Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that all templates provide a ->create() method which creates an
instance, installs a strongly-typed ->free() method directly to it, and
registers it, the older ->alloc() and ->free() methods in
'struct crypto_template' are no longer used. Remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert shash_free_instance() and its users to the new way of freeing
instances, where a ->free() method is installed to the instance struct
itself. This replaces the weakly-typed method crypto_template::free().
This will allow removing support for the old way of freeing instances.
Also give shash_free_instance() a more descriptive name to reflect that
it's only for instances with a single spawn, not for any instance.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Convert the "seqiv" template to the new way of freeing instances where a
->free() method is installed to the instance struct itself. Also remove
the unused implementation of the old way of freeing instances from the
"echainiv" template, since it's already using the new way too.
In doing this, also simplify the code by making the helper function
aead_geniv_alloc() install the ->free() method, instead of making seqiv
and echainiv do this themselves. This is analogous to how
skcipher_alloc_instance_simple() works.
This will allow removing support for the old way of freeing instances.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add support to shash and ahash for the new way of freeing instances
(already used for skcipher, aead, and akcipher) where a ->free() method
is installed to the instance struct itself. These methods are more
strongly-typed than crypto_template::free(), which they replace.
This will allow removing support for the old way of freeing instances.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that crypto_init_spawn() is only called by crypto_grab_spawn(),
simplify things by moving its functionality into crypto_grab_spawn().
In the process of doing this, also be more consistent about when the
spawn and instance are updated, and remove the crypto_spawn::dropref
flag since now it's always set.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that all the templates that need ahash spawns have been converted to
use crypto_grab_ahash() rather than look up the algorithm directly,
crypto_ahash_type is no longer used outside of ahash.c. Make it static.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove lots of helper functions that were previously used for
instantiating crypto templates, but are now unused:
- crypto_get_attr_alg() and similar functions looked up an inner
algorithm directly from a template parameter. These were replaced
with getting the algorithm's name, then calling crypto_grab_*().
- crypto_init_spawn2() and similar functions initialized a spawn, given
an algorithm. Similarly, these were replaced with crypto_grab_*().
- crypto_alloc_instance() and similar functions allocated an instance
with a single spawn, given the inner algorithm. These aren't useful
anymore since crypto_grab_*() need the instance allocated first.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Now that all users of single-block cipher spawns have been converted to
use 'struct crypto_cipher_spawn' rather than the less specifically typed
'struct crypto_spawn', make crypto_spawn_cipher() take a pointer to a
'struct crypto_cipher_spawn' rather than a 'struct crypto_spawn'.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Make skcipher_alloc_instance_simple() use the new function
crypto_grab_cipher() to initialize its cipher spawn.
This is needed to make all spawns be initialized in a consistent way.
Also simplify the error handling by taking advantage of crypto_drop_*()
now accepting (as a no-op) spawns that haven't been initialized yet, and
by taking advantage of crypto_grab_*() now handling ERR_PTR() names.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, "cipher" (single-block cipher) spawns are usually initialized
by using crypto_get_attr_alg() to look up the algorithm, then calling
crypto_init_spawn(). In one case, crypto_grab_spawn() is used directly.
The former way is different from how skcipher, aead, and akcipher spawns
are initialized (they use crypto_grab_*()), and for no good reason.
This difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
Also, the cipher spawns are not strongly typed; e.g., the API requires
that the user manually specify the flags CRYPTO_ALG_TYPE_CIPHER and
CRYPTO_ALG_TYPE_MASK. Though the "cipher" algorithm type itself isn't
yet strongly typed, we can start by making the spawns strongly typed.
So, let's introduce a new 'struct crypto_cipher_spawn', and functions
crypto_grab_cipher() and crypto_drop_cipher() to grab and drop them.
Later patches will convert all cipher spawns to use these, then make
crypto_spawn_cipher() take 'struct crypto_cipher_spawn' as well, instead
of a bare 'struct crypto_spawn' as it currently does.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, ahash spawns are initialized by using ahash_attr_alg() or
crypto_find_alg() to look up the ahash algorithm, then calling
crypto_init_ahash_spawn().
This is different from how skcipher, aead, and akcipher spawns are
initialized (they use crypto_grab_*()), and for no good reason. This
difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
So, let's introduce crypto_grab_ahash() so that we can convert all
templates to the same way of initializing their spawns.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, shash spawns are initialized by using shash_attr_alg() or
crypto_alg_mod_lookup() to look up the shash algorithm, then calling
crypto_init_shash_spawn().
This is different from how skcipher, aead, and akcipher spawns are
initialized (they use crypto_grab_*()), and for no good reason. This
difference introduces unnecessary complexity.
The crypto_grab_*() functions used to have some problems, like not
holding a reference to the algorithm and requiring the caller to
initialize spawn->base.inst. But those problems are fixed now.
So, let's introduce crypto_grab_shash() so that we can convert all
templates to the same way of initializing their spawns.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently, crypto_spawn::inst is first used temporarily to pass the
instance to crypto_grab_spawn(). Then crypto_init_spawn() overwrites it
with crypto_spawn::next, which shares the same union. Finally,
crypto_spawn::inst is set again when the instance is registered.
Make this less convoluted by just passing the instance as an argument to
crypto_grab_spawn() instead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_akcipher_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_akcipher().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_akcipher() take the instance as an argument.
To keep the function call from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into pkcs1pad_create().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_aead_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_aead().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_aead() take the instance as an argument.
To keep the function calls from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into the affected places
which weren't already using one.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Initializing a crypto_skcipher_spawn currently requires:
1. Set spawn->base.inst to point to the instance.
2. Call crypto_grab_skcipher().
But there's no reason for these steps to be separate, and in fact this
unneeded complication has caused at least one bug, the one fixed by
commit 6db43410179b ("crypto: adiantum - initialize crypto_spawn::inst")
So just make crypto_grab_skcipher() take the instance as an argument.
To keep the function calls from getting too unwieldy due to this extra
argument, also introduce a 'mask' variable into the affected places
which weren't already using one.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Define struct ahash_instance in a way analogous to struct
skcipher_instance, struct aead_instance, and struct akcipher_instance,
where the struct is defined to include both the algorithm structure at
the beginning and the additional crypto_instance fields at the end.
This is needed to allow allocating ahash instances directly using
kzalloc(sizeof(*inst) + sizeof(*ictx), ...) in the same way as skcipher,
aead, and akcipher instances. In turn, that's needed to make spawns be
initialized in a consistent way everywhere.
Also take advantage of the addition of the base instance to struct
ahash_instance by simplifying the ahash_crypto_instance() and
ahash_instance() functions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Define struct shash_instance in a way analogous to struct
skcipher_instance, struct aead_instance, and struct akcipher_instance,
where the struct is defined to include both the algorithm structure at
the beginning and the additional crypto_instance fields at the end.
This is needed to allow allocating shash instances directly using
kzalloc(sizeof(*inst) + sizeof(*ictx), ...) in the same way as skcipher,
aead, and akcipher instances. In turn, that's needed to make spawns be
initialized in a consistent way everywhere.
Also take advantage of the addition of the base instance to struct
shash_instance by simplifying the shash_crypto_instance() and
shash_instance() functions.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_* flags were apparently meant as a way to make the
->setkey() functions provide more information about errors. But these
flags weren't actually being used or tested, and in many cases they
weren't being set correctly anyway. So they've now been removed.
Also, if someone ever actually needs to start better distinguishing
->setkey() errors (which is somewhat unlikely, as this has been unneeded
for a long time), we'd be much better off just defining different return
values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove CRYPTO_TFM_RES_MASK and all the unneeded logic that
propagates these flags around.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_WEAK_KEY flag was apparently meant as a way to make
the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
There are also no tests that verify that all algorithms actually set (or
don't set) it correctly.
This is also the last remaining CRYPTO_TFM_RES_* flag, which means that
it's the only thing still needing all the boilerplate code which
propagates these flags around from child => parent tfms.
And if someone ever needs to distinguish this error in the future (which
is somewhat unlikely, as it's been unneeded for a long time), it would
be much better to just define a new return value like -EKEYREJECTED.
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The flag CRYPTO_TFM_RES_BAD_BLOCK_LEN is never checked for, and it's
only set by one driver. And even that single driver's use is wrong
because the driver is setting the flag from ->encrypt() and ->decrypt()
with no locking, which is unsafe because ->encrypt() and ->decrypt() can
be executed by many threads in parallel on the same tfm.
Just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The tfm result flags CRYPTO_TFM_RES_BAD_KEY_SCHED and
CRYPTO_TFM_RES_BAD_FLAGS are never used, so remove them.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
skcipher_walk_aead() is unused and is identical to
skcipher_walk_aead_encrypt(), so remove it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The AMD-TEE driver should check if TEE is available before
registering itself with TEE subsystem. This ensures that
there is a TEE which the driver can talk to before proceeding
with tee device node allocation.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Jens Wiklander <jens.wiklander@linaro.org>
Co-developed-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Rijo Thomas <Rijo-john.Thomas@amd.com>
Reviewed-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Adds AMD-TEE driver.
* targets AMD APUs which has AMD Secure Processor with software-based
Trusted Execution Environment (TEE) support
* registers with TEE subsystem
* defines tee_driver_ops function callbacks
* kernel allocated memory is used as shared memory between normal
world and secure world.
* acts as REE (Rich Execution Environment) communication agent, which
uses the services of AMD Secure Processor driver to submit commands
for processing in TEE environment
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Jens Wiklander <jens.wiklander@linaro.org>
Co-developed-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Rijo Thomas <Rijo-john.Thomas@amd.com>
Reviewed-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch introduces the skcipher_ialg_simple helper which fetches
the crypto_alg structure from a simple skcipher instance's spawn.
This allows us to remove the third argument from the function
skcipher_alloc_instance_simple.
In doing so the reference count to the algorithm is now maintained
by the Crypto API and the caller no longer needs to drop the alg
refcount.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch changes crypto_grab_spawn to retain the reference count
on the algorithm. This is because the caller needs to access the
algorithm parameters and without the reference count the algorithm
can be freed at any time.
The reference count will be subsequently dropped by the crypto API
once the instance has been registered. The helper crypto_drop_spawn
will also conditionally drop the reference count depending on whether
it has been registered.
Note that the code is actually added to crypto_init_spawn. However,
unless the caller activates this by setting spawn->dropref beforehand
then nothing happens. The only caller that sets dropref is currently
crypto_grab_spawn.
Once all legacy users of crypto_init_spawn disappear, then we can
kill the dropref flag.
Internally each instance will maintain a list of its spawns prior
to registration. This memory used by this list is shared with
other fields that are only used after registration. In order for
this to work a new flag spawn->registered is added to indicate
whether spawn->inst can be used.
Fixes: d6ef2f198d4c ("crypto: api - Add crypto_grab_spawn primitive")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Fixes coccicheck warning:
./include/linux/crypto.h:573:2-3: Unneeded semicolon
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Some of the algorithm unregistration functions return -ENOENT when asked
to unregister a non-registered algorithm, while others always return 0
or always return void. But no users check the return value, except for
two of the bulk unregistration functions which print a message on error
but still always return 0 to their caller, and crypto_del_alg() which
calls crypto_unregister_instance() which always returns 0.
Since unregistering a non-registered algorithm is always a kernel bug
but there isn't anything callers should do to handle this situation at
runtime, let's simplify things by making all the unregistration
functions return void, and moving the error message into
crypto_unregister_alg() and upgrading it to a WARN().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Extend the functionality of AMD Secure Processor (SP) driver by
providing an in-kernel API to submit commands to TEE ring buffer for
processing by Trusted OS running on AMD Secure Processor.
Following TEE commands are supported by Trusted OS:
* TEE_CMD_ID_LOAD_TA : Load Trusted Application (TA) binary into
TEE environment
* TEE_CMD_ID_UNLOAD_TA : Unload TA binary from TEE environment
* TEE_CMD_ID_OPEN_SESSION : Open session with loaded TA
* TEE_CMD_ID_CLOSE_SESSION : Close session with loaded TA
* TEE_CMD_ID_INVOKE_CMD : Invoke a command with loaded TA
* TEE_CMD_ID_MAP_SHARED_MEM : Map shared memory
* TEE_CMD_ID_UNMAP_SHARED_MEM : Unmap shared memory
Linux AMD-TEE driver will use this API to submit command buffers
for processing in Trusted Execution Environment. The AMD-TEE driver
shall be introduced in a separate patch.
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Co-developed-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Devaraj Rangasamy <Devaraj.Rangasamy@amd.com>
Signed-off-by: Rijo Thomas <Rijo-john.Thomas@amd.com>
Acked-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch switches hmac over to the new init_tfm/exit_tfm interface
as opposed to cra_init/cra_exit. This way the shash API can make
sure that descsize does not exceed the maximum.
This patch also adds the API helper shash_alg_instance.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The shash interface supports a dynamic descsize field because of
the presence of fallbacks (it's just padlock-sha actually, perhaps
we can remove it one day). As it is the API does not verify the
setting of descsize at all. It is up to the individual algorithms
to ensure that descsize does not exceed the specified maximum value
of HASH_MAX_DESCSIZE (going above would cause stack corruption).
In order to allow the API to impose this limit directly, this patch
adds init_tfm/exit_tfm hooks to the shash_alg structure. We can
then verify the descsize setting in the API directly.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently when a spawn is removed we will zap its alg field.
This is racy because the spawn could belong to an unregistered
instance which may dereference the spawn->alg field.
This patch fixes this by keeping spawn->alg constant and instead
adding a new spawn->dead field to indicate that a spawn is going
away.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Building with W=1 causes a warning:
CC [M] arch/x86/crypto/chacha_glue.o
In file included from arch/x86/crypto/chacha_glue.c:10:
./include/crypto/internal/chacha.h:37:1: warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
37 | static int inline chacha12_setkey(struct crypto_skcipher *tfm, const u8 *key,
| ^~~~~~
Straighten out the order to match the rest of the header file.
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove references to unused functions, standardize language, update to
reflect new functionality, migrate to rst format, and fix all kernel-doc
warnings.
Fixes: 815613da6a67 ("kernel/padata.c: removed unused code")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: linux-crypto@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
reorder_objects is unused since the rework of padata's flushing, so
remove it.
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since commit 63d3578892dc ("crypto: pcrypt - remove padata cpumask
notifier") this feature is unused, so get rid of it.
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: linux-crypto@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Configuring an instance's parallel mask without any online CPUs...
echo 2 > /sys/kernel/pcrypt/pencrypt/parallel_cpumask
echo 0 > /sys/devices/system/cpu/cpu1/online
...makes tcrypt mode=215 crash like this:
divide error: 0000 [#1] SMP PTI
CPU: 4 PID: 283 Comm: modprobe Not tainted 5.4.0-rc8-padata-doc-v2+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20191013_105130-anatol 04/01/2014
RIP: 0010:padata_do_parallel+0x114/0x300
Call Trace:
pcrypt_aead_encrypt+0xc0/0xd0 [pcrypt]
crypto_aead_encrypt+0x1f/0x30
do_mult_aead_op+0x4e/0xdf [tcrypt]
test_mb_aead_speed.constprop.0.cold+0x226/0x564 [tcrypt]
do_test+0x28c2/0x4d49 [tcrypt]
tcrypt_mod_init+0x55/0x1000 [tcrypt]
...
cpumask_weight() in padata_cpu_hash() returns 0 because the mask has no
CPUs. The problem is __padata_remove_cpu() checks for valid masks too
early and so doesn't mark the instance PADATA_INVALID as expected, which
would have made padata_do_parallel() return error before doing the
division.
Fix by introducing a second padata CPU hotplug state before
CPUHP_BRINGUP_CPU so that __padata_remove_cpu() sees the online mask
without @cpu. No need for the second argument to padata_replace() since
@cpu is now already missing from the online mask.
Fixes: 33e54450683c ("padata: Handle empty padata cpumasks")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Of the three fields in crt_u.cipher (struct cipher_tfm), ->cit_setkey()
is pointless because it always points to setkey() in crypto/cipher.c.
->cit_decrypt_one() and ->cit_encrypt_one() are slightly less pointless,
since if the algorithm doesn't have an alignmask, they are set directly
to ->cia_encrypt() and ->cia_decrypt(). However, this "optimization"
isn't worthwhile because:
- The "cipher" algorithm type is the only algorithm still using crt_u,
so it's bloating every struct crypto_tfm for every algorithm type.
- If the algorithm has an alignmask, this "optimization" actually makes
things slower, as it causes 2 indirect calls per block rather than 1.
- It adds extra code complexity.
- Some templates already call ->cia_encrypt()/->cia_decrypt() directly
instead of going through ->cit_encrypt_one()/->cit_decrypt_one().
- The "cipher" algorithm type never gives optimal performance anyway.
For that, a higher-level type such as skcipher needs to be used.
Therefore, just remove the extra indirection, and make
crypto_cipher_setkey(), crypto_cipher_encrypt_one(), and
crypto_cipher_decrypt_one() be direct calls into crypto/cipher.c.
Also remove the unused function crypto_cipher_cast().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
crt_u.compress (struct compress_tfm) is pointless because its two
fields, ->cot_compress() and ->cot_decompress(), always point to
crypto_compress() and crypto_decompress().
Remove this pointless indirection, and just make crypto_comp_compress()
and crypto_comp_decompress() be direct calls to what used to be
crypto_compress() and crypto_decompress().
Also remove the unused function crypto_comp_cast().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a helper function crypto_skcipher_min_keysize() to mirror
crypto_skcipher_max_keysize().
This will be used by the self-tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Move crypto_aead_maxauthsize() to <crypto/aead.h> so that it's available
to users of the API, not just AEAD implementations.
This will be used by the self-tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The essiv and hmac templates refuse to use any hash algorithm that has a
->setkey() function, which includes not just algorithms that always need
a key, but also algorithms that optionally take a key.
Previously the only optionally-keyed hash algorithms in the crypto API
were non-cryptographic algorithms like crc32, so this didn't really
matter. But that's changed with BLAKE2 support being added. BLAKE2
should work with essiv and hmac, just like any other cryptographic hash.
Fix this by allowing the use of both algorithms without a ->setkey()
function and algorithms that have the OPTIONAL_KEY flag set.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::decrypt is now redundant since it always equals
crypto_skcipher_alg(tfm)->decrypt.
Remove it and update crypto_skcipher_decrypt() accordingly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::encrypt is now redundant since it always equals
crypto_skcipher_alg(tfm)->encrypt.
Remove it and update crypto_skcipher_encrypt() accordingly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::setkey now always points to skcipher_setkey().
Simplify by removing this function pointer and instead just making
skcipher_setkey() be crypto_skcipher_setkey() directly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::keysize is now redundant since it always equals
crypto_skcipher_alg(tfm)->max_keysize.
Remove it and update crypto_skcipher_default_keysize() accordingly.
Also rename crypto_skcipher_default_keysize() to
crypto_skcipher_max_keysize() to clarify that it specifically returns
the maximum key size, not some unspecified "default".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to the removal of the blkcipher and ablkcipher algorithm types,
crypto_skcipher::ivsize is now redundant since it always equals
crypto_skcipher_alg(tfm)->ivsize.
Remove it and update crypto_skcipher_ivsize() accordingly.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The crypto glue performed function prototype casting via macros to make
indirect calls to assembly routines. Instead of performing casts at the
call sites (which trips Control Flow Integrity prototype checking), switch
each prototype to a common standard set of arguments which allows the
removal of the existing macros. In order to keep pointer math unchanged,
internal casting between u128 pointers and u8 pointers is added.
Co-developed-by: João Moreira <joao.moreira@intel.com>
Signed-off-by: João Moreira <joao.moreira@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|