resume+0xe6/0x130
[ 65.233606] sr_block_ioctl+0x15d/0x1d0
...
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang. It was re-enabled in the kernel
with Commit 557f8c582a9b ("ubsan: Reintroduce signed overflow sanitizer").
Firstly, let's change the type of "speed" to unsigned long as
sr_select_speed()'s only caller passes in an unsigned long anyways.
$ git grep '\.select_speed'
| drivers/scsi/sr.c: .select_speed = sr_select_speed,
...
| static int cdrom_ioctl_select_speed(struct cdrom_device_info *cdi,
| unsigned long arg)
| {
| ...
| return cdi->ops->select_speed(cdi, arg);
| }
Next, let's add an extra check to make sure we don't exceed 0xffff/177
(350) since 0xffff is the max speed. This has two benefits: 1) we deal
with integer overflow before it happens and 2) we properly respect the
max speed of 0xffff. There are some "magic" numbers here but I did not
want to change more than what was necessary.
Link: https://github.com/llvm/llvm-project/pull/82432 [1]
Closes: https://github.com/KSPP/linux/issues/357
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240508-b4-b4-sio-sr_select_speed-v2-1-00b68f724290@google.com
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit bab2f5e8fd5d2f759db26b78d9db57412888f187 upstream.
Untrusted application with access to only non-secure fastrpc device
node can attach to root_pd or static PDs if it can make the respective
init request. This can cause problems as the untrusted application
can send bad requests to root_pd or static PDs. Add changes to reject
attach to privileged PDs if the request is being made using non-secure
fastrpc device node.
Fixes: 0871561055e6 ("misc: fastrpc: Add support for audiopd")
Cc: stable <stable@kernel.org>
Signed-off-by: Ekansh Gupta <quic_ekangupt@quicinc.com>
Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20240628114501.14310-7-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 099d90642a711caae377f53309abfe27e8724a8b upstream.
Patch series "mm/filemap: Limit page cache size to that supported by
xarray", v2.
Currently, xarray can't support arbitrary page cache size. More details
can be found from the WARN_ON() statement in xas_split_alloc(). In our
test whose code is attached below, we hit the WARN_ON() on ARM64 system
where the base page size is 64KB and huge page size is 512MB. The issue
was reported long time ago and some discussions on it can be found here
[1].
[1] https://www.spinics.net/lists/linux-xfs/msg75404.html
In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one
supported by xarray and avoid PMD-sized page cache if needed. The code
changes are suggested by David Hildenbrand.
PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray
PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path
PATCH[4] avoids PMD-sized page cache for shmem files if needed
Test program
============
# cat test.c
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#define TEST_XFS_FILENAME "/tmp/data"
#define TEST_SHMEM_FILENAME "/dev/shm/data"
#define TEST_MEM_SIZE 0x20000000
int main(int argc, char **argv)
{
const char *filename;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret;
if (pgsize != 0x10000) {
fprintf(stderr, "64KB base page size is required\n");
return -EPERM;
}
system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled");
system("rm -fr /tmp/data");
system("rm -fr /dev/shm/data");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open xfs or shmem file */
filename = TEST_XFS_FILENAME;
if (argc > 1 && !strcmp(argv[1], "shmem"))
filename = TEST_SHMEM_FILENAME;
fd = open(filename, O_CREAT | O_RDWR | O_TRUNC);
if (fd < 0) {
fprintf(stderr, "Unable to open <%s>\n", filename);
return -EIO;
}
/* Extend file size */
ret = ftruncate(fd, TEST_MEM_SIZE);
if (ret) {
fprintf(stderr, "Error %d to ftruncate()\n", ret);
goto cleanup;
}
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buf == (void *)-1) {
fprintf(stderr, "Unable to mmap <%s>\n", filename);
goto cleanup;
}
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
if (ret) {
fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n");
goto cleanup;
}
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE);
if (ret) {
fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret);
goto cleanup;
}
/* Punch the file to enforce xarray split */
ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
if (ret)
fprintf(stderr, "Error %d to fallocate()\n", ret);
cleanup:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return 0;
}
# gcc test.c -o test
# cat /proc/1/smaps | grep KernelPageSize | head -n 1
KernelPageSize: 64 kB
# ./test shmem
:
------------[ cut here ]------------
WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \
drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
virtio_net sha1_ce net_failover failover virtio_console virtio_blk \
dimlib virtio_mmio
CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff80008a92f5b0
x29: ffff80008a92f5b0 x28: ffff80008a92f610 x27: ffff80008a92f728
x26: 0000000000000cc0 x25: 000000000000000d x24: ffff0000cf00c858
x23: ffff80008a92f610 x22: ffffffdfc0600000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0600000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000018000000000 x15: 3374004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 3374000000000000 x10: 3374e1c0ffff6000 x9 : ffffb463a84c681c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00011c976ce0
x5 : ffffb463aa47e378 x4 : 0000000000000000 x3 : 0000000000000cc0
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
shmem_undo_range+0x2bc/0x6a8
shmem_fallocate+0x134/0x430
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
This patch (of 4):
The largest page cache order can be HPAGE_PMD_ORDER (13) on ARM64 with
64KB base page size. The xarray entry with this order can't be split as
the following error messages indicate.
------------[ cut here ]------------
WARNING: CPU: 35 PID: 7484 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm \
fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
sha1_ce virtio_net net_failover virtio_console virtio_blk failover \
dimlib virtio_mmio
CPU: 35 PID: 7484 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff800087a4f6c0
x29: ffff800087a4f6c0 x28: ffff800087a4f720 x27: 000000001fffffff
x26: 0000000000000c40 x25: 000000000000000d x24: ffff00010625b858
x23: ffff800087a4f720 x22: ffffffdfc0780000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0780000 x18: 000000001ff40000
x17: 00000000ffffffff x16: 0000018000000000 x15: 51ec004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 51ec000000000000 x10: 51ece1c0ffff8000 x9 : ffffbeb961a44d28
x8 : 0000000000000003 x7 : ffffffdfc0456420 x6 : ffff0000e1aa6eb8
x5 : 20bf08b4fe778fca x4 : ffffffdfc0456420 x3 : 0000000000000c40
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
truncate_inode_pages_range+0x1b4/0x4a8
truncate_pagecache_range+0x84/0xa0
xfs_flush_unmap_range+0x70/0x90 [xfs]
xfs_file_fallocate+0xfc/0x4d8 [xfs]
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Fix it by decreasing MAX_PAGECACHE_ORDER to the largest supported order
by xarray. For this specific case, MAX_PAGECACHE_ORDER is dropped from
13 to 11 when CONFIG_BASE_SMALL is disabled.
Link: https://lkml.kernel.org/r/20240627003953.1262512-1-gshan@redhat.com
Link: https://lkml.kernel.org/r/20240627003953.1262512-2-gshan@redhat.com
Fixes: 793917d997df ("mm/readahead: Add large folio readahead")
Signed-off-by: Gavin Shan <gshan@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Zhenyu Zhang <zhenyzha@redhat.com>
Cc: <stable@vger.kernel.org> [5.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1cb6f0bae50441f4b4b32a28315853b279c7404e ]
Pedro Pinto and later independently also Hyunwoo Kim and Wongi Lee reported
an issue that the tcx_entry can be released too early leading to a use
after free (UAF) when an active old-style ingress or clsact qdisc with a
shared tc block is later replaced by another ingress or clsact instance.
Essentially, the sequence to trigger the UAF (one example) can be as follows:
1. A network namespace is created
2. An ingress qdisc is created. This allocates a tcx_entry, and
&tcx_entry->miniq is stored in the qdisc's miniqp->p_miniq. At the
same time, a tcf block with index 1 is created.
3. chain0 is attached to the tcf block. chain0 must be connected to
the block linked to the ingress qdisc to later reach the function
tcf_chain0_head_change_cb_del() which triggers the UAF.
4. Create and graft a clsact qdisc. This causes the ingress qdisc
created in step 1 to be removed, thus freeing the previously linked
tcx_entry:
rtnetlink_rcv_msg()
=> tc_modify_qdisc()
=> qdisc_create()
=> clsact_init() [a]
=> qdisc_graft()
=> qdisc_destroy()
=> __qdisc_destroy()
=> ingress_destroy() [b]
=> tcx_entry_free()
=> kfree_rcu() // tcx_entry freed
5. Finally, the network namespace is closed. This registers the
cleanup_net worker, and during the process of releasing the
remaining clsact qdisc, it accesses the tcx_entry that was
already freed in step 4, causing the UAF to occur:
cleanup_net()
=> ops_exit_list()
=> default_device_exit_batch()
=> unregister_netdevice_many()
=> unregister_netdevice_many_notify()
=> dev_shutdown()
=> qdisc_put()
=> clsact_destroy() [c]
=> tcf_block_put_ext()
=> tcf_chain0_head_change_cb_del()
=> tcf_chain_head_change_item()
=> clsact_chain_head_change()
=> mini_qdisc_pair_swap() // UAF
There are also other variants, the gist is to add an ingress (or clsact)
qdisc with a specific shared block, then to replace that qdisc, waiting
for the tcx_entry kfree_rcu() to be executed and subsequently accessing
the current active qdisc's miniq one way or another.
The correct fix is to turn the miniq_active boolean into a counter. What
can be observed, at step 2 above, the counter transitions from 0->1, at
step [a] from 1->2 (in order for the miniq object to remain active during
the replacement), then in [b] from 2->1 and finally [c] 1->0 with the
eventual release. The reference counter in general ranges from [0,2] and
it does not need to be atomic since all access to the counter is protected
by the rtnl mutex. With this in place, there is no longer a UAF happening
and the tcx_entry is freed at the correct time.
Fixes: e420bed02507 ("bpf: Add fd-based tcx multi-prog infra with link support")
Reported-by: Pedro Pinto <xten@osec.io>
Co-developed-by: Pedro Pinto <xten@osec.io>
Signed-off-by: Pedro Pinto <xten@osec.io>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Hyunwoo Kim <v4bel@theori.io>
Cc: Wongi Lee <qwerty@theori.io>
Cc: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240708133130.11609-1-daniel@iogearbox.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 82f0b6f041fad768c28b4ad05a683065412c226e ]
Commit 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing
memory_section->usage") changed pfn_section_valid() to add a READ_ONCE()
call around "ms->usage" to fix a race with section_deactivate() where
ms->usage can be cleared. The READ_ONCE() call, by itself, is not enough
to prevent NULL pointer dereference. We need to check its value before
dereferencing it.
Link: https://lkml.kernel.org/r/20240626001639.1350646-1-longman@redhat.com
Fixes: 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit fd7eea27a3aed79b63b1726c00bde0d50cf207e2 upstream.
With INIT_STACK_ALL_PATTERN or INIT_STACK_ALL_ZERO enabled the kernel will
be compiled with -ftrivial-auto-var-init=<...> which causes initialization
of stack variables at function entry time.
In order to avoid the performance impact that comes with this users can use
the "uninitialized" attribute to prevent such initialization.
Therefore provide the __uninitialized macro which can be used for cases
where INIT_STACK_ALL_PATTERN or INIT_STACK_ALL_ZERO is enabled, but only
selected variables should not be initialized.
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20240205154844.3757121-2-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 06e785aeb9ea8a43d0a3967c1ba6e69d758e82d4 ]
The implicit conversion from unsigned int to enum
proc_cn_event is invalid, so explicitly cast it
for compilation in a C++ compiler.
/usr/include/linux/cn_proc.h: In function 'proc_cn_event valid_event(proc_cn_event)':
/usr/include/linux/cn_proc.h:72:17: error: invalid conversion from 'unsigned int' to 'proc_cn_event' [-fpermissive]
72 | ev_type &= PROC_EVENT_ALL;
| ^
| |
| unsigned int
Signed-off-by: Matt Jan <zoo868e@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9a95c5bfbf02a0a7f5983280fe284a0ff0836c34 upstream.
A panic happens in ima_match_policy:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
PGD 42f873067 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 5 PID: 1286325 Comm: kubeletmonit.sh
Kdump: loaded Tainted: P
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 0.0.0 02/06/2015
RIP: 0010:ima_match_policy+0x84/0x450
Code: 49 89 fc 41 89 cf 31 ed 89 44 24 14 eb 1c 44 39
7b 18 74 26 41 83 ff 05 74 20 48 8b 1b 48 3b 1d
f2 b9 f4 00 0f 84 9c 01 00 00 <44> 85 73 10 74 ea
44 8b 6b 14 41 f6 c5 01 75 d4 41 f6 c5 02 74 0f
RSP: 0018:ff71570009e07a80 EFLAGS: 00010207
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000200
RDX: ffffffffad8dc7c0 RSI: 0000000024924925 RDI: ff3e27850dea2000
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffffabfce739
R10: ff3e27810cc42400 R11: 0000000000000000 R12: ff3e2781825ef970
R13: 00000000ff3e2785 R14: 000000000000000c R15: 0000000000000001
FS: 00007f5195b51740(0000)
GS:ff3e278b12d40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 0000000626d24002 CR4: 0000000000361ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
ima_get_action+0x22/0x30
process_measurement+0xb0/0x830
? page_add_file_rmap+0x15/0x170
? alloc_set_pte+0x269/0x4c0
? prep_new_page+0x81/0x140
? simple_xattr_get+0x75/0xa0
? selinux_file_open+0x9d/0xf0
ima_file_check+0x64/0x90
path_openat+0x571/0x1720
do_filp_open+0x9b/0x110
? page_counter_try_charge+0x57/0xc0
? files_cgroup_alloc_fd+0x38/0x60
? __alloc_fd+0xd4/0x250
? do_sys_open+0x1bd/0x250
do_sys_open+0x1bd/0x250
do_syscall_64+0x5d/0x1d0
entry_SYSCALL_64_after_hwframe+0x65/0xca
Commit c7423dbdbc9e ("ima: Handle -ESTALE returned by
ima_filter_rule_match()") introduced call to ima_lsm_copy_rule within a
RCU read-side critical section which contains kmalloc with GFP_KERNEL.
This implies a possible sleep and violates limitations of RCU read-side
critical sections on non-PREEMPT systems.
Sleeping within RCU read-side critical section might cause
synchronize_rcu() returning early and break RCU protection, allowing a
UAF to happen.
The root cause of this issue could be described as follows:
| Thread A | Thread B |
| |ima_match_policy |
| | rcu_read_lock |
|ima_lsm_update_rule | |
| synchronize_rcu | |
| | kmalloc(GFP_KERNEL)|
| | sleep |
==> synchronize_rcu returns early
| kfree(entry) | |
| | entry = entry->next|
==> UAF happens and entry now becomes NULL (or could be anything).
| | entry->action |
==> Accessing entry might cause panic.
To fix this issue, we are converting all kmalloc that is called within
RCU read-side critical section to use GFP_ATOMIC.
Fixes: c7423dbdbc9e ("ima: Handle -ESTALE returned by ima_filter_rule_match()")
Cc: stable@vger.kernel.org
Signed-off-by: GUO Zihua <guozihua@huawei.com>
Acked-by: John Johansen <john.johansen@canonical.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
[PM: fixed missing comment, long lines, !CONFIG_IMA_LSM_RULES case]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 702eb71fd6501b3566283f8c96d7ccc6ddd662e9 upstream.
Currently we will not generate FS_OPEN events for O_PATH file
descriptors but we will generate FS_CLOSE events for them. This is
asymmetry is confusing. Arguably no fsnotify events should be generated
for O_PATH file descriptors as they cannot be used to access or modify
file content, they are just convenient handles to file objects like
paths. So fix the asymmetry by stopping to generate FS_CLOSE for O_PATH
file descriptors.
Cc: <stable@vger.kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20240617162303.1596-1-jack@suse.cz
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d3dcb084c70727be4a2f61bd94796e66147cfa35 ]
Fix copy-paste error in the code comment. The code refers to
LED blinking configuration, not brightness configuration. It
was likely copied from comment above this one which does
refer to brightness configuration.
Fixes: 4e901018432e ("net: phy: phy_device: Call into the PHY driver to set LED blinking")
Signed-off-by: Marek Vasut <marex@denx.de>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Link: https://patch.msgid.link/20240626030638.512069-1-marex@denx.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit db5247d9bf5c6ade9fd70b4e4897441e0269b233 ]
Instead of lingering until the device is closed, this has us handle
SIGKILL by:
1. marking the worker as killed so we no longer try to use it with
new virtqueues and new flush operations.
2. setting the virtqueue to worker mapping so no new works are queued.
3. running all the exiting works.
Suggested-by: Edward Adam Davis <eadavis@qq.com>
Reported-and-tested-by: syzbot+98edc2df894917b3431f@syzkaller.appspotmail.com
Message-Id: <tencent_546DA49414E876EEBECF2C78D26D242EE50A@qq.com>
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Message-Id: <20240316004707.45557-9-michael.christie@oracle.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4cd47222e435dec8e3787614924174f53fcfb5ae ]
Using of devm API leads to a certain order of releasing resources.
So all dependent resources which are not devm-wrapped should be deleted
with respect to devm-release order. Mutex is one of such objects that
often is bound to other resources and has no own devm wrapping.
Since mutex_destroy() actually does nothing in non-debug builds
frequently calling mutex_destroy() is just ignored which is safe for now
but wrong formally and can lead to a problem if mutex_destroy() will be
extended so introduce devm_mutex_init().
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: George Stark <gnstark@salutedevices.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reviewed-by: Marek Behún <kabel@kernel.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20240411161032.609544-2-gnstark@salutedevices.com
Signed-off-by: Lee Jones <lee@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
bpf_prog_lock_ro()"
This reverts commit fdd411af8178edc6b7bf260f8fa4fba1bedd0a6d which is
commit 7d2cc63eca0c993c99d18893214abf8f85d566d8 upstream.
It is part of a series that is reported to both break the arm64 builds
and instantly crashes the powerpc systems at the first load of a bpf
program. So revert it for now until it can come back in a safe way.
Reported-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Reported-by: Vitaly Chikunov <vt@altlinux.org>
Reported-by: WangYuli <wangyuli@uniontech.com>
Link: https://lore.kernel.org/r/5A29E00D83AB84E3+20240706031101.637601-1-wangyuli@uniontech.com
Link: https://lore.kernel.org/r/cf736c5e37489e7dc7ffd67b9de2ab47@matoro.tk
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Song Liu <song@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Kees Cook <keescook@chromium.org>
Cc: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com> # s390x
Cc: Tiezhu Yang <yangtiezhu@loongson.cn> # LoongArch
Cc: Johan Almbladh <johan.almbladh@anyfinetworks.com> # MIPS Part
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
bpf_jit_binary_lock_ro()"
This reverts commit 08f6c05feb1db21653e98ca84ea04ca032d014c7 which is
commit e60adf513275c3a38e5cb67f7fd12387e43a3ff5 upstream.
It is part of a series that is reported to both break the arm64 builds
and instantly crashes the powerpc systems at the first load of a bpf
program. So revert it for now until it can come back in a safe way.
Reported-by: matoro <matoro_mailinglist_kernel@matoro.tk>
Reported-by: Vitaly Chikunov <vt@altlinux.org>
Reported-by: WangYuli <wangyuli@uniontech.com>
Link: https://lore.kernel.org/r/5A29E00D83AB84E3+20240706031101.637601-1-wangyuli@uniontech.com
Link: https://lore.kernel.org/r/cf736c5e37489e7dc7ffd67b9de2ab47@matoro.tk
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Song Liu <song@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Kees Cook <keescook@chromium.org>
Cc: Puranjay Mohan <puranjay12@gmail.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com> # s390x
Cc: Tiezhu Yang <yangtiezhu@loongson.cn> # LoongArch
Cc: Johan Almbladh <johan.almbladh@anyfinetworks.com> # MIPS Part
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bab4923132feb3e439ae45962979c5d9d5c7c1f1 upstream.
In the TRACE_EVENT(qdisc_reset) NULL dereference occurred from
qdisc->dev_queue->dev <NULL> ->name
This situation simulated from bunch of veths and Bluetooth disconnection
and reconnection.
During qdisc initialization, qdisc was being set to noop_queue.
In veth_init_queue, the initial tx_num was reduced back to one,
causing the qdisc reset to be called with noop, which led to the kernel
panic.
I've attached the GitHub gist link that C converted syz-execprogram
source code and 3 log of reproduced vmcore-dmesg.
https://gist.github.com/yskelg/cc64562873ce249cdd0d5a358b77d740
Yeoreum and I use two fuzzing tool simultaneously.
One process with syz-executor : https://github.com/google/syzkaller
$ ./syz-execprog -executor=./syz-executor -repeat=1 -sandbox=setuid \
-enable=none -collide=false log1
The other process with perf fuzzer:
https://github.com/deater/perf_event_tests/tree/master/fuzzer
$ perf_event_tests/fuzzer/perf_fuzzer
I think this will happen on the kernel version.
Linux kernel version +v6.7.10, +v6.8, +v6.9 and it could happen in v6.10.
This occurred from 51270d573a8d. I think this patch is absolutely
necessary. Previously, It was showing not intended string value of name.
I've reproduced 3 time from my fedora 40 Debug Kernel with any other module
or patched.
version: 6.10.0-0.rc2.20240608gitdc772f8237f9.29.fc41.aarch64+debug
[ 5287.164555] veth0_vlan: left promiscuous mode
[ 5287.164929] veth1_macvtap: left promiscuous mode
[ 5287.164950] veth0_macvtap: left promiscuous mode
[ 5287.164983] veth1_vlan: left promiscuous mode
[ 5287.165008] veth0_vlan: left promiscuous mode
[ 5287.165450] veth1_macvtap: left promiscuous mode
[ 5287.165472] veth0_macvtap: left promiscuous mode
[ 5287.165502] veth1_vlan: left promiscuous mode
…
[ 5297.598240] bridge0: port 2(bridge_slave_1) entered blocking state
[ 5297.598262] bridge0: port 2(bridge_slave_1) entered forwarding state
[ 5297.598296] bridge0: port 1(bridge_slave_0) entered blocking state
[ 5297.598313] bridge0: port 1(bridge_slave_0) entered forwarding state
[ 5297.616090] 8021q: adding VLAN 0 to HW filter on device bond0
[ 5297.620405] bridge0: port 1(bridge_slave_0) entered disabled state
[ 5297.620730] bridge0: port 2(bridge_slave_1) entered disabled state
[ 5297.627247] 8021q: adding VLAN 0 to HW filter on device team0
[ 5297.629636] bridge0: port 1(bridge_slave_0) entered blocking state
…
[ 5298.002798] bridge_slave_0: left promiscuous mode
[ 5298.002869] bridge0: port 1(bridge_slave_0) entered disabled state
[ 5298.309444] bond0 (unregistering): (slave bond_slave_0): Releasing backup interface
[ 5298.315206] bond0 (unregistering): (slave bond_slave_1): Releasing backup interface
[ 5298.320207] bond0 (unregistering): Released all slaves
[ 5298.354296] hsr_slave_0: left promiscuous mode
[ 5298.360750] hsr_slave_1: left promiscuous mode
[ 5298.374889] veth1_macvtap: left promiscuous mode
[ 5298.374931] veth0_macvtap: left promiscuous mode
[ 5298.374988] veth1_vlan: left promiscuous mode
[ 5298.375024] veth0_vlan: left promiscuous mode
[ 5299.109741] team0 (unregistering): Port device team_slave_1 removed
[ 5299.185870] team0 (unregistering): Port device team_slave_0 removed
…
[ 5300.155443] Bluetooth: hci3: unexpected cc 0x0c03 length: 249 > 1
[ 5300.155724] Bluetooth: hci3: unexpected cc 0x1003 length: 249 > 9
[ 5300.155988] Bluetooth: hci3: unexpected cc 0x1001 length: 249 > 9
….
[ 5301.075531] team0: Port device team_slave_1 added
[ 5301.085515] bridge0: port 1(bridge_slave_0) entered blocking state
[ 5301.085531] bridge0: port 1(bridge_slave_0) entered disabled state
[ 5301.085588] bridge_slave_0: entered allmulticast mode
[ 5301.085800] bridge_slave_0: entered promiscuous mode
[ 5301.095617] bridge0: port 1(bridge_slave_0) entered blocking state
[ 5301.095633] bridge0: port 1(bridge_slave_0) entered disabled state
…
[ 5301.149734] bond0: (slave bond_slave_0): Enslaving as an active interface with an up link
[ 5301.173234] bond0: (slave bond_slave_0): Enslaving as an active interface with an up link
[ 5301.180517] bond0: (slave bond_slave_1): Enslaving as an active interface with an up link
[ 5301.193481] hsr_slave_0: entered promiscuous mode
[ 5301.204425] hsr_slave_1: entered promiscuous mode
[ 5301.210172] debugfs: Directory 'hsr0' with parent 'hsr' already present!
[ 5301.210185] Cannot create hsr debugfs directory
[ 5301.224061] bond0: (slave bond_slave_1): Enslaving as an active interface with an up link
[ 5301.246901] bond0: (slave bond_slave_0): Enslaving as an active interface with an up link
[ 5301.255934] team0: Port device team_slave_0 added
[ 5301.256480] team0: Port device team_slave_1 added
[ 5301.256948] team0: Port device team_slave_0 added
…
[ 5301.435928] hsr_slave_0: entered promiscuous mode
[ 5301.446029] hsr_slave_1: entered promiscuous mode
[ 5301.455872] debugfs: Directory 'hsr0' with parent 'hsr' already present!
[ 5301.455884] Cannot create hsr debugfs directory
[ 5301.502664] hsr_slave_0: entered promiscuous mode
[ 5301.513675] hsr_slave_1: entered promiscuous mode
[ 5301.526155] debugfs: Directory 'hsr0' with parent 'hsr' already present!
[ 5301.526164] Cannot create hsr debugfs directory
[ 5301.563662] hsr_slave_0: entered promiscuous mode
[ 5301.576129] hsr_slave_1: entered promiscuous mode
[ 5301.580259] debugfs: Directory 'hsr0' with parent 'hsr' already present!
[ 5301.580270] Cannot create hsr debugfs directory
[ 5301.590269] 8021q: adding VLAN 0 to HW filter on device bond0
[ 5301.595872] KASAN: null-ptr-deref in range [0x0000000000000130-0x0000000000000137]
[ 5301.595877] Mem abort info:
[ 5301.595881] ESR = 0x0000000096000006
[ 5301.595885] EC = 0x25: DABT (current EL), IL = 32 bits
[ 5301.595889] SET = 0, FnV = 0
[ 5301.595893] EA = 0, S1PTW = 0
[ 5301.595896] FSC = 0x06: level 2 translation fault
[ 5301.595900] Data abort info:
[ 5301.595903] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000
[ 5301.595907] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 5301.595911] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 5301.595915] [dfff800000000026] address between user and kernel address ranges
[ 5301.595971] Internal error: Oops: 0000000096000006 [#1] SMP
…
[ 5301.596076] CPU: 2 PID: 102769 Comm:
syz-executor.3 Kdump: loaded Tainted:
G W ------- --- 6.10.0-0.rc2.20240608gitdc772f8237f9.29.fc41.aarch64+debug #1
[ 5301.596080] Hardware name: VMware, Inc. VMware20,1/VBSA,
BIOS VMW201.00V.21805430.BA64.2305221830 05/22/2023
[ 5301.596082] pstate: 01400005 (nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 5301.596085] pc : strnlen+0x40/0x88
[ 5301.596114] lr : trace_event_get_offsets_qdisc_reset+0x6c/0x2b0
[ 5301.596124] sp : ffff8000beef6b40
[ 5301.596126] x29: ffff8000beef6b40 x28: dfff800000000000 x27: 0000000000000001
[ 5301.596131] x26: 6de1800082c62bd0 x25: 1ffff000110aa9e0 x24: ffff800088554f00
[ 5301.596136] x23: ffff800088554ec0 x22: 0000000000000130 x21: 0000000000000140
[ 5301.596140] x20: dfff800000000000 x19: ffff8000beef6c60 x18: ffff7000115106d8
[ 5301.596143] x17: ffff800121bad000 x16: ffff800080020000 x15: 0000000000000006
[ 5301.596147] x14: 0000000000000002 x13: ffff0001f3ed8d14 x12: ffff700017ddeda5
[ 5301.596151] x11: 1ffff00017ddeda4 x10: ffff700017ddeda4 x9 : ffff800082cc5eec
[ 5301.596155] x8 : 0000000000000004 x7 : 00000000f1f1f1f1 x6 : 00000000f2f2f200
[ 5301.596158] x5 : 00000000f3f3f3f3 x4 : ffff700017dded80 x3 : 00000000f204f1f1
[ 5301.596162] x2 : 0000000000000026 x1 : 0000000000000000 x0 : 0000000000000130
[ 5301.596166] Call trace:
[ 5301.596175] strnlen+0x40/0x88
[ 5301.596179] trace_event_get_offsets_qdisc_reset+0x6c/0x2b0
[ 5301.596182] perf_trace_qdisc_reset+0xb0/0x538
[ 5301.596184] __traceiter_qdisc_reset+0x68/0xc0
[ 5301.596188] qdisc_reset+0x43c/0x5e8
[ 5301.596190] netif_set_real_num_tx_queues+0x288/0x770
[ 5301.596194] veth_init_queues+0xfc/0x130 [veth]
[ 5301.596198] veth_newlink+0x45c/0x850 [veth]
[ 5301.596202] rtnl_newlink_create+0x2c8/0x798
[ 5301.596205] __rtnl_newlink+0x92c/0xb60
[ 5301.596208] rtnl_newlink+0xd8/0x130
[ 5301.596211] rtnetlink_rcv_msg+0x2e0/0x890
[ 5301.596214] netlink_rcv_skb+0x1c4/0x380
[ 5301.596225] rtnetlink_rcv+0x20/0x38
[ 5301.596227] netlink_unicast+0x3c8/0x640
[ 5301.596231] netlink_sendmsg+0x658/0xa60
[ 5301.596234] __sock_sendmsg+0xd0/0x180
[ 5301.596243] __sys_sendto+0x1c0/0x280
[ 5301.596246] __arm64_sys_sendto+0xc8/0x150
[ 5301.596249] invoke_syscall+0xdc/0x268
[ 5301.596256] el0_svc_common.constprop.0+0x16c/0x240
[ 5301.596259] do_el0_svc+0x48/0x68
[ 5301.596261] el0_svc+0x50/0x188
[ 5301.596265] el0t_64_sync_handler+0x120/0x130
[ 5301.596268] el0t_64_sync+0x194/0x198
[ 5301.596272] Code: eb15001f 54000120 d343fc02 12000801 (38f46842)
[ 5301.596285] SMP: stopping secondary CPUs
[ 5301.597053] Starting crashdump kernel...
[ 5301.597057] Bye!
After applying our patch, I didn't find any kernel panic errors.
We've found a simple reproducer
# echo 1 > /sys/kernel/debug/tracing/events/qdisc/qdisc_reset/enable
# ip link add veth0 type veth peer name veth1
Error: Unknown device type.
However, without our patch applied, I tested upstream 6.10.0-rc3 kernel
using the qdisc_reset event and the ip command on my qemu virtual machine.
This 2 commands makes always kernel panic.
Linux version: 6.10.0-rc3
[ 0.000000] Linux version 6.10.0-rc3-00164-g44ef20baed8e-dirty
(paran@fedora) (gcc (GCC) 14.1.1 20240522 (Red Hat 14.1.1-4), GNU ld
version 2.41-34.fc40) #20 SMP PREEMPT Sat Jun 15 16:51:25 KST 2024
Kernel panic message:
[ 615.236484] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 615.237250] Dumping ftrace buffer:
[ 615.237679] (ftrace buffer empty)
[ 615.238097] Modules linked in: veth crct10dif_ce virtio_gpu
virtio_dma_buf drm_shmem_helper drm_kms_helper zynqmp_fpga xilinx_can
xilinx_spi xilinx_selectmap xilinx_core xilinx_pr_decoupler versal_fpga
uvcvideo uvc videobuf2_vmalloc videobuf2_memops videobuf2_v4l2 videodev
videobuf2_common mc usbnet deflate zstd ubifs ubi rcar_canfd rcar_can
omap_mailbox ntb_msi_test ntb_hw_epf lattice_sysconfig_spi
lattice_sysconfig ice40_spi gpio_xilinx dwmac_altr_socfpga mdio_regmap
stmmac_platform stmmac pcs_xpcs dfl_fme_region dfl_fme_mgr dfl_fme_br
dfl_afu dfl fpga_region fpga_bridge can can_dev br_netfilter bridge stp
llc atl1c ath11k_pci mhi ath11k_ahb ath11k qmi_helpers ath10k_sdio
ath10k_pci ath10k_core ath mac80211 libarc4 cfg80211 drm fuse backlight ipv6
Jun 22 02:36:5[3 6k152.62-4sm98k4-0k]v kCePUr:n e1l :P IUDn:a b4le6
8t oC ohmma: nidpl eN oketr nteali nptaedg i6n.g1 0re.0q-urecs3t- 0at0
1v6i4r-tgu4a4le fa2d0dbraeeds0se-dir tyd f#f2f08
615.252376] Hardware name: linux,dummy-virt (DT)
[ 615.253220] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS
BTYPE=--)
[ 615.254433] pc : strnlen+0x6c/0xe0
[ 615.255096] lr : trace_event_get_offsets_qdisc_reset+0x94/0x3d0
[ 615.256088] sp : ffff800080b269a0
[ 615.256615] x29: ffff800080b269a0 x28: ffffc070f3f98500 x27:
0000000000000001
[ 615.257831] x26: 0000000000000010 x25: ffffc070f3f98540 x24:
ffffc070f619cf60
[ 615.259020] x23: 0000000000000128 x22: 0000000000000138 x21:
dfff800000000000
[ 615.260241] x20: ffffc070f631ad00 x19: 0000000000000128 x18:
ffffc070f448b800
[ 615.261454] x17: 0000000000000000 x16: 0000000000000001 x15:
ffffc070f4ba2a90
[ 615.262635] x14: ffff700010164d73 x13: 1ffff80e1e8d5eb3 x12:
1ffff00010164d72
[ 615.263877] x11: ffff700010164d72 x10: dfff800000000000 x9 :
ffffc070e85d6184
[ 615.265047] x8 : ffffc070e4402070 x7 : 000000000000f1f1 x6 :
000000001504a6d3
[ 615.266336] x5 : ffff28ca21122140 x4 : ffffc070f5043ea8 x3 :
0000000000000000
[ 615.267528] x2 : 0000000000000025 x1 : 0000000000000000 x0 :
0000000000000000
[ 615.268747] Call trace:
[ 615.269180] strnlen+0x6c/0xe0
[ 615.269767] trace_event_get_offsets_qdisc_reset+0x94/0x3d0
[ 615.270716] trace_event_raw_event_qdisc_reset+0xe8/0x4e8
[ 615.271667] __traceiter_qdisc_reset+0xa0/0x140
[ 615.272499] qdisc_reset+0x554/0x848
[ 615.273134] netif_set_real_num_tx_queues+0x360/0x9a8
[ 615.274050] veth_init_queues+0x110/0x220 [veth]
[ 615.275110] veth_newlink+0x538/0xa50 [veth]
[ 615.276172] __rtnl_newlink+0x11e4/0x1bc8
[ 615.276944] rtnl_newlink+0xac/0x120
[ 615.277657] rtnetlink_rcv_msg+0x4e4/0x1370
[ 615.278409] netlink_rcv_skb+0x25c/0x4f0
[ 615.279122] rtnetlink_rcv+0x48/0x70
[ 615.279769] netlink_unicast+0x5a8/0x7b8
[ 615.280462] netlink_sendmsg+0xa70/0x1190
Yeoreum and I don't know if the patch we wrote will fix the underlying
cause, but we think that priority is to prevent kernel panic happening.
So, we're sending this patch.
Fixes: 51270d573a8d ("tracing/net_sched: Fix tracepoints that save qdisc_dev() as a string")
Link: https://lore.kernel.org/lkml/20240229143432.273b4871@gandalf.local.home/t/
Cc: netdev@vger.kernel.org
Tested-by: Yunseong Kim <yskelg@gmail.com>
Signed-off-by: Yunseong Kim <yskelg@gmail.com>
Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20240624173320.24945-4-yskelg@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf14ed81f571f8dba31cd72ab2e50fbcc877cc31 upstream.
Since commit 5d0a661d808f ("mm/page_alloc: use only one PCP list for
THP-sized allocations") no longer differentiates the migration type of
pages in THP-sized PCP list, it's possible that non-movable allocation
requests may get a CMA page from the list, in some cases, it's not
acceptable.
If a large number of CMA memory are configured in system (for example, the
CMA memory accounts for 50% of the system memory), starting a virtual
machine with device passthrough will get stuck. During starting the
virtual machine, it will call pin_user_pages_remote(..., FOLL_LONGTERM,
...) to pin memory. Normally if a page is present and in CMA area,
pin_user_pages_remote() will migrate the page from CMA area to non-CMA
area because of FOLL_LONGTERM flag. But if non-movable allocation
requests return CMA memory, migrate_longterm_unpinnable_pages() will
migrate a CMA page to another CMA page, which will fail to pass the check
in check_and_migrate_movable_pages() and cause migration endless.
Call trace:
pin_user_pages_remote
--__gup_longterm_locked // endless loops in this function
----_get_user_pages_locked
----check_and_migrate_movable_pages
------migrate_longterm_unpinnable_pages
--------alloc_migration_target
This problem will also have a negative impact on CMA itself. For example,
when CMA is borrowed by THP, and we need to reclaim it through cma_alloc()
or dma_alloc_coherent(), we must move those pages out to ensure CMA's
users can retrieve that contigous memory. Currently, CMA's memory is
occupied by non-movable pages, meaning we can't relocate them. As a
result, cma_alloc() is more likely to fail.
To fix the problem above, we add one PCP list for THP, which will not
introduce a new cacheline for struct per_cpu_pages. THP will have 2 PCP
lists, one PCP list is used by MOVABLE allocation, and the other PCP list
is used by UNMOVABLE allocation. MOVABLE allocation contains GPF_MOVABLE,
and UNMOVABLE allocation contains GFP_UNMOVABLE and GFP_RECLAIMABLE.
Link: https://lkml.kernel.org/r/1718845190-4456-1-git-send-email-yangge1116@126.com
Fixes: 5d0a661d808f ("mm/page_alloc: use only one PCP list for THP-sized allocations")
Signed-off-by: yangge <yangge1116@126.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 63e2f40c9e3187641afacde4153f54b3ee4dbc8c ]
My earlier fix missed an incorrect function prototype that shows up on
native 32-bit builds:
In file included from fs/notify/fanotify/fanotify_user.c:14:
include/linux/syscalls.h:248:25: error: conflicting types for 'sys_fanotify_mark'; have 'long int(int, unsigned int, u32, u32, int, const char *)' {aka 'long int(int, unsigned int, unsigned int, unsigned int, int, const char *)'}
1924 | SYSCALL32_DEFINE6(fanotify_mark,
| ^~~~~~~~~~~~~~~~~
include/linux/syscalls.h:862:17: note: previous declaration of 'sys_fanotify_mark' with type 'long int(int, unsigned int, u64, int, const char *)' {aka 'long int(int, unsigned int, long long unsigned int, int, const char *)'}
On x86 and powerpc, the prototype is also wrong but hidden in an #ifdef,
so it never caused problems.
Add another alternative declaration that matches the conditional function
definition.
Fixes: 403f17a33073 ("parisc: use generic sys_fanotify_mark implementation")
Cc: stable@vger.kernel.org
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit d3882564a77c21eb746ba5364f3fa89b88de3d61 upstream.
Using sys_io_pgetevents() as the entry point for compat mode tasks
works almost correctly, but misses the sign extension for the min_nr
and nr arguments.
This was addressed on parisc by switching to
compat_sys_io_pgetevents_time64() in commit 6431e92fc827 ("parisc:
io_pgetevents_time64() needs compat syscall in 32-bit compat mode"),
as well as by using more sophisticated system call wrappers on x86 and
s390. However, arm64, mips, powerpc, sparc and riscv still have the
same bug.
Change all of them over to use compat_sys_io_pgetevents_time64()
like parisc already does. This was clearly the intention when the
function was originally added, but it got hooked up incorrectly in
the tables.
Cc: stable@vger.kernel.org
Fixes: 48166e6ea47d ("y2038: add 64-bit time_t syscalls to all 32-bit architectures")
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4b8e88e563b5f666446d002ad0dc1e6e8e7102b0 upstream.
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake.
Fixes: 3f6d078d4acc ("fix compat truncate/ftruncate")
Reviewed-by: Christian Brauner <brauner@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9bb43b9e8d9a288a214e9b17acc9e46fda3977cf upstream.
Analogue to uart_port_tx_flags() introduced in commit 3ee07964d407
("serial: core: introduce uart_port_tx_flags()"), add a _flags variant
for uart_port_tx_limited().
Fixes: d11cc8c3c4b6 ("tty: serial: use uart_port_tx_limited()")
Cc: stable@vger.kernel.org
Signed-off-by: Jonas Gorski <jonas.gorski@gmail.com>
Signed-off-by: Doug Brown <doug@schmorgal.com>
Link: https://lore.kernel.org/r/20240606195632.173255-3-doug@schmorgal.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c5603e2a621dac10c5e21cc430848ebcfa6c7e01 upstream.
This reverts commit 7bfb915a597a301abb892f620fe5c283a9fdbd77.
This commit broke pxa and omap-serial, because it inhibited them from
calling stop_tx() if their TX FIFOs weren't completely empty. This
resulted in these two drivers hanging during transmits because the TX
interrupt would stay enabled, and a new TX interrupt would never fire.
Cc: stable@vger.kernel.org
Fixes: 7bfb915a597a ("serial: core: only stop transmit when HW fifo is empty")
Signed-off-by: Doug Brown <doug@schmorgal.com>
Link: https://lore.kernel.org/r/20240606195632.173255-2-doug@schmorgal.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f6549f538fe0b2c389e1a7037f4e21039e25137a ]
libsas is currently not freeing all the struct ata_port struct members,
e.g. ncq_sense_buf for a driver supporting Command Duration Limits (CDL).
Add a function, ata_port_free(), that is used to free a ata_port,
including its struct members. It makes sense to keep the code related to
freeing a ata_port in its own function, which will also free all the
struct members of struct ata_port.
Fixes: 18bd7718b5c4 ("scsi: ata: libata: Handle completion of CDL commands using policy 0xD")
Reviewed-by: John Garry <john.g.garry@oracle.com>
Link: https://lore.kernel.org/r/20240629124210.181537-8-cassel@kernel.org
Signed-off-by: Niklas Cassel <cassel@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f80a55fa90fa76d01e3fffaa5d0413e522ab9a00 ]
PRTYPE is the provider type, not the QP service type.
Fixes: eb793e2c9286 ("nvme.h: add NVMe over Fabrics definitions")
Signed-off-by: Hannes Reinecke <hare@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b7793a1a2f370c28b17d9554b58e9dc51afcfcbd ]
For simplicity, we may want to pass a NULL element, and
while we should then pass also a zero length, just be a
bit more careful here.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Miri Korenblit <miriam.rachel.korenblit@intel.com>
Link: https://msgid.link/20240318184907.4d983653cb8d.Ic3ea99b60c61ac2f7d38cb9fd202a03c97a05601@changeid
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
bpf_jit_binary_lock_ro()
[ Upstream commit e60adf513275c3a38e5cb67f7fd12387e43a3ff5 ]
set_memory_rox() can fail, leaving memory unprotected.
Check return and bail out when bpf_jit_binary_lock_ro() returns
an error.
Link: https://github.com/KSPP/linux/issues/7
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: linux-hardening@vger.kernel.org <linux-hardening@vger.kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Reviewed-by: Ilya Leoshkevich <iii@linux.ibm.com> # s390x
Acked-by: Tiezhu Yang <yangtiezhu@loongson.cn> # LoongArch
Reviewed-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> # MIPS Part
Message-ID: <036b6393f23a2032ce75a1c92220b2afcb798d5d.1709850515.git.christophe.leroy@csgroup.eu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7d2cc63eca0c993c99d18893214abf8f85d566d8 ]
set_memory_ro() can fail, leaving memory unprotected.
Check its return and take it into account as an error.
Link: https://github.com/KSPP/linux/issues/7
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: linux-hardening@vger.kernel.org <linux-hardening@vger.kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Message-ID: <286def78955e04382b227cb3e4b6ba272a7442e3.1709850515.git.christophe.leroy@csgroup.eu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7931d32955e09d0a11b1fe0b6aac1bfa061c005c ]
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers.
Fixes: 96518518cc41 ("netfilter: add nftables")
Reported-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ff46e3b4421923937b7f6e44ffcd3549a074f321 ]
When bonding is configured in BOND_MODE_BROADCAST mode, if two identical
SYN packets are received at the same time and processed on different CPUs,
it can potentially create the same sk (sock) but two different reqsk
(request_sock) in tcp_conn_request().
These two different reqsk will respond with two SYNACK packets, and since
the generation of the seq (ISN) incorporates a timestamp, the final two
SYNACK packets will have different seq values.
The consequence is that when the Client receives and replies with an ACK
to the earlier SYNACK packet, we will reset(RST) it.
========================================================================
This behavior is consistently reproducible in my local setup,
which comprises:
| NETA1 ------ NETB1 |
PC_A --- bond --- | | --- bond --- PC_B
| NETA2 ------ NETB2 |
- PC_A is the Server and has two network cards, NETA1 and NETA2. I have
bonded these two cards using BOND_MODE_BROADCAST mode and configured
them to be handled by different CPU.
- PC_B is the Client, also equipped with two network cards, NETB1 and
NETB2, which are also bonded and configured in BOND_MODE_BROADCAST mode.
If the client attempts a TCP connection to the server, it might encounter
a failure. Capturing packets from the server side reveals:
10.10.10.10.45182 > localhost: Flags [S], seq 320236027,
10.10.10.10.45182 > localhost: Flags [S], seq 320236027,
localhost > 10.10.10.10.45182: Flags [S.], seq 2967855116,
localhost > 10.10.10.10.45182: Flags [S.], seq 2967855123, <==
10.10.10.10.45182 > localhost: Flags [.], ack 4294967290,
10.10.10.10.45182 > localhost: Flags [.], ack 4294967290,
localhost > 10.10.10.10.45182: Flags [R], seq 2967855117, <==
localhost > 10.10.10.10.45182: Flags [R], seq 2967855117,
Two SYNACKs with different seq numbers are sent by localhost,
resulting in an anomaly.
========================================================================
The attempted solution is as follows:
Add a return value to inet_csk_reqsk_queue_hash_add() to confirm if the
ehash insertion is successful (Up to now, the reason for unsuccessful
insertion is that a reqsk for the same connection has already been
inserted). If the insertion fails, release the reqsk.
Due to the refcnt, Kuniyuki suggests also adding a return value check
for the DCCP module; if ehash insertion fails, indicating a successful
insertion of the same connection, simply release the reqsk as well.
Simultaneously, In the reqsk_queue_hash_req(), the start of the
req->rsk_timer is adjusted to be after successful insertion.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: luoxuanqiang <luoxuanqiang@kylinos.cn>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240621013929.1386815-1-luoxuanqiang@kylinos.cn
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 231035f18d6b80e5c28732a20872398116a54ecd ]
Commit 31c89007285d ("workqueue.c: Increase workqueue name length")
increased WQ_NAME_LEN from 24 to 32, but forget to increase
WORKER_DESC_LEN, which would cause truncation when setting kworker's
desc from workqueue_struct's name, process_one_work() for example.
Fixes: 31c89007285d ("workqueue.c: Increase workqueue name length")
Signed-off-by: Wenchao Hao <haowenchao22@gmail.com>
CC: Audra Mitchell <audra@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2ae5c9248e06dac2c2360be26b4e25f673238337 ]
Currently struct ieee80211_tim_ie defines:
u8 virtual_map[1];
Per the guidance in [1] change this to be a flexible array.
Per the discussion in [2] wrap the virtual_map in a union with a u8
item in order to preserve the existing expectation that the
virtual_map must contain at least one octet (at least when used in a
non-S1G PPDU). This means that no driver changes are required.
[1] https://docs.kernel.org/process/deprecated.html#zero-length-and-one-element-arrays
[2] https://lore.kernel.org/linux-wireless/202308301529.AC90A9EF98@keescook/
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230831-ieee80211_tim_ie-v3-2-e10ff584ab5d@quicinc.com
[add wifi prefix]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 93022482b2948a9a7e9b5a2bb685f2e1cb4c3348 ]
Code in v6.9 arch/x86/kernel/smpboot.c was changed by commit
4db64279bc2b ("x86/cpu: Switch to new Intel CPU model defines") from:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ <--- 443
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
to:
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
On an Intel CPU with SNC enabled this code previously matched the rule on line
443 to avoid printing messages about insane cache configuration. The new code
did not match any rules.
Expanding the macros for the intel_cod_cpu[] array shows that the old is
equivalent to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 6, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
while the new code expands to:
static const struct x86_cpu_id intel_cod_cpu[] = {
[0] = { .vendor = 0, .family = 6, .model = 0x3F, .steppings = 0, .feature = 0, .driver_data = 0 },
[1] = { .vendor = 0, .family = 6, .model = 0x4F, .steppings = 0, .feature = 0, .driver_data = 0 },
[2] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 1 },
[3] = { .vendor = 0, .family = 0, .model = 0x00, .steppings = 0, .feature = 0, .driver_data = 0 }
}
Looking at the code for x86_match_cpu():
const struct x86_cpu_id *x86_match_cpu(const struct x86_cpu_id *match)
{
const struct x86_cpu_id *m;
struct cpuinfo_x86 *c = &boot_cpu_data;
for (m = match;
m->vendor | m->family | m->model | m->steppings | m->feature;
m++) {
...
}
return NULL;
it is clear that there was no match because the ANY entry in the table (array
index 2) is now the loop termination condition (all of vendor, family, model,
steppings, and feature are zero).
So this code was working before because the "ANY" check was looking for any
Intel CPU in family 6. But fails now because the family is a wild card. So the
root cause is that x86_match_cpu() has never been able to match on a rule with
just X86_VENDOR_INTEL and all other fields set to wildcards.
Add a new flags field to struct x86_cpu_id that has a bit set to indicate that
this entry in the array is valid. Update X86_MATCH*() macros to set that bit.
Change the end-marker check in x86_match_cpu() to just check the flags field
for this bit.
Backporter notes: The commit in Fixes is really the one that is broken:
you can't have m->vendor as part of the loop termination conditional in
x86_match_cpu() because it can happen - as it has happened above
- that that whole conditional is 0 albeit vendor == 0 is a valid case
- X86_VENDOR_INTEL is 0.
However, the only case where the above happens is the SNC check added by
4db64279bc2b1 so you only need this fix if you have backported that
other commit
4db64279bc2b ("x86/cpu: Switch to new Intel CPU model defines")
Fixes: 644e9cbbe3fc ("Add driver auto probing for x86 features v4")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable+noautosel@kernel.org> # see above
Link: https://lore.kernel.org/r/20240517144312.GBZkdtAOuJZCvxhFbJ@fat_crate.local
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 01c8f9806bde438ca1c8cbbc439f0a14a6694f6c upstream.
In kcov_remote_start()/kcov_remote_stop(), we swap the previous KCOV
metadata of the current task into a per-CPU variable. However, the
kcov_mode_enabled(mode) check is not sufficient in the case of remote KCOV
coverage: current->kcov_mode always remains KCOV_MODE_DISABLED for remote
KCOV objects.
If the original task that has invoked the KCOV_REMOTE_ENABLE ioctl happens
to get interrupted and kcov_remote_start() is called, it ultimately leads
to kcov_remote_stop() NOT restoring the original KCOV reference. So when
the task exits, all registered remote KCOV handles remain active forever.
The most uncomfortable effect (at least for syzkaller) is that the bug
prevents the reuse of the same /sys/kernel/debug/kcov descriptor. If
we obtain it in the parent process and then e.g. drop some
capabilities and continuously fork to execute individual programs, at
some point current->kcov of the forked process is lost,
kcov_task_exit() takes no action, and all KCOV_REMOTE_ENABLE ioctls
calls from subsequent forks fail.
And, yes, the efficiency is also affected if we keep on losing remote
kcov objects.
a) kcov_remote_map keeps on growing forever.
b) (If I'm not mistaken), we're also not freeing the memory referenced
by kcov->area.
Fix it by introducing a special kcov_mode that is assigned to the task
that owns a KCOV remote object. It makes kcov_mode_enabled() return true
and yet does not trigger coverage collection in __sanitizer_cov_trace_pc()
and write_comp_data().
[nogikh@google.com: replace WRITE_ONCE() with an ordinary assignment]
Link: https://lkml.kernel.org/r/20240614171221.2837584-1-nogikh@google.com
Link: https://lkml.kernel.org/r/20240611133229.527822-1-nogikh@google.com
Fixes: 5ff3b30ab57d ("kcov: collect coverage from interrupts")
Signed-off-by: Aleksandr Nogikh <nogikh@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f92a59f6d12e31ead999fee9585471b95a8ae8a3 upstream.
For ${atomic}_sub_and_test() the @i parameter is the value to subtract,
not add. Fix the typo in the kerneldoc template and generate the headers
with this update.
Fixes: ad8110706f38 ("locking/atomic: scripts: generate kerneldoc comments")
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20240515133844.3502360-1-cmllamas@google.com
[cmllamas: generate headers with gen-atomics.sh]
Signed-off-by: Carlos Llamas <cmllamas@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0e6b6dedf16800df0ff73ffe2bb5066514db29c2 upstream.
After starting to install the EC address space handler at the ACPI
namespace root, if there is an "orphan" _REG method in the EC device's
scope, it will not be evaluated any more. This breaks EC operation
regions on some systems, like Asus gu605.
To address this, use a wrapper around an existing ACPICA function to
look for an "orphan" _REG method in the EC device scope and evaluate
it if present.
Fixes: 60fa6ae6e6d0 ("ACPI: EC: Install address space handler at the namespace root")
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218945
Reported-by: VitaliiT <vitaly.torshyn@gmail.com>
Tested-by: VitaliiT <vitaly.torshyn@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a2225e0250c5fa397dcebf6ce65a9f05a114e0cf ]
Currently, the sysctl net.netfilter.nf_hooks_lwtunnel depends on the
nf_conntrack module, but the nf_conntrack module is not always loaded.
Therefore, accessing net.netfilter.nf_hooks_lwtunnel may have an error.
Move sysctl nf_hooks_lwtunnel into the netfilter core.
Fixes: 7a3f5b0de364 ("netfilter: add netfilter hooks to SRv6 data plane")
Suggested-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Jianguo Wu <wujianguo@chinatelecom.cn>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6613443ffc49d03e27f0404978f685c4eac43fba ]
On runtime resume, pci_dev_wait() is called:
pci_pm_runtime_resume()
pci_pm_bridge_power_up_actions()
pci_bridge_wait_for_secondary_bus()
pci_dev_wait()
While a device is runtime suspended along with its PCI hierarchy, the
device could get disconnected. In such case, the link will not come up no
matter how long pci_dev_wait() waits for it.
Besides the above mentioned case, there could be other ways to get the
device disconnected while pci_dev_wait() is waiting for the link to come
up.
Make pci_dev_wait() exit if the device is already disconnected to avoid
unnecessary delay.
The use cases of pci_dev_wait() boil down to two:
1. Waiting for the device after reset
2. pci_bridge_wait_for_secondary_bus()
The callers in both cases seem to benefit from propagating the
disconnection as error even if device disconnection would be more
analoguous to the case where there is no device in the first place which
return 0 from pci_dev_wait(). In the case 2, it results in unnecessary
marking of the devices disconnected again but that is just harmless extra
work.
Also make sure compiler does not become too clever with dev->error_state
and use READ_ONCE() to force a fetch for the up-to-date value.
Link: https://lore.kernel.org/r/20240208132322.4811-1-ilpo.jarvinen@linux.intel.com
Reported-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6bd23e0c2bb6c65d4f5754d1456bc9a4427fc59b ]
... and use it to limit the virtual terminals to just N_TTY. They are
kind of special, and in particular, the "con_write()" routine violates
the "writes cannot sleep" rule that some ldiscs rely on.
This avoids the
BUG: sleeping function called from invalid context at kernel/printk/printk.c:2659
when N_GSM has been attached to a virtual console, and gsmld_write()
calls con_write() while holding a spinlock, and con_write() then tries
to get the console lock.
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Daniel Starke <daniel.starke@siemens.com>
Reported-by: syzbot <syzbot+dbac96d8e73b61aa559c@syzkaller.appspotmail.com>
Closes: https://syzkaller.appspot.com/bug?extid=dbac96d8e73b61aa559c
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240423163339.59780-1-torvalds@linux-foundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1a7d0890dd4a502a202aaec792a6c04e6e049547 ]
If an error happens in ftrace, ftrace_kill() will prevent disarming
kprobes. Eventually, the ftrace_ops associated with the kprobes will be
freed, yet the kprobes will still be active, and when triggered, they
will use the freed memory, likely resulting in a page fault and panic.
This behavior can be reproduced quite easily, by creating a kprobe and
then triggering a ftrace_kill(). For simplicity, we can simulate an
ftrace error with a kernel module like [1]:
[1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer
sudo perf probe --add commit_creds
sudo perf trace -e probe:commit_creds
# In another terminal
make
sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug
# Back to perf terminal
# ctrl-c
sudo perf probe --del commit_creds
After a short period, a page fault and panic would occur as the kprobe
continues to execute and uses the freed ftrace_ops. While ftrace_kill()
is supposed to be used only in extreme circumstances, it is invoked in
FTRACE_WARN_ON() and so there are many places where an unexpected bug
could be triggered, yet the system may continue operating, possibly
without the administrator noticing. If ftrace_kill() does not panic the
system, then we should do everything we can to continue operating,
rather than leave a ticking time bomb.
Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|