| Age | Commit message (Collapse) | Author | Files | Lines |
|
register injection
[ Upstream commit 67c3ca2c5cfe6a50772514e3349b5e7b3b0fac03 ]
Problem description
-------------------
On an NXP LS1028A (felix DSA driver) with the following configuration:
- ocelot-8021q tagging protocol
- VLAN-aware bridge (with STP) spanning at least swp0 and swp1
- 8021q VLAN upper interfaces on swp0 and swp1: swp0.700, swp1.700
- ptp4l on swp0.700 and swp1.700
we see that the ptp4l instances do not see each other's traffic,
and they all go to the grand master state due to the
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES condition.
Jumping to the conclusion for the impatient
-------------------------------------------
There is a zero-day bug in the ocelot switchdev driver in the way it
handles VLAN-tagged packet injection. The correct logic already exists in
the source code, in function ocelot_xmit_get_vlan_info() added by commit
5ca721c54d86 ("net: dsa: tag_ocelot: set the classified VLAN during xmit").
But it is used only for normal NPI-based injection with the DSA "ocelot"
tagging protocol. The other injection code paths (register-based and
FDMA-based) roll their own wrong logic. This affects and was noticed on
the DSA "ocelot-8021q" protocol because it uses register-based injection.
By moving ocelot_xmit_get_vlan_info() to a place that's common for both
the DSA tagger and the ocelot switch library, it can also be called from
ocelot_port_inject_frame() in ocelot.c.
We need to touch the lines with ocelot_ifh_port_set()'s prototype
anyway, so let's rename it to something clearer regarding what it does,
and add a kernel-doc. ocelot_ifh_set_basic() should do.
Investigation notes
-------------------
Debugging reveals that PTP event (aka those carrying timestamps, like
Sync) frames injected into swp0.700 (but also swp1.700) hit the wire
with two VLAN tags:
00000000: 01 1b 19 00 00 00 00 01 02 03 04 05 81 00 02 bc
~~~~~~~~~~~
00000010: 81 00 02 bc 88 f7 00 12 00 2c 00 00 02 00 00 00
~~~~~~~~~~~
00000020: 00 00 00 00 00 00 00 00 00 00 00 01 02 ff fe 03
00000030: 04 05 00 01 00 04 00 00 00 00 00 00 00 00 00 00
00000040: 00 00
The second (unexpected) VLAN tag makes felix_check_xtr_pkt() ->
ptp_classify_raw() fail to see these as PTP packets at the link
partner's receiving end, and return PTP_CLASS_NONE (because the BPF
classifier is not written to expect 2 VLAN tags).
The reason why packets have 2 VLAN tags is because the transmission
code treats VLAN incorrectly.
Neither ocelot switchdev, nor felix DSA, declare the NETIF_F_HW_VLAN_CTAG_TX
feature. Therefore, at xmit time, all VLANs should be in the skb head,
and none should be in the hwaccel area. This is done by:
static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
netdev_features_t features)
{
if (skb_vlan_tag_present(skb) &&
!vlan_hw_offload_capable(features, skb->vlan_proto))
skb = __vlan_hwaccel_push_inside(skb);
return skb;
}
But ocelot_port_inject_frame() handles things incorrectly:
ocelot_ifh_port_set(ifh, port, rew_op, skb_vlan_tag_get(skb));
void ocelot_ifh_port_set(struct sk_buff *skb, void *ifh, int port, u32 rew_op)
{
(...)
if (vlan_tag)
ocelot_ifh_set_vlan_tci(ifh, vlan_tag);
(...)
}
The way __vlan_hwaccel_push_inside() pushes the tag inside the skb head
is by calling:
static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb)
{
skb->vlan_present = 0;
}
which does _not_ zero out skb->vlan_tci as seen by skb_vlan_tag_get().
This means that ocelot, when it calls skb_vlan_tag_get(), sees
(and uses) a residual skb->vlan_tci, while the same VLAN tag is
_already_ in the skb head.
The trivial fix for double VLAN headers is to replace the content of
ocelot_ifh_port_set() with:
if (skb_vlan_tag_present(skb))
ocelot_ifh_set_vlan_tci(ifh, skb_vlan_tag_get(skb));
but this would not be correct either, because, as mentioned,
vlan_hw_offload_capable() is false for us, so we'd be inserting dead
code and we'd always transmit packets with VID=0 in the injection frame
header.
I can't actually test the ocelot switchdev driver and rely exclusively
on code inspection, but I don't think traffic from 8021q uppers has ever
been injected properly, and not double-tagged. Thus I'm blaming the
introduction of VLAN fields in the injection header - early driver code.
As hinted at in the early conclusion, what we _want_ to happen for
VLAN transmission was already described once in commit 5ca721c54d86
("net: dsa: tag_ocelot: set the classified VLAN during xmit").
ocelot_xmit_get_vlan_info() intends to ensure that if the port through
which we're transmitting is under a VLAN-aware bridge, the outer VLAN
tag from the skb head is stripped from there and inserted into the
injection frame header (so that the packet is processed in hardware
through that actual VLAN). And in all other cases, the packet is sent
with VID=0 in the injection frame header, since the port is VLAN-unaware
and has logic to strip this VID on egress (making it invisible to the
wire).
Fixes: 08d02364b12f ("net: mscc: fix the injection header")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8a2f11878771da65b8ac135c73b47dae13afbd62 ]
After redefining alloc_pages, all uses of that name are being replaced.
Change the conflicting names to prevent preprocessor from replacing them
when it's not intended.
Link: https://lkml.kernel.org/r/20240321163705.3067592-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: 61ebe5a747da ("mm/vmalloc: fix page mapping if vm_area_alloc_pages() with high order fallback to order 0")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f9e28904e6442019043a8e94ec6747a064d06003 ]
There is low probability that an out-of-bounds segment will be got
on a small-capacity device. In order to prevent subsequent write requests
allocating block address from this invalid segment, which may cause
unexpected issue, stop checkpoint should be performed.
Also introduce a new stop cp reason: STOP_CP_REASON_NO_SEGMENT.
Note, f2fs_stop_checkpoint(, false) is complex and it may sleep, so we should
move it outside segmap_lock spinlock coverage in get_new_segment().
Signed-off-by: Zhiguo Niu <zhiguo.niu@unisoc.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 40ca4ee3136d2d09977d1cab8c0c0e1582c3359d ]
The security.evm HMAC and the original file signatures contain
filesystem specific data. As a result, the HMAC and signature
are not the same on the stacked and backing filesystems.
Don't copy up 'security.evm'.
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6e284c55fc0bef7d25fd34d29db11f483da60ea4 upstream.
Function kmem_dump_obj() will splat if passed a pointer to a non-slab
object. So nothing calls it directly, instead calling kmem_valid_obj()
first to determine whether the passed pointer to a valid slab object. This
means that merging kmem_valid_obj() into kmem_dump_obj() will make the
code more concise. Therefore, convert kmem_dump_obj() to work the same
way as vmalloc_dump_obj(), removing the need for the kmem_dump_obj()
caller to check kmem_valid_obj(). After this, there are no remaining
calls to kmem_valid_obj() anymore, and it can be safely removed.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit fdad456cbcca739bae1849549c7a999857c56f88 ]
The commit f7866c358733 ("bpf: Fix null pointer dereference in resolve_prog_type() for BPF_PROG_TYPE_EXT")
fixed a NULL pointer dereference panic, but didn't fix the issue that
fails to update attached freplace prog to prog_array map.
Since commit 1c123c567fb1 ("bpf: Resolve fext program type when checking map compatibility"),
freplace prog and its target prog are able to tail call each other.
And the commit 3aac1ead5eb6 ("bpf: Move prog->aux->linked_prog and trampoline into bpf_link on attach")
sets prog->aux->dst_prog as NULL after attaching freplace prog to its
target prog.
After loading freplace the prog_array's owner type is BPF_PROG_TYPE_SCHED_CLS.
Then, after attaching freplace its prog->aux->dst_prog is NULL.
Then, while updating freplace in prog_array the bpf_prog_map_compatible()
incorrectly returns false because resolve_prog_type() returns
BPF_PROG_TYPE_EXT instead of BPF_PROG_TYPE_SCHED_CLS.
After this patch the resolve_prog_type() returns BPF_PROG_TYPE_SCHED_CLS
and update to prog_array can succeed.
Fixes: f7866c358733 ("bpf: Fix null pointer dereference in resolve_prog_type() for BPF_PROG_TYPE_EXT")
Cc: Toke Høiland-Jørgensen <toke@redhat.com>
Cc: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Leon Hwang <leon.hwang@linux.dev>
Link: https://lore.kernel.org/r/20240728114612.48486-2-leon.hwang@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 9a2fa1472083580b6c66bdaf291f591e1170123a upstream.
copy_fd_bitmaps(new, old, count) is expected to copy the first
count/BITS_PER_LONG bits from old->full_fds_bits[] and fill
the rest with zeroes. What it does is copying enough words
(BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest.
That works fine, *if* all bits past the cutoff point are
clear. Otherwise we are risking garbage from the last word
we'd copied.
For most of the callers that is true - expand_fdtable() has
count equal to old->max_fds, so there's no open descriptors
past count, let alone fully occupied words in ->open_fds[],
which is what bits in ->full_fds_bits[] correspond to.
The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds),
which is the smallest multiple of BITS_PER_LONG that covers all
opened descriptors below max_fds. In the common case (copying on
fork()) max_fds is ~0U, so all opened descriptors will be below
it and we are fine, by the same reasons why the call in expand_fdtable()
is safe.
Unfortunately, there is a case where max_fds is less than that
and where we might, indeed, end up with junk in ->full_fds_bits[] -
close_range(from, to, CLOSE_RANGE_UNSHARE) with
* descriptor table being currently shared
* 'to' being above the current capacity of descriptor table
* 'from' being just under some chunk of opened descriptors.
In that case we end up with observably wrong behaviour - e.g. spawn
a child with CLONE_FILES, get all descriptors in range 0..127 open,
then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending
up with descriptor #128, despite #64 being observably not open.
The minimally invasive fix would be to deal with that in dup_fd().
If this proves to add measurable overhead, we can go that way, but
let's try to fix copy_fd_bitmaps() first.
* new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size).
* make copy_fd_bitmaps() take the bitmap size in words, rather than
bits; it's 'count' argument is always a multiple of BITS_PER_LONG,
so we are not losing any information, and that way we can use the
same helper for all three bitmaps - compiler will see that count
is a multiple of BITS_PER_LONG for the large ones, so it'll generate
plain memcpy()+memset().
Reproducer added to tools/testing/selftests/core/close_range_test.c
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a37fbe666c016fd89e4460d0ebfcea05baba46dc upstream.
The number of times yet another open coded
`BITS_TO_LONGS(nbits) * sizeof(long)` can be spotted is huge.
Some generic helper is long overdue.
Add one, bitmap_size(), but with one detail.
BITS_TO_LONGS() uses DIV_ROUND_UP(). The latter works well when both
divident and divisor are compile-time constants or when the divisor
is not a pow-of-2. When it is however, the compilers sometimes tend
to generate suboptimal code (GCC 13):
48 83 c0 3f add $0x3f,%rax
48 c1 e8 06 shr $0x6,%rax
48 8d 14 c5 00 00 00 00 lea 0x0(,%rax,8),%rdx
%BITS_PER_LONG is always a pow-2 (either 32 or 64), but GCC still does
full division of `nbits + 63` by it and then multiplication by 8.
Instead of BITS_TO_LONGS(), use ALIGN() and then divide by 8. GCC:
8d 50 3f lea 0x3f(%rax),%edx
c1 ea 03 shr $0x3,%edx
81 e2 f8 ff ff 1f and $0x1ffffff8,%edx
Now it shifts `nbits + 63` by 3 positions (IOW performs fast division
by 8) and then masks bits[2:0]. bloat-o-meter:
add/remove: 0/0 grow/shrink: 20/133 up/down: 156/-773 (-617)
Clang does it better and generates the same code before/after starting
from -O1, except that with the ALIGN() approach it uses %edx and thus
still saves some bytes:
add/remove: 0/0 grow/shrink: 9/133 up/down: 18/-538 (-520)
Note that we can't expand DIV_ROUND_UP() by adding a check and using
this approach there, as it's used in array declarations where
expressions are not allowed.
Add this helper to tools/ as well.
Reviewed-by: Przemek Kitszel <przemyslaw.kitszel@intel.com>
Acked-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2a0629834cd82f05d424bbc193374f9a43d1f87d upstream.
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature, ubifs with xattr) may do inode lookup in the inode
evicting callback function, if the inode lookup is operated under the
inode lru traversing context, deadlock problems may happen.
Case 1: In function ext4_evict_inode(), the ea inode lookup could happen
if ea_inode feature is enabled, the lookup process will be stuck
under the evicting context like this:
1. File A has inode i_reg and an ea inode i_ea
2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea
3. Then, following three processes running like this:
PA PB
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// i_reg is added into lru, lru->i_ea->i_reg
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
i_ea->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(i_reg)
spin_unlock(&i_reg->i_lock)
spin_unlock(lru_lock)
rm file A
i_reg->nlink = 0
iput(i_reg) // i_reg->nlink is 0, do evict
ext4_evict_inode
ext4_xattr_delete_inode
ext4_xattr_inode_dec_ref_all
ext4_xattr_inode_iget
ext4_iget(i_ea->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(i_ea) ----→ AA deadlock
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&i_ea->i_state)
Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file
deleting process holds BASEHD's wbuf->io_mutex while getting the
xattr inode, which could race with inode reclaiming process(The
reclaiming process could try locking BASEHD's wbuf->io_mutex in
inode evicting function), then an ABBA deadlock problem would
happen as following:
1. File A has inode ia and a xattr(with inode ixa), regular file B has
inode ib and a xattr.
2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa
3. Then, following three processes running like this:
PA PB PC
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// ib and ia are added into lru, lru->ixa->ib->ia
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
ixa->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(ib)
spin_unlock(&ib->i_lock)
spin_unlock(lru_lock)
rm file B
ib->nlink = 0
rm file A
iput(ia)
ubifs_evict_inode(ia)
ubifs_jnl_delete_inode(ia)
ubifs_jnl_write_inode(ia)
make_reservation(BASEHD) // Lock wbuf->io_mutex
ubifs_iget(ixa->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(ixa)
| iput(ib) // ib->nlink is 0, do evict
| ubifs_evict_inode
| ubifs_jnl_delete_inode(ib)
↓ ubifs_jnl_write_inode
ABBA deadlock ←-----make_reservation(BASEHD)
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&ixa->i_state)
Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING
to pin the inode in memory while inode_lru_isolate() reclaims its pages
instead of using ordinary inode reference. This way inode deletion
cannot be triggered from inode_lru_isolate() thus avoiding the deadlock.
evict() is made to wait for I_LRU_ISOLATING to be cleared before
proceeding with inode cleanup.
Link: https://lore.kernel.org/all/37c29c42-7685-d1f0-067d-63582ffac405@huaweicloud.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219022
Fixes: e50e5129f384 ("ext4: xattr-in-inode support")
Fixes: 7959cf3a7506 ("ubifs: journal: Handle xattrs like files")
Cc: stable@vger.kernel.org
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Link: https://lore.kernel.org/r/20240809031628.1069873-1-chengzhihao@huaweicloud.com
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a7fb0423c201ba12815877a0b5a68a6a1710b23a upstream.
Commit d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU
safe") adds a new rcu_head to the cgroup_root structure and kvfree_rcu()
for freeing the cgroup_root.
The current implementation of kvfree_rcu(), however, has the limitation
that the offset of the rcu_head structure within the larger data
structure must be less than 4096 or the compilation will fail. See the
macro definition of __is_kvfree_rcu_offset() in include/linux/rcupdate.h
for more information.
By putting rcu_head below the large cgroup structure, any change to the
cgroup structure that makes it larger run the risk of causing build
failure under certain configurations. Commit 77070eeb8821 ("cgroup:
Avoid false cacheline sharing of read mostly rstat_cpu") happens to be
the last straw that breaks it. Fix this problem by moving the rcu_head
structure up before the cgroup structure.
Fixes: d23b5c577715 ("cgroup: Make operations on the cgroup root_list RCU safe")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Closes: https://lore.kernel.org/lkml/20231207143806.114e0a74@canb.auug.org.au/
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6309863b31dd80317cd7d6824820b44e254e2a9c ]
copy_from_sockptr() helper is unsafe, unless callers
did the prior check against user provided optlen.
Too many callers get this wrong, lets add a helper to
fix them and avoid future copy/paste bugs.
Instead of :
if (optlen < sizeof(opt)) {
err = -EINVAL;
break;
}
if (copy_from_sockptr(&opt, optval, sizeof(opt)) {
err = -EFAULT;
break;
}
Use :
err = copy_safe_from_sockptr(&opt, sizeof(opt),
optval, optlen);
if (err)
break;
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240408082845.3957374-2-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Stable-dep-of: 7a87441c9651 ("nfc: llcp: fix nfc_llcp_setsockopt() unsafe copies")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 68d6f4f3fbd9b1baae53e7cf33fb3362b5a21494 ]
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time via CONFIG_UBSAN_BOUNDS (for
array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family
functions).
While there, use struct_size() helper, instead of the open-coded
version.
[brauner@kernel.org: contains a fix by Edward for an OOB access]
Reported-by: syzbot+4139435cb1b34cf759c2@syzkaller.appspotmail.com
Signed-off-by: Edward Adam Davis <eadavis@qq.com>
Link: https://lore.kernel.org/r/tencent_A7845DD769577306D813742365E976E3A205@qq.com
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Link: https://lore.kernel.org/r/ZgImCXTdGDTeBvSS@neat
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f4a48bc36cdfae7c603e8e3f2a51e2a283f3f365 ]
Convert mount code to use bdev_open_by_dev() and propagate the handle
around to bdev_release().
Acked-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-19-jack@suse.cz
Signed-off-by: Christian Brauner <brauner@kernel.org>
Stable-dep-of: 6306ff39a7fc ("jfs: fix log->bdev_handle null ptr deref in lbmStartIO")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit d23b5c577715892c87533b13923306acc6243f93 upstream.
At present, when we perform operations on the cgroup root_list, we must
hold the cgroup_mutex, which is a relatively heavyweight lock. In reality,
we can make operations on this list RCU-safe, eliminating the need to hold
the cgroup_mutex during traversal. Modifications to the list only occur in
the cgroup root setup and destroy paths, which should be infrequent in a
production environment. In contrast, traversal may occur frequently.
Therefore, making it RCU-safe would be beneficial.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3f6ef182f144dcc9a4d942f97b6a8ed969f13c95 ]
Now that this isn't used anywhere, remove it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f094323867668d50124886ad884b665de7319537 ]
Since only one service actually reports the rpc stats there's not much
of a reason to have a pointer to it in the svc_program struct. Adjust
the svc_create_pooled function to take the sv_stats as an argument and
pass the struct through there as desired instead of getting it from the
svc_program->pg_stats.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
[ cel: adjusted to apply to v6.6.y ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 69b6517687a4b1fb250bd8c9c193a0a304c8ba17 upstream.
For !CONFIG_BLK_DEV_INTEGRITY, rq_integrity_vec() wasn't updated
properly. Fix it up.
Fixes: cf546dd289e0 ("block: change rq_integrity_vec to respect the iterator")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cc: Matthieu Baerts <matttbe@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0b6743bd60a56a701070b89fb80c327a44b7b3e2 upstream.
With structure layout randomization enabled for 'struct inode' we need to
avoid overlapping any of the RCU-used / initialized-only-once members,
e.g. i_lru or i_sb_list to not corrupt related list traversals when making
use of the rcu_head.
For an unlucky structure layout of 'struct inode' we may end up with the
following splat when running the ftrace selftests:
[<...>] list_del corruption, ffff888103ee2cb0->next (tracefs_inode_cache+0x0/0x4e0 [slab object]) is NULL (prev is tracefs_inode_cache+0x78/0x4e0 [slab object])
[<...>] ------------[ cut here ]------------
[<...>] kernel BUG at lib/list_debug.c:54!
[<...>] invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[<...>] CPU: 3 PID: 2550 Comm: mount Tainted: G N 6.8.12-grsec+ #122 ed2f536ca62f28b087b90e3cc906a8d25b3ddc65
[<...>] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
[<...>] RIP: 0010:[<ffffffff84656018>] __list_del_entry_valid_or_report+0x138/0x3e0
[<...>] Code: 48 b8 99 fb 65 f2 ff ff ff ff e9 03 5c d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff e9 33 5a d9 fc cc 48 b8 99 fb 65 f2 ff ff ff ff <0f> 0b 4c 89 e9 48 89 ea 48 89 ee 48 c7 c7 60 8f dd 89 31 c0 e8 2f
[<...>] RSP: 0018:fffffe80416afaf0 EFLAGS: 00010283
[<...>] RAX: 0000000000000098 RBX: ffff888103ee2cb0 RCX: 0000000000000000
[<...>] RDX: ffffffff84655fe8 RSI: ffffffff89dd8b60 RDI: 0000000000000001
[<...>] RBP: ffff888103ee2cb0 R08: 0000000000000001 R09: fffffbd0082d5f25
[<...>] R10: fffffe80416af92f R11: 0000000000000001 R12: fdf99c16731d9b6d
[<...>] R13: 0000000000000000 R14: ffff88819ad4b8b8 R15: 0000000000000000
[<...>] RBX: tracefs_inode_cache+0x0/0x4e0 [slab object]
[<...>] RDX: __list_del_entry_valid_or_report+0x108/0x3e0
[<...>] RSI: __func__.47+0x4340/0x4400
[<...>] RBP: tracefs_inode_cache+0x0/0x4e0 [slab object]
[<...>] RSP: process kstack fffffe80416afaf0+0x7af0/0x8000 [mount 2550 2550]
[<...>] R09: kasan shadow of process kstack fffffe80416af928+0x7928/0x8000 [mount 2550 2550]
[<...>] R10: process kstack fffffe80416af92f+0x792f/0x8000 [mount 2550 2550]
[<...>] R14: tracefs_inode_cache+0x78/0x4e0 [slab object]
[<...>] FS: 00006dcb380c1840(0000) GS:ffff8881e0600000(0000) knlGS:0000000000000000
[<...>] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[<...>] CR2: 000076ab72b30e84 CR3: 000000000b088004 CR4: 0000000000360ef0 shadow CR4: 0000000000360ef0
[<...>] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[<...>] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[<...>] ASID: 0003
[<...>] Stack:
[<...>] ffffffff818a2315 00000000f5c856ee ffffffff896f1840 ffff888103ee2cb0
[<...>] ffff88812b6b9750 0000000079d714b6 fffffbfff1e9280b ffffffff8f49405f
[<...>] 0000000000000001 0000000000000000 ffff888104457280 ffffffff8248b392
[<...>] Call Trace:
[<...>] <TASK>
[<...>] [<ffffffff818a2315>] ? lock_release+0x175/0x380 fffffe80416afaf0
[<...>] [<ffffffff8248b392>] list_lru_del+0x152/0x740 fffffe80416afb48
[<...>] [<ffffffff8248ba93>] list_lru_del_obj+0x113/0x280 fffffe80416afb88
[<...>] [<ffffffff8940fd19>] ? _atomic_dec_and_lock+0x119/0x200 fffffe80416afb90
[<...>] [<ffffffff8295b244>] iput_final+0x1c4/0x9a0 fffffe80416afbb8
[<...>] [<ffffffff8293a52b>] dentry_unlink_inode+0x44b/0xaa0 fffffe80416afbf8
[<...>] [<ffffffff8293fefc>] __dentry_kill+0x23c/0xf00 fffffe80416afc40
[<...>] [<ffffffff8953a85f>] ? __this_cpu_preempt_check+0x1f/0xa0 fffffe80416afc48
[<...>] [<ffffffff82949ce5>] ? shrink_dentry_list+0x1c5/0x760 fffffe80416afc70
[<...>] [<ffffffff82949b71>] ? shrink_dentry_list+0x51/0x760 fffffe80416afc78
[<...>] [<ffffffff82949da8>] shrink_dentry_list+0x288/0x760 fffffe80416afc80
[<...>] [<ffffffff8294ae75>] shrink_dcache_sb+0x155/0x420 fffffe80416afcc8
[<...>] [<ffffffff8953a7c3>] ? debug_smp_processor_id+0x23/0xa0 fffffe80416afce0
[<...>] [<ffffffff8294ad20>] ? do_one_tree+0x140/0x140 fffffe80416afcf8
[<...>] [<ffffffff82997349>] ? do_remount+0x329/0xa00 fffffe80416afd18
[<...>] [<ffffffff83ebf7a1>] ? security_sb_remount+0x81/0x1c0 fffffe80416afd38
[<...>] [<ffffffff82892096>] reconfigure_super+0x856/0x14e0 fffffe80416afd70
[<...>] [<ffffffff815d1327>] ? ns_capable_common+0xe7/0x2a0 fffffe80416afd90
[<...>] [<ffffffff82997436>] do_remount+0x416/0xa00 fffffe80416afdd0
[<...>] [<ffffffff829b2ba4>] path_mount+0x5c4/0x900 fffffe80416afe28
[<...>] [<ffffffff829b25e0>] ? finish_automount+0x13a0/0x13a0 fffffe80416afe60
[<...>] [<ffffffff82903812>] ? user_path_at_empty+0xb2/0x140 fffffe80416afe88
[<...>] [<ffffffff829b2ff5>] do_mount+0x115/0x1c0 fffffe80416afeb8
[<...>] [<ffffffff829b2ee0>] ? path_mount+0x900/0x900 fffffe80416afed8
[<...>] [<ffffffff8272461c>] ? __kasan_check_write+0x1c/0xa0 fffffe80416afee0
[<...>] [<ffffffff829b31cf>] __do_sys_mount+0x12f/0x280 fffffe80416aff30
[<...>] [<ffffffff829b36cd>] __x64_sys_mount+0xcd/0x2e0 fffffe80416aff70
[<...>] [<ffffffff819f8818>] ? syscall_trace_enter+0x218/0x380 fffffe80416aff88
[<...>] [<ffffffff8111655e>] x64_sys_call+0x5d5e/0x6720 fffffe80416affa8
[<...>] [<ffffffff8952756d>] do_syscall_64+0xcd/0x3c0 fffffe80416affb8
[<...>] [<ffffffff8100119b>] entry_SYSCALL_64_safe_stack+0x4c/0x87 fffffe80416affe8
[<...>] </TASK>
[<...>] <PTREGS>
[<...>] RIP: 0033:[<00006dcb382ff66a>] vm_area_struct[mount 2550 2550 file 6dcb38225000-6dcb3837e000 22 55(read|exec|mayread|mayexec)]+0x0/0xb8 [userland map]
[<...>] Code: 48 8b 0d 29 18 0d 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d f6 17 0d 00 f7 d8 64 89 01 48
[<...>] RSP: 002b:0000763d68192558 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
[<...>] RAX: ffffffffffffffda RBX: 00006dcb38433264 RCX: 00006dcb382ff66a
[<...>] RDX: 000017c3e0d11210 RSI: 000017c3e0d1a5a0 RDI: 000017c3e0d1ae70
[<...>] RBP: 000017c3e0d10fb0 R08: 000017c3e0d11260 R09: 00006dcb383d1be0
[<...>] R10: 000000000020002e R11: 0000000000000246 R12: 0000000000000000
[<...>] R13: 000017c3e0d1ae70 R14: 000017c3e0d11210 R15: 000017c3e0d10fb0
[<...>] RBX: vm_area_struct[mount 2550 2550 file 6dcb38433000-6dcb38434000 5b 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] RCX: vm_area_struct[mount 2550 2550 file 6dcb38225000-6dcb3837e000 22 55(read|exec|mayread|mayexec)]+0x0/0xb8 [userland map]
[<...>] RDX: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] RSI: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] RDI: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] RBP: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] RSP: vm_area_struct[mount 2550 2550 anon 763d68173000-763d68195000 7ffffffdd 100133(read|write|mayread|maywrite|growsdown|account)]+0x0/0xb8 [userland map]
[<...>] R08: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] R09: vm_area_struct[mount 2550 2550 file 6dcb383d1000-6dcb383d3000 1cd 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] R13: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] R14: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] R15: vm_area_struct[mount 2550 2550 anon 17c3e0d0f000-17c3e0d31000 17c3e0d0f 100033(read|write|mayread|maywrite|account)]+0x0/0xb8 [userland map]
[<...>] </PTREGS>
[<...>] Modules linked in:
[<...>] ---[ end trace 0000000000000000 ]---
The list debug message as well as RBX's symbolic value point out that the
object in question was allocated from 'tracefs_inode_cache' and that the
list's '->next' member is at offset 0. Dumping the layout of the relevant
parts of 'struct tracefs_inode' gives the following:
struct tracefs_inode {
union {
struct inode {
struct list_head {
struct list_head * next; /* 0 8 */
struct list_head * prev; /* 8 8 */
} i_lru;
[...]
} vfs_inode;
struct callback_head {
void (*func)(struct callback_head *); /* 0 8 */
struct callback_head * next; /* 8 8 */
} rcu;
};
[...]
};
Above shows that 'vfs_inode.i_lru' overlaps with 'rcu' which will
destroy the 'i_lru' list as soon as the 'rcu' member gets used, e.g. in
call_rcu() or later when calling the RCU callback. This will disturb
concurrent list traversals as well as object reuse which assumes these
list heads will keep their integrity.
For reproduction, the following diff manually overlays 'i_lru' with
'rcu' as, otherwise, one would require some good portion of luck for
gambling an unlucky RANDSTRUCT seed:
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -629,6 +629,7 @@ struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
+ struct list_head i_lru; /* inode LRU list */
kgid_t i_gid;
unsigned int i_flags;
@@ -690,7 +691,6 @@ struct inode {
u16 i_wb_frn_avg_time;
u16 i_wb_frn_history;
#endif
- struct list_head i_lru; /* inode LRU list */
struct list_head i_sb_list;
struct list_head i_wb_list; /* backing dev writeback list */
union {
The tracefs inode does not need to supply its own RCU delayed destruction
of its inode. The inode code itself offers both a "destroy_inode()"
callback that gets called when the last reference of the inode is
released, and the "free_inode()" which is called after a RCU
synchronization period from the "destroy_inode()".
The tracefs code can unlink the inode from its list in the destroy_inode()
callback, and the simply free it from the free_inode() callback. This
should provide the same protection.
Link: https://lore.kernel.org/all/20240807115143.45927-3-minipli@grsecurity.net/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Ajay Kaher <ajay.kaher@broadcom.com>
Cc: Ilkka =?utf-8?b?TmF1bGFww6TDpA==?= <digirigawa@gmail.com>
Link: https://lore.kernel.org/20240807185402.61410544@gandalf.local.home
Fixes: baa23a8d4360 ("tracefs: Reset permissions on remount if permissions are options")
Reported-by: Mathias Krause <minipli@grsecurity.net>
Reported-by: Brad Spengler <spender@grsecurity.net>
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2ed08e4bc53298db3f87b528cd804cb0cce066a9 ]
On a 8-socket server the TSC is wrongly marked as 'unstable' and disabled
during boot time on about one out of 120 boot attempts:
clocksource: timekeeping watchdog on CPU227: wd-tsc-wd excessive read-back delay of 153560ns vs. limit of 125000ns,
wd-wd read-back delay only 11440ns, attempt 3, marking tsc unstable
tsc: Marking TSC unstable due to clocksource watchdog
TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.
sched_clock: Marking unstable (119294969739, 159204297)<-(125446229205, -5992055152)
clocksource: Checking clocksource tsc synchronization from CPU 319 to CPUs 0,99,136,180,210,542,601,896.
clocksource: Switched to clocksource hpet
The reason is that for platform with a large number of CPUs, there are
sporadic big or huge read latencies while reading the watchog/clocksource
during boot or when system is under stress work load, and the frequency and
maximum value of the latency goes up with the number of online CPUs.
The cCurrent code already has logic to detect and filter such high latency
case by reading the watchdog twice and checking the two deltas. Due to the
randomness of the latency, there is a low probabilty that the first delta
(latency) is big, but the second delta is small and looks valid. The
watchdog code retries the readouts by default twice, which is not
necessarily sufficient for systems with a large number of CPUs.
There is a command line parameter 'max_cswd_read_retries' which allows to
increase the number of retries, but that's not user friendly as it needs to
be tweaked per system. As the number of required retries is proportional to
the number of online CPUs, this parameter can be calculated at runtime.
Scale and enlarge the number of retries according to the number of online
CPUs and remove the command line parameter completely.
[ tglx: Massaged change log and comments ]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jin Wang <jin1.wang@intel.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Waiman Long <longman@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20240221060859.1027450-1-feng.tang@intel.com
Stable-dep-of: f2655ac2c06a ("clocksource: Fix brown-bag boolean thinko in cs_watchdog_read()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0e8b53979ac86eddb3fd76264025a70071a25574 ]
After the commit 66665ad2f102 ("tracing/kprobe: bpf: Compare instruction
pointer with original one"), "bpf_kprobe_override" is not used anywhere
anymore, and we can remove it now.
Link: https://lore.kernel.org/all/20240710085939.11520-1-dongml2@chinatelecom.cn/
Fixes: 66665ad2f102 ("tracing/kprobe: bpf: Compare instruction pointer with original one")
Signed-off-by: Menglong Dong <dongml2@chinatelecom.cn>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 89add40066f9ed9abe5f7f886fe5789ff7e0c50e upstream.
Tighten csum_start and csum_offset checks in virtio_net_hdr_to_skb
for GSO packets.
The function already checks that a checksum requested with
VIRTIO_NET_HDR_F_NEEDS_CSUM is in skb linear. But for GSO packets
this might not hold for segs after segmentation.
Syzkaller demonstrated to reach this warning in skb_checksum_help
offset = skb_checksum_start_offset(skb);
ret = -EINVAL;
if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
By injecting a TSO packet:
WARNING: CPU: 1 PID: 3539 at net/core/dev.c:3284 skb_checksum_help+0x3d0/0x5b0
ip_do_fragment+0x209/0x1b20 net/ipv4/ip_output.c:774
ip_finish_output_gso net/ipv4/ip_output.c:279 [inline]
__ip_finish_output+0x2bd/0x4b0 net/ipv4/ip_output.c:301
iptunnel_xmit+0x50c/0x930 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x2296/0x2c70 net/ipv4/ip_tunnel.c:813
__gre_xmit net/ipv4/ip_gre.c:469 [inline]
ipgre_xmit+0x759/0xa60 net/ipv4/ip_gre.c:661
__netdev_start_xmit include/linux/netdevice.h:4850 [inline]
netdev_start_xmit include/linux/netdevice.h:4864 [inline]
xmit_one net/core/dev.c:3595 [inline]
dev_hard_start_xmit+0x261/0x8c0 net/core/dev.c:3611
__dev_queue_xmit+0x1b97/0x3c90 net/core/dev.c:4261
packet_snd net/packet/af_packet.c:3073 [inline]
The geometry of the bad input packet at tcp_gso_segment:
[ 52.003050][ T8403] skb len=12202 headroom=244 headlen=12093 tailroom=0
[ 52.003050][ T8403] mac=(168,24) mac_len=24 net=(192,52) trans=244
[ 52.003050][ T8403] shinfo(txflags=0 nr_frags=1 gso(size=1552 type=3 segs=0))
[ 52.003050][ T8403] csum(0x60000c7 start=199 offset=1536
ip_summed=3 complete_sw=0 valid=0 level=0)
Mitigate with stricter input validation.
csum_offset: for GSO packets, deduce the correct value from gso_type.
This is already done for USO. Extend it to TSO. Let UFO be:
udp[46]_ufo_fragment ignores these fields and always computes the
checksum in software.
csum_start: finding the real offset requires parsing to the transport
header. Do not add a parser, use existing segmentation parsing. Thanks
to SKB_GSO_DODGY, that also catches bad packets that are hw offloaded.
Again test both TSO and USO. Do not test UFO for the above reason, and
do not test UDP tunnel offload.
GSO packet are almost always CHECKSUM_PARTIAL. USO packets may be
CHECKSUM_NONE since commit 10154dbded6d6 ("udp: Allow GSO transmit
from devices with no checksum offload"), but then still these fields
are initialized correctly in udp4_hwcsum/udp6_hwcsum_outgoing. So no
need to test for ip_summed == CHECKSUM_PARTIAL first.
This revises an existing fix mentioned in the Fixes tag, which broke
small packets with GSO offload, as detected by kselftests.
Link: https://syzkaller.appspot.com/bug?extid=e1db31216c789f552871
Link: https://lore.kernel.org/netdev/20240723223109.2196886-1-kuba@kernel.org
Fixes: e269d79c7d35 ("net: missing check virtio")
Cc: stable@vger.kernel.org
Signed-off-by: Willem de Bruijn <willemb@google.com>
Link: https://patch.msgid.link/20240729201108.1615114-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b88f55389ad27f05ed84af9e1026aa64dbfabc9a upstream.
The kernel sleep profile is no longer working due to a recursive locking
bug introduced by commit 42a20f86dc19 ("sched: Add wrapper for get_wchan()
to keep task blocked")
Booting with the 'profile=sleep' kernel command line option added or
executing
# echo -n sleep > /sys/kernel/profiling
after boot causes the system to lock up.
Lockdep reports
kthreadd/3 is trying to acquire lock:
ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: get_wchan+0x32/0x70
but task is already holding lock:
ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: try_to_wake_up+0x53/0x370
with the call trace being
lock_acquire+0xc8/0x2f0
get_wchan+0x32/0x70
__update_stats_enqueue_sleeper+0x151/0x430
enqueue_entity+0x4b0/0x520
enqueue_task_fair+0x92/0x6b0
ttwu_do_activate+0x73/0x140
try_to_wake_up+0x213/0x370
swake_up_locked+0x20/0x50
complete+0x2f/0x40
kthread+0xfb/0x180
However, since nobody noticed this regression for more than two years,
let's remove 'profile=sleep' support based on the assumption that nobody
needs this functionality.
Fixes: 42a20f86dc19 ("sched: Add wrapper for get_wchan() to keep task blocked")
Cc: stable@vger.kernel.org # v5.16+
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit eee5528890d54b22b46f833002355a5ee94c3bb4 ]
Add the Edimax Vendor ID (0x1432) for an ethernet driver for Tehuti
Networks TN40xx chips. This ID can be used for Realtek 8180 and Ralink
rt28xx wireless drivers.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://patch.msgid.link/20240623235507.108147-2-fujita.tomonori@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cf546dd289e0f6d2594c25e2fb4e19ee67c6d988 ]
If we allocate a bio that is larger than NVMe maximum request size,
attach integrity metadata to it and send it to the NVMe subsystem, the
integrity metadata will be corrupted.
Splitting the bio works correctly. The function bio_split will clone the
bio, trim the iterator of the first bio and advance the iterator of the
second bio.
However, the function rq_integrity_vec has a bug - it returns the first
vector of the bio's metadata and completely disregards the metadata
iterator that was advanced when the bio was split. Thus, the second bio
uses the same metadata as the first bio and this leads to metadata
corruption.
This commit changes rq_integrity_vec, so that it calls mp_bvec_iter_bvec
instead of returning the first vector. mp_bvec_iter_bvec reads the
iterator and uses it to build a bvec for the current position in the
iterator.
The "queue_max_integrity_segments(rq->q) > 1" check was removed, because
the updated rq_integrity_vec function works correctly with multiple
segments.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Anuj Gupta <anuj20.g@samsung.com>
Reviewed-by: Kanchan Joshi <joshi.k@samsung.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/49d1afaa-f934-6ed2-a678-e0d428c63a65@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c2bc958b2b03e361f14df99983bc64a39a7323a3 ]
Test the vesa_attributes field in struct screen_info for compatibility
with VGA hardware. Vesafb currently tests bit 1 in screen_info's
capabilities field which indicates a 64-bit lfb address and is
unrelated to VGA compatibility.
Section 4.4 of the Vesa VBE 2.0 specifications defines that bit 5 in
the mode's attributes field signals VGA compatibility. The mode is
compatible with VGA hardware if the bit is clear. In that case, the
driver can access VGA state of the VBE's underlying hardware. The
vesafb driver uses this feature to program the color LUT in palette
modes. Without, colors might be incorrect.
The problem got introduced in commit 89ec4c238e7a ("[PATCH] vesafb: Fix
incorrect logo colors in x86_64"). It incorrectly stores the mode
attributes in the screen_info's capabilities field and updates vesafb
accordingly. Later, commit 5e8ddcbe8692 ("Video mode probing support for
the new x86 setup code") fixed the screen_info, but did not update vesafb.
Color output still tends to work, because bit 1 in capabilities is
usually 0.
Besides fixing the bug in vesafb, this commit introduces a helper that
reads the correct bit from screen_info.
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Fixes: 5e8ddcbe8692 ("Video mode probing support for the new x86 setup code")
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Cc: <stable@vger.kernel.org> # v2.6.23+
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 78aa89d1dfba1e3cf4a2e053afa3b4c4ec622371 ]
On ARM PCI systems, the PCI hierarchy might be reconfigured during
boot and the firmware framebuffer might move as a result of that.
The values in screen_info will then be invalid.
Work around this problem by tracking the framebuffer's initial
location before it get relocated; then fix the screen_info state
between reloaction and creating the firmware framebuffer's device.
This functionality has been lifted from efifb. See the commit message
of commit 55d728a40d36 ("efi/fb: Avoid reconfiguration of BAR that
covers the framebuffer") for more information.
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240212090736.11464-8-tzimmermann@suse.de
Stable-dep-of: c2bc958b2b03 ("fbdev: vesafb: Detect VGA compatibility from screen info's VESA attributes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 036105e3a776b6fc2fe0d262896a23ff2cc2e6b1 ]
Add screen_info_get_pci_dev() to find the PCI device of an instance
of screen_info. Does nothing on systems without PCI bus.
v3:
* search PCI device with pci_get_base_class() (Sui)
v2:
* remove ret from screen_info_pci_dev() (Javier)
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240212090736.11464-3-tzimmermann@suse.de
Stable-dep-of: c2bc958b2b03 ("fbdev: vesafb: Detect VGA compatibility from screen info's VESA attributes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 75fa9b7e375e35739663cde0252d31e586c6314a ]
The plain values as stored in struct screen_info need to be decoded
before being used. Add helpers that decode the type of video output
and the framebuffer I/O aperture.
Old or non-x86 systems may not set the type of video directly, but
only indicate the presence by storing 0x01 in orig_video_isVGA. The
decoding logic in screen_info_video_type() takes this into account.
It then follows similar code in vgacon's vgacon_startup() to detect
the video type from the given values.
A call to screen_info_resources() returns all known resources of the
given screen_info. The resources' values have been taken from existing
code in vgacon and vga16fb. These drivers can later be converted to
use the new interfaces.
v2:
* return ssize_t from screen_info_resources()
* don't call __screen_info_has_lfb() unnecessarily
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240212090736.11464-2-tzimmermann@suse.de
Stable-dep-of: c2bc958b2b03 ("fbdev: vesafb: Detect VGA compatibility from screen info's VESA attributes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d427da2323b093a65d8317783e76ab8fad2e2ef0 ]
There is no function to get all PCI devices in a system by matching
against the base class code only, ignoring the sub-class code and
the programming interface. Add pci_get_base_class() to suit the
need.
For example, if a driver wants to process all PCI display devices in
a system, it can do so like this:
pdev = NULL;
while ((pdev = pci_get_base_class(PCI_BASE_CLASS_DISPLAY, pdev))) {
do_something_for_pci_display_device(pdev);
}
Link: https://lore.kernel.org/r/20230825062714.6325-2-sui.jingfeng@linux.dev
Signed-off-by: Sui Jingfeng <suijingfeng@loongson.cn>
[bhelgaas: reword commit log]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Stable-dep-of: c2bc958b2b03 ("fbdev: vesafb: Detect VGA compatibility from screen info's VESA attributes")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 822c91e72eac568ed8d83765634f00decb45666c ]
If a simple trigger is assigned to a LED, then the LED may be off until
the next led_trigger_event() call. This may be an issue for simple
triggers with rare led_trigger_event() calls, e.g. power supply
charging indicators (drivers/power/supply/power_supply_leds.c).
Therefore persist the brightness value of the last led_trigger_event()
call and use this value if the trigger is assigned to a LED.
In addition add a getter for the trigger brightness value.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Reviewed-by: Takashi Iwai <tiwai@suse.de>
Link: https://lore.kernel.org/r/b1358b25-3f30-458d-8240-5705ae007a8a@gmail.com
Signed-off-by: Lee Jones <lee@kernel.org>
Stable-dep-of: ab477b766edd ("leds: triggers: Flush pending brightness before activating trigger")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c82a1662d4548c454de5343b88f69b9fc82266b3 ]
This function was added with a8df7b1ab70b ("leds: add led_trigger_rename
function") 11 yrs ago, but it has no users. So remove it.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Link: https://lore.kernel.org/r/d90f30be-f661-4db7-b0b5-d09d07a78a68@gmail.com
Signed-off-by: Lee Jones <lee@kernel.org>
Stable-dep-of: ab477b766edd ("leds: triggers: Flush pending brightness before activating trigger")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 520713a93d550406dae14d49cdb8778d70cecdfd ]
Remove the 'table' argument from set_ownership as it is never used. This
change is a step towards putting "struct ctl_table" into .rodata and
eventually having sysctl core only use "const struct ctl_table".
The patch was created with the following coccinelle script:
@@
identifier func, head, table, uid, gid;
@@
void func(
struct ctl_table_header *head,
- struct ctl_table *table,
kuid_t *uid, kgid_t *gid)
{ ... }
No additional occurrences of 'set_ownership' were found after doing a
tree-wide search.
Reviewed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Joel Granados <j.granados@samsung.com>
Stable-dep-of: 98ca62ba9e2b ("sysctl: always initialize i_uid/i_gid")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ced085ef369af7a2b6da962ec2fbd01339f60693 upstream.
The "goto error" pattern is notorious for introducing subtle resource
leaks. Use the new cleanup.h helpers for PCI device reference counts and
locks.
Similar to the new put_device() and device_lock() cleanup helpers,
__free(put_device) and guard(device), define the same for PCI devices,
__free(pci_dev_put) and guard(pci_dev). These helpers eliminate the
need for "goto free;" and "goto unlock;" patterns. For example, A
'struct pci_dev *' instance declared as:
struct pci_dev *pdev __free(pci_dev_put) = NULL;
...will automatically call pci_dev_put() if @pdev is non-NULL when @pdev
goes out of scope (automatic variable scope). If a function wants to
invoke pci_dev_put() on error, but return @pdev on success, it can do:
return no_free_ptr(pdev);
...or:
return_ptr(pdev);
For potential cleanup opportunity there are 587 open-coded calls to
pci_dev_put() in the kernel with 65 instances within 10 lines of a goto
statement with the CXL driver threatening to add another one.
The guard() helper holds the associated lock for the remainder of the
current scope in which it was invoked. So, for example:
func(...)
{
if (...) {
...
guard(pci_dev); /* pci_dev_lock() invoked here */
...
} /* <- implied pci_dev_unlock() triggered here */
}
There are 15 invocations of pci_dev_unlock() in the kernel with 5
instances within 10 lines of a goto statement. Again, the CXL driver is
threatening to add another.
Introduce these helpers to preclude the addition of new more error prone
goto put; / goto unlock; sequences. For now, these helpers are used in
drivers/cxl/pci.c to allow ACPI error reports to be fed back into the
CXL driver associated with the PCI device identified in the report.
Cc: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/20231220-cxl-cper-v5-8-1bb8a4ca2c7a@intel.com
[djbw: rewrite changelog]
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3a5465418f5fd970e86a86c7f4075be262682840 upstream.
The perf pending task work is never waited upon the matching event
release. In the case of a child event, released via free_event()
directly, this can potentially result in a leaked event, such as in the
following scenario that doesn't even require a weak IRQ work
implementation to trigger:
schedule()
prepare_task_switch()
=======> <NMI>
perf_event_overflow()
event->pending_sigtrap = ...
irq_work_queue(&event->pending_irq)
<======= </NMI>
perf_event_task_sched_out()
event_sched_out()
event->pending_sigtrap = 0;
atomic_long_inc_not_zero(&event->refcount)
task_work_add(&event->pending_task)
finish_lock_switch()
=======> <IRQ>
perf_pending_irq()
//do nothing, rely on pending task work
<======= </IRQ>
begin_new_exec()
perf_event_exit_task()
perf_event_exit_event()
// If is child event
free_event()
WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1)
// event is leaked
Similar scenarios can also happen with perf_event_remove_on_exec() or
simply against concurrent perf_event_release().
Fix this with synchonizing against the possibly remaining pending task
work while freeing the event, just like is done with remaining pending
IRQ work. This means that the pending task callback neither need nor
should hold a reference to the event, preventing it from ever beeing
freed.
Fixes: 517e6a301f34 ("perf: Fix perf_pending_task() UaF")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-5-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e3a00a23781c1f2fcda98a7aecaac515558e7a35 upstream.
Instead of computing the number of descriptor blocks a transaction can
have each time we need it (which is currently when starting each
transaction but will become more frequent later) precompute the number
once during journal initialization together with maximum transaction
size. We perform the precomputation whenever journal feature set is
updated similarly as for computation of
journal->j_revoke_records_per_block.
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Zhang Yi <yi.zhang@huawei.com>
Link: https://patch.msgid.link/20240624170127.3253-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4aa99c71e42ad60178c1154ec24e3df9c684fb67 upstream.
There's no reason to have jbd2_journal_get_max_txn_bufs() public
function. Currently all users are internal and can use
journal->j_max_transaction_buffers instead. This saves some unnecessary
recomputations of the limit as a bonus which becomes important as this
function gets more complex in the following patch.
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Zhang Yi <yi.zhang@huawei.com>
Link: https://patch.msgid.link/20240624170127.3253-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f409530e4db9dd11b88cb7703c97c8f326ff6566 upstream.
Re-introduce task_work_cancel(), this time to cancel an actual callback
and not *any* callback pointing to a given function. This is going to be
needed for perf events event freeing.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-3-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 68cbd415dd4b9c5b9df69f0f091879e56bf5907a upstream.
A proper task_work_cancel() API that actually cancels a callback and not
*any* callback pointing to a given function is going to be needed for
perf events event freeing. Do the appropriate rename to prepare for
that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240621091601.18227-2-frederic@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 667574e873b5f77a220b2a93329689f36fb56d5d upstream.
When tries to demote 1G hugetlb folios, a lockdep warning is observed:
============================================
WARNING: possible recursive locking detected
6.10.0-rc6-00452-ga4d0275fa660-dirty #79 Not tainted
--------------------------------------------
bash/710 is trying to acquire lock:
ffffffff8f0a7850 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0x244/0x460
but task is already holding lock:
ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&h->resize_lock);
lock(&h->resize_lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
4 locks held by bash/710:
#0: ffff8f118439c3f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0
#1: ffff8f11893b9e88 (&of->mutex#2){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0
#2: ffff8f1183dc4428 (kn->active#98){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0
#3: ffffffff8f0a6f48 (&h->resize_lock){+.+.}-{3:3}, at: demote_store+0xae/0x460
stack backtrace:
CPU: 3 PID: 710 Comm: bash Not tainted 6.10.0-rc6-00452-ga4d0275fa660-dirty #79
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xa0
__lock_acquire+0x10f2/0x1ca0
lock_acquire+0xbe/0x2d0
__mutex_lock+0x6d/0x400
demote_store+0x244/0x460
kernfs_fop_write_iter+0x12c/0x1d0
vfs_write+0x380/0x540
ksys_write+0x64/0xe0
do_syscall_64+0xb9/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa61db14887
RSP: 002b:00007ffc56c48358 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fa61db14887
RDX: 0000000000000002 RSI: 000055a030050220 RDI: 0000000000000001
RBP: 000055a030050220 R08: 00007fa61dbd1460 R09: 000000007fffffff
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
R13: 00007fa61dc1b780 R14: 00007fa61dc17600 R15: 00007fa61dc16a00
</TASK>
Lockdep considers this an AA deadlock because the different resize_lock
mutexes reside in the same lockdep class, but this is a false positive.
Place them in distinct classes to avoid these warnings.
Link: https://lkml.kernel.org/r/20240712031314.2570452-1-linmiaohe@huawei.com
Fixes: 8531fc6f52f5 ("hugetlb: add hugetlb demote page support")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 72d04bdcf3f7d7e07d82f9757946f68802a7270a ]
Configuration for sbq:
depth=64, wake_batch=6, shift=6, map_nr=1
1. There are 64 requests in progress:
map->word = 0xFFFFFFFFFFFFFFFF
2. After all the 64 requests complete, and no more requests come:
map->word = 0xFFFFFFFFFFFFFFFF, map->cleared = 0xFFFFFFFFFFFFFFFF
3. Now two tasks try to allocate requests:
T1: T2:
__blk_mq_get_tag .
__sbitmap_queue_get .
sbitmap_get .
sbitmap_find_bit .
sbitmap_find_bit_in_word .
__sbitmap_get_word -> nr=-1 __blk_mq_get_tag
sbitmap_deferred_clear __sbitmap_queue_get
/* map->cleared=0xFFFFFFFFFFFFFFFF */ sbitmap_find_bit
if (!READ_ONCE(map->cleared)) sbitmap_find_bit_in_word
return false; __sbitmap_get_word -> nr=-1
mask = xchg(&map->cleared, 0) sbitmap_deferred_clear
atomic_long_andnot() /* map->cleared=0 */
if (!(map->cleared))
return false;
/*
* map->cleared is cleared by T1
* T2 fail to acquire the tag
*/
4. T2 is the sole tag waiter. When T1 puts the tag, T2 cannot be woken
up due to the wake_batch being set at 6. If no more requests come, T1
will wait here indefinitely.
This patch achieves two purposes:
1. Check on ->cleared and update on both ->cleared and ->word need to
be done atomically, and using spinlock could be the simplest solution.
2. Add extra check in sbitmap_deferred_clear(), to identify whether
->word has free bits.
Fixes: ea86ea2cdced ("sbitmap: ammortize cost of clearing bits")
Signed-off-by: Yang Yang <yang.yang@vivo.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240716082644.659566-1-yang.yang@vivo.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e269d79c7d35aa3808b1f3c1737d63dab504ddc8 ]
Two missing check in virtio_net_hdr_to_skb() allowed syzbot
to crash kernels again
1. After the skb_segment function the buffer may become non-linear
(nr_frags != 0), but since the SKBTX_SHARED_FRAG flag is not set anywhere
the __skb_linearize function will not be executed, then the buffer will
remain non-linear. Then the condition (offset >= skb_headlen(skb))
becomes true, which causes WARN_ON_ONCE in skb_checksum_help.
2. The struct sk_buff and struct virtio_net_hdr members must be
mathematically related.
(gso_size) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) must be greater than (needed) otherwise WARN_ON_ONCE.
(remainder) may be 0 if division is without remainder.
offset+2 (4191) > skb_headlen() (1116)
WARNING: CPU: 1 PID: 5084 at net/core/dev.c:3303 skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Modules linked in:
CPU: 1 PID: 5084 Comm: syz-executor336 Not tainted 6.7.0-rc3-syzkaller-00014-gdf60cee26a2e #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023
RIP: 0010:skb_checksum_help+0x5e2/0x740 net/core/dev.c:3303
Code: 89 e8 83 e0 07 83 c0 03 38 d0 7c 08 84 d2 0f 85 52 01 00 00 44 89 e2 2b 53 74 4c 89 ee 48 c7 c7 40 57 e9 8b e8 af 8f dd f8 90 <0f> 0b 90 90 e9 87 fe ff ff e8 40 0f 6e f9 e9 4b fa ff ff 48 89 ef
RSP: 0018:ffffc90003a9f338 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888025125780 RCX: ffffffff814db209
RDX: ffff888015393b80 RSI: ffffffff814db216 RDI: 0000000000000001
RBP: ffff8880251257f4 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000001 R12: 000000000000045c
R13: 000000000000105f R14: ffff8880251257f0 R15: 000000000000105d
FS: 0000555555c24380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000002000f000 CR3: 0000000023151000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ip_do_fragment+0xa1b/0x18b0 net/ipv4/ip_output.c:777
ip_fragment.constprop.0+0x161/0x230 net/ipv4/ip_output.c:584
ip_finish_output_gso net/ipv4/ip_output.c:286 [inline]
__ip_finish_output net/ipv4/ip_output.c:308 [inline]
__ip_finish_output+0x49c/0x650 net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip_output+0x13b/0x2a0 net/ipv4/ip_output.c:433
dst_output include/net/dst.h:451 [inline]
ip_local_out+0xaf/0x1a0 net/ipv4/ip_output.c:129
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ipip6_tunnel_xmit net/ipv6/sit.c:1034 [inline]
sit_tunnel_xmit+0xed2/0x28f0 net/ipv6/sit.c:1076
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3545 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3561
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4346
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24ca/0x5240 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
__sys_sendto+0x255/0x340 net/socket.c:2190
__do_sys_sendto net/socket.c:2202 [inline]
__se_sys_sendto net/socket.c:2198 [inline]
__x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x40/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Found by Linux Verification Center (linuxtesting.org) with Syzkaller
Fixes: 0f6925b3e8da ("virtio_net: Do not pull payload in skb->head")
Signed-off-by: Denis Arefev <arefev@swemel.ru>
Message-Id: <20240613095448.27118-1-arefev@swemel.ru>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0c5275bf75ec3708d95654195ae4ed80d946d088 ]
When creating a QP, one of the attributes is TS format (timestamp).
In some devices, we have a limitation that all QPs should have the same
ts_format. The ts_format is chosen based on the device's capability.
The qp_ts_format cap resides under the RoCE caps table, and the
cap will be 0 when RoCE is disabled. So when RoCE is disabled, the
value that should be queried is sq_ts_format under HCA caps.
Consider the case when the system supports REAL_TIME_TS format (0x2),
some QPs are created with REAL_TIME_TS as ts_format, and afterwards
RoCE gets disabled. When trying to construct a new QP, we can't use
the qp_ts_format, that is queried from the RoCE caps table, Since it
leads to passing 0x0 (FREE_RUNNING_TS) as the value of the qp_ts_format,
which is different than the ts_format of the previously allocated
QPs REAL_TIME_TS format (0x2).
Thus, to resolve this, read the sq_ts_format, which also reflect
the supported ts format for the QP when RoCE is disabled.
Fixes: 4806f1e2fee8 ("net/mlx5: Set QP timestamp mode to default")
Signed-off-by: Maher Sanalla <msanalla@nvidia.com>
Signed-off-by: Or Har-Toov <ohartoov@nvidia.com>
Link: https://lore.kernel.org/r/32801966eb767c7fd62b8dea3b63991d5fbfe213.1718554199.git.leon@kernel.org
Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f7866c35873377313ff94398f17d425b28b71de1 ]
When loading a EXT program without specifying `attr->attach_prog_fd`,
the `prog->aux->dst_prog` will be null. At this time, calling
resolve_prog_type() anywhere will result in a null pointer dereference.
Example stack trace:
[ 8.107863] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
[ 8.108262] Mem abort info:
[ 8.108384] ESR = 0x0000000096000004
[ 8.108547] EC = 0x25: DABT (current EL), IL = 32 bits
[ 8.108722] SET = 0, FnV = 0
[ 8.108827] EA = 0, S1PTW = 0
[ 8.108939] FSC = 0x04: level 0 translation fault
[ 8.109102] Data abort info:
[ 8.109203] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
[ 8.109399] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 8.109614] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 8.109836] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000101354000
[ 8.110011] [0000000000000004] pgd=0000000000000000, p4d=0000000000000000
[ 8.112624] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 8.112783] Modules linked in:
[ 8.113120] CPU: 0 PID: 99 Comm: may_access_dire Not tainted 6.10.0-rc3-next-20240613-dirty #1
[ 8.113230] Hardware name: linux,dummy-virt (DT)
[ 8.113390] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 8.113429] pc : may_access_direct_pkt_data+0x24/0xa0
[ 8.113746] lr : add_subprog_and_kfunc+0x634/0x8e8
[ 8.113798] sp : ffff80008283b9f0
[ 8.113813] x29: ffff80008283b9f0 x28: ffff800082795048 x27: 0000000000000001
[ 8.113881] x26: ffff0000c0bb2600 x25: 0000000000000000 x24: 0000000000000000
[ 8.113897] x23: ffff0000c1134000 x22: 000000000001864f x21: ffff0000c1138000
[ 8.113912] x20: 0000000000000001 x19: ffff0000c12b8000 x18: ffffffffffffffff
[ 8.113929] x17: 0000000000000000 x16: 0000000000000000 x15: 0720072007200720
[ 8.113944] x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
[ 8.113958] x11: 0720072007200720 x10: 0000000000f9fca4 x9 : ffff80008021f4e4
[ 8.113991] x8 : 0101010101010101 x7 : 746f72705f6d656d x6 : 000000001e0e0f5f
[ 8.114006] x5 : 000000000001864f x4 : ffff0000c12b8000 x3 : 000000000000001c
[ 8.114020] x2 : 0000000000000002 x1 : 0000000000000000 x0 : 0000000000000000
[ 8.114126] Call trace:
[ 8.114159] may_access_direct_pkt_data+0x24/0xa0
[ 8.114202] bpf_check+0x3bc/0x28c0
[ 8.114214] bpf_prog_load+0x658/0xa58
[ 8.114227] __sys_bpf+0xc50/0x2250
[ 8.114240] __arm64_sys_bpf+0x28/0x40
[ 8.114254] invoke_syscall.constprop.0+0x54/0xf0
[ 8.114273] do_el0_svc+0x4c/0xd8
[ 8.114289] el0_svc+0x3c/0x140
[ 8.114305] el0t_64_sync_handler+0x134/0x150
[ 8.114331] el0t_64_sync+0x168/0x170
[ 8.114477] Code: 7100707f 54000081 f9401c00 f9403800 (b9400403)
[ 8.118672] ---[ end trace 0000000000000000 ]---
One way to fix it is by forcing `attach_prog_fd` non-empty when
bpf_prog_load(). But this will lead to `libbpf_probe_bpf_prog_type`
API broken which use verifier log to probe prog type and will log
nothing if we reject invalid EXT prog before bpf_check().
Another way is by adding null check in resolve_prog_type().
The issue was introduced by commit 4a9c7bbe2ed4 ("bpf: Resolve to
prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXT") which wanted
to correct type resolution for BPF_PROG_TYPE_TRACING programs. Before
that, the type resolution of BPF_PROG_TYPE_EXT prog actually follows
the logic below:
prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
It implies that when EXT program is not yet attached to `dst_prog`,
the prog type should be EXT itself. This code worked fine in the past.
So just keep using it.
Fix this by returning `prog->type` for BPF_PROG_TYPE_EXT if `dst_prog`
is not present in resolve_prog_type().
Fixes: 4a9c7bbe2ed4 ("bpf: Resolve to prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXT")
Signed-off-by: Tengda Wu <wutengda@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20240711145819.254178-2-wutengda@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 97d833ceb27dc19f8777d63f90be4a27b5daeedf ]
ACLs in Spectrum-2 and newer ASICs can reside in the algorithmic TCAM
(A-TCAM) or in the ordinary circuit TCAM (C-TCAM). The former can
contain more ACLs (i.e., tc filters), but the number of masks in each
region (i.e., tc chain) is limited.
In order to mitigate the effects of the above limitation, the device
allows filters to share a single mask if their masks only differ in up
to 8 consecutive bits. For example, dst_ip/25 can be represented using
dst_ip/24 with a delta of 1 bit. The C-TCAM does not have a limit on the
number of masks being used (and therefore does not support mask
aggregation), but can contain a limited number of filters.
The driver uses the "objagg" library to perform the mask aggregation by
passing it objects that consist of the filter's mask and whether the
filter is to be inserted into the A-TCAM or the C-TCAM since filters in
different TCAMs cannot share a mask.
The set of created objects is dependent on the insertion order of the
filters and is not necessarily optimal. Therefore, the driver will
periodically ask the library to compute a more optimal set ("hints") by
looking at all the existing objects.
When the library asks the driver whether two objects can be aggregated
the driver only compares the provided masks and ignores the A-TCAM /
C-TCAM indication. This is the right thing to do since the goal is to
move as many filters as possible to the A-TCAM. The driver also forbids
two identical masks from being aggregated since this can only happen if
one was intentionally put in the C-TCAM to avoid a conflict in the
A-TCAM.
The above can result in the following set of hints:
H1: {mask X, A-TCAM} -> H2: {mask Y, A-TCAM} // X is Y + delta
H3: {mask Y, C-TCAM} -> H4: {mask Z, A-TCAM} // Y is Z + delta
After getting the hints from the library the driver will start migrating
filters from one region to another while consulting the computed hints
and instructing the device to perform a lookup in both regions during
the transition.
Assuming a filter with mask X is being migrated into the A-TCAM in the
new region, the hints lookup will return H1. Since H2 is the parent of
H1, the library will try to find the object associated with it and
create it if necessary in which case another hints lookup (recursive)
will be performed. This hints lookup for {mask Y, A-TCAM} will either
return H2 or H3 since the driver passes the library an object comparison
function that ignores the A-TCAM / C-TCAM indication.
This can eventually lead to nested objects which are not supported by
the library [1].
Fix by removing the object comparison function from both the driver and
the library as the driver was the only user. That way the lookup will
only return exact matches.
I do not have a reliable reproducer that can reproduce the issue in a
timely manner, but before the fix the issue would reproduce in several
minutes and with the fix it does not reproduce in over an hour.
Note that the current usefulness of the hints is limited because they
include the C-TCAM indication and represent aggregation that cannot
actually happen. This will be addressed in net-next.
[1]
WARNING: CPU: 0 PID: 153 at lib/objagg.c:170 objagg_obj_parent_assign+0xb5/0xd0
Modules linked in:
CPU: 0 PID: 153 Comm: kworker/0:18 Not tainted 6.9.0-rc6-custom-g70fbc2c1c38b #42
Hardware name: Mellanox Technologies Ltd. MSN3700C/VMOD0008, BIOS 5.11 10/10/2018
Workqueue: mlxsw_core mlxsw_sp_acl_tcam_vregion_rehash_work
RIP: 0010:objagg_obj_parent_assign+0xb5/0xd0
[...]
Call Trace:
<TASK>
__objagg_obj_get+0x2bb/0x580
objagg_obj_get+0xe/0x80
mlxsw_sp_acl_erp_mask_get+0xb5/0xf0
mlxsw_sp_acl_atcam_entry_add+0xe8/0x3c0
mlxsw_sp_acl_tcam_entry_create+0x5e/0xa0
mlxsw_sp_acl_tcam_vchunk_migrate_one+0x16b/0x270
mlxsw_sp_acl_tcam_vregion_rehash_work+0xbe/0x510
process_one_work+0x151/0x370
Fixes: 9069a3817d82 ("lib: objagg: implement optimization hints assembly and use hints for object creation")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Amit Cohen <amcohen@nvidia.com>
Tested-by: Alexander Zubkov <green@qrator.net>
Signed-off-by: Petr Machata <petrm@nvidia.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 85b08b31a22b481ec6528130daf94eee4452e23f ]
Export fscache_put_volume() and add fscache_try_get_volume()
helper function to allow cachefiles to get/put fscache_volume
via linux/fscache-cache.h.
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240628062930.2467993-2-libaokun@huaweicloud.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Stable-dep-of: 522018a0de6b ("cachefiles: fix slab-use-after-free in fscache_withdraw_volume()")
Stable-dep-of: 5d8f80578907 ("cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa2690af573dfefb47ba6eef888797a64b6b5f3c upstream.
The below bug was reported on a non-SMP kernel:
[ 275.267158][ T4335] ------------[ cut here ]------------
[ 275.267949][ T4335] kernel BUG at include/linux/page_ref.h:275!
[ 275.268526][ T4335] invalid opcode: 0000 [#1] KASAN PTI
[ 275.269001][ T4335] CPU: 0 PID: 4335 Comm: trinity-c3 Not tainted 6.7.0-rc4-00061-gefa7df3e3bb5 #1
[ 275.269787][ T4335] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 275.270679][ T4335] RIP: 0010:try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.272813][ T4335] RSP: 0018:ffffc90005dcf650 EFLAGS: 00010202
[ 275.273346][ T4335] RAX: 0000000000000246 RBX: ffffea00066e0000 RCX: 0000000000000000
[ 275.274032][ T4335] RDX: fffff94000cdc007 RSI: 0000000000000004 RDI: ffffea00066e0034
[ 275.274719][ T4335] RBP: ffffea00066e0000 R08: 0000000000000000 R09: fffff94000cdc006
[ 275.275404][ T4335] R10: ffffea00066e0037 R11: 0000000000000000 R12: 0000000000000136
[ 275.276106][ T4335] R13: ffffea00066e0034 R14: dffffc0000000000 R15: ffffea00066e0008
[ 275.276790][ T4335] FS: 00007fa2f9b61740(0000) GS:ffffffff89d0d000(0000) knlGS:0000000000000000
[ 275.277570][ T4335] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 275.278143][ T4335] CR2: 00007fa2f6c00000 CR3: 0000000134b04000 CR4: 00000000000406f0
[ 275.278833][ T4335] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 275.279521][ T4335] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 275.280201][ T4335] Call Trace:
[ 275.280499][ T4335] <TASK>
[ 275.280751][ T4335] ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
[ 275.281087][ T4335] ? do_trap (arch/x86/kernel/traps.c:112 arch/x86/kernel/traps.c:153)
[ 275.281463][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.281884][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.282300][ T4335] ? do_error_trap (arch/x86/kernel/traps.c:174)
[ 275.282711][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283129][ T4335] ? handle_invalid_op (arch/x86/kernel/traps.c:212)
[ 275.283561][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283990][ T4335] ? exc_invalid_op (arch/x86/kernel/traps.c:264)
[ 275.284415][ T4335] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:568)
[ 275.284859][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.285278][ T4335] try_grab_folio (mm/gup.c:148)
[ 275.285684][ T4335] __get_user_pages (mm/gup.c:1297 (discriminator 1))
[ 275.286111][ T4335] ? __pfx___get_user_pages (mm/gup.c:1188)
[ 275.286579][ T4335] ? __pfx_validate_chain (kernel/locking/lockdep.c:3825)
[ 275.287034][ T4335] ? mark_lock (kernel/locking/lockdep.c:4656 (discriminator 1))
[ 275.287416][ T4335] __gup_longterm_locked (mm/gup.c:1509 mm/gup.c:2209)
[ 275.288192][ T4335] ? __pfx___gup_longterm_locked (mm/gup.c:2204)
[ 275.288697][ T4335] ? __pfx_lock_acquire (kernel/locking/lockdep.c:5722)
[ 275.289135][ T4335] ? __pfx___might_resched (kernel/sched/core.c:10106)
[ 275.289595][ T4335] pin_user_pages_remote (mm/gup.c:3350)
[ 275.290041][ T4335] ? __pfx_pin_user_pages_remote (mm/gup.c:3350)
[ 275.290545][ T4335] ? find_held_lock (kernel/locking/lockdep.c:5244 (discriminator 1))
[ 275.290961][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.291353][ T4335] process_vm_rw_single_vec+0x142/0x360
[ 275.291900][ T4335] ? __pfx_process_vm_rw_single_vec+0x10/0x10
[ 275.292471][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.292859][ T4335] process_vm_rw_core+0x272/0x4e0
[ 275.293384][ T4335] ? hlock_class (arch/x86/include/asm/bitops.h:227 arch/x86/include/asm/bitops.h:239 include/asm-generic/bitops/instrumented-non-atomic.h:142 kernel/locking/lockdep.c:228)
[ 275.293780][ T4335] ? __pfx_process_vm_rw_core+0x10/0x10
[ 275.294350][ T4335] process_vm_rw (mm/process_vm_access.c:284)
[ 275.294748][ T4335] ? __pfx_process_vm_rw (mm/process_vm_access.c:259)
[ 275.295197][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.295634][ T4335] __x64_sys_process_vm_readv (mm/process_vm_access.c:291)
[ 275.296139][ T4335] ? syscall_enter_from_user_mode (kernel/entry/common.c:94 kernel/entry/common.c:112)
[ 275.296642][ T4335] do_syscall_64 (arch/x86/entry/common.c:51 (discriminator 1) arch/x86/entry/common.c:82 (discriminator 1))
[ 275.297032][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.297470][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.297988][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.298389][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.298906][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299304][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299703][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.300115][ T4335] entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
This BUG is the VM_BUG_ON(!in_atomic() && !irqs_disabled()) assertion in
folio_ref_try_add_rcu() for non-SMP kernel.
The process_vm_readv() calls GUP to pin the THP. An optimization for
pinning THP instroduced by commit 57edfcfd3419 ("mm/gup: accelerate thp
gup even for "pages != NULL"") calls try_grab_folio() to pin the THP,
but try_grab_folio() is supposed to be called in atomic context for
non-SMP kernel, for example, irq disabled or preemption disabled, due to
the optimization introduced by commit e286781d5f2e ("mm: speculative
page references").
The commit efa7df3e3bb5 ("mm: align larger anonymous mappings on THP
boundaries") is not actually the root cause although it was bisected to.
It just makes the problem exposed more likely.
The follow up discussion suggested the optimization for non-SMP kernel
may be out-dated and not worth it anymore [1]. So removing the
optimization to silence the BUG.
However calling try_grab_folio() in GUP slow path actually is
unnecessary, so the following patch will clean this up.
[1] https://lore.kernel.org/linux-mm/821cf1d6-92b9-4ac4-bacc-d8f2364ac14f@paulmck-laptop/
Link: https://lkml.kernel.org/r/20240625205350.1777481-1-yang@os.amperecomputing.com
Fixes: 57edfcfd3419 ("mm/gup: accelerate thp gup even for "pages != NULL"")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: <stable@vger.kernel.org> [6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d6a711a898672dd873aab3844f754a3ca40723a5 ]
Add OCTAL mode support.
Issue detected using "--octal" spidev_test's option.
Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Link: https://msgid.link/r/20240618132951.2743935-4-patrice.chotard@foss.st.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9fad9d560af5c654bb38e0b07ee54a4e9acdc5cd ]
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer produces this report:
[ 65.194362] ------------[ cut here ]------------
[ 65.197752] UBSAN: signed-integer-overflow in ../drivers/scsi/sr_ioctl.c:436:9
[ 65.203607] -2147483648 * 177 cannot be represented in type 'int'
[ 65.207911] CPU: 2 PID: 10416 Comm: syz-executor.1 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 65.213585] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 65.219923] Call Trace:
[ 65.221556] <TASK>
[ 65.223029] dump_stack_lvl+0x93/0xd0
[ 65.225573] handle_overflow+0x171/0x1b0
[ 65.228219] sr_select_speed+0xeb/0xf0
[ 65.230786] ? __pm_runtime_resume+0xe6/0x130
[ 65.233606] sr_block_ioctl+0x15d/0x1d0
...
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang. It was re-enabled in the kernel
with Commit 557f8c582a9b ("ubsan: Reintroduce signed overflow sanitizer").
Firstly, let's change the type of "speed" to unsigned long as
sr_select_speed()'s only caller passes in an unsigned long anyways.
$ git grep '\.select_speed'
| drivers/scsi/sr.c: .select_speed = sr_select_speed,
...
| static int cdrom_ioctl_select_speed(struct cdrom_device_info *cdi,
| unsigned long arg)
| {
| ...
| return cdi->ops->select_speed(cdi, arg);
| }
Next, let's add an extra check to make sure we don't exceed 0xffff/177
(350) since 0xffff is the max speed. This has two benefits: 1) we deal
with integer overflow before it happens and 2) we properly respect the
max speed of 0xffff. There are some "magic" numbers here but I did not
want to change more than what was necessary.
Link: https://github.com/llvm/llvm-project/pull/82432 [1]
Closes: https://github.com/KSPP/linux/issues/357
Cc: linux-hardening@vger.kernel.org
Signed-off-by: Justin Stitt <justinstitt@google.com>
Link: https://lore.kernel.org/r/20240508-b4-b4-sio-sr_select_speed-v2-1-00b68f724290@google.com
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 099d90642a711caae377f53309abfe27e8724a8b upstream.
Patch series "mm/filemap: Limit page cache size to that supported by
xarray", v2.
Currently, xarray can't support arbitrary page cache size. More details
can be found from the WARN_ON() statement in xas_split_alloc(). In our
test whose code is attached below, we hit the WARN_ON() on ARM64 system
where the base page size is 64KB and huge page size is 512MB. The issue
was reported long time ago and some discussions on it can be found here
[1].
[1] https://www.spinics.net/lists/linux-xfs/msg75404.html
In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one
supported by xarray and avoid PMD-sized page cache if needed. The code
changes are suggested by David Hildenbrand.
PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray
PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path
PATCH[4] avoids PMD-sized page cache for shmem files if needed
Test program
============
# cat test.c
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#define TEST_XFS_FILENAME "/tmp/data"
#define TEST_SHMEM_FILENAME "/dev/shm/data"
#define TEST_MEM_SIZE 0x20000000
int main(int argc, char **argv)
{
const char *filename;
int fd = 0;
void *buf = (void *)-1, *p;
int pgsize = getpagesize();
int ret;
if (pgsize != 0x10000) {
fprintf(stderr, "64KB base page size is required\n");
return -EPERM;
}
system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled");
system("rm -fr /tmp/data");
system("rm -fr /dev/shm/data");
system("echo 1 > /proc/sys/vm/drop_caches");
/* Open xfs or shmem file */
filename = TEST_XFS_FILENAME;
if (argc > 1 && !strcmp(argv[1], "shmem"))
filename = TEST_SHMEM_FILENAME;
fd = open(filename, O_CREAT | O_RDWR | O_TRUNC);
if (fd < 0) {
fprintf(stderr, "Unable to open <%s>\n", filename);
return -EIO;
}
/* Extend file size */
ret = ftruncate(fd, TEST_MEM_SIZE);
if (ret) {
fprintf(stderr, "Error %d to ftruncate()\n", ret);
goto cleanup;
}
/* Create VMA */
buf = mmap(NULL, TEST_MEM_SIZE,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (buf == (void *)-1) {
fprintf(stderr, "Unable to mmap <%s>\n", filename);
goto cleanup;
}
fprintf(stdout, "mapped buffer at 0x%p\n", buf);
ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE);
if (ret) {
fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n");
goto cleanup;
}
/* Populate VMA */
ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE);
if (ret) {
fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret);
goto cleanup;
}
/* Punch the file to enforce xarray split */
ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE,
TEST_MEM_SIZE - pgsize, pgsize);
if (ret)
fprintf(stderr, "Error %d to fallocate()\n", ret);
cleanup:
if (buf != (void *)-1)
munmap(buf, TEST_MEM_SIZE);
if (fd > 0)
close(fd);
return 0;
}
# gcc test.c -o test
# cat /proc/1/smaps | grep KernelPageSize | head -n 1
KernelPageSize: 64 kB
# ./test shmem
:
------------[ cut here ]------------
WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \
drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
virtio_net sha1_ce net_failover failover virtio_console virtio_blk \
dimlib virtio_mmio
CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff80008a92f5b0
x29: ffff80008a92f5b0 x28: ffff80008a92f610 x27: ffff80008a92f728
x26: 0000000000000cc0 x25: 000000000000000d x24: ffff0000cf00c858
x23: ffff80008a92f610 x22: ffffffdfc0600000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0600000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000018000000000 x15: 3374004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 3374000000000000 x10: 3374e1c0ffff6000 x9 : ffffb463a84c681c
x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00011c976ce0
x5 : ffffb463aa47e378 x4 : 0000000000000000 x3 : 0000000000000cc0
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
shmem_undo_range+0x2bc/0x6a8
shmem_fallocate+0x134/0x430
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
This patch (of 4):
The largest page cache order can be HPAGE_PMD_ORDER (13) on ARM64 with
64KB base page size. The xarray entry with this order can't be split as
the following error messages indicate.
------------[ cut here ]------------
WARNING: CPU: 35 PID: 7484 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128
Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \
nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \
nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \
ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm \
fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \
sha1_ce virtio_net net_failover virtio_console virtio_blk failover \
dimlib virtio_mmio
CPU: 35 PID: 7484 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9
Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024
pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : xas_split_alloc+0xf8/0x128
lr : split_huge_page_to_list_to_order+0x1c4/0x720
sp : ffff800087a4f6c0
x29: ffff800087a4f6c0 x28: ffff800087a4f720 x27: 000000001fffffff
x26: 0000000000000c40 x25: 000000000000000d x24: ffff00010625b858
x23: ffff800087a4f720 x22: ffffffdfc0780000 x21: 0000000000000000
x20: 0000000000000000 x19: ffffffdfc0780000 x18: 000000001ff40000
x17: 00000000ffffffff x16: 0000018000000000 x15: 51ec004000000000
x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020
x11: 51ec000000000000 x10: 51ece1c0ffff8000 x9 : ffffbeb961a44d28
x8 : 0000000000000003 x7 : ffffffdfc0456420 x6 : ffff0000e1aa6eb8
x5 : 20bf08b4fe778fca x4 : ffffffdfc0456420 x3 : 0000000000000c40
x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000
Call trace:
xas_split_alloc+0xf8/0x128
split_huge_page_to_list_to_order+0x1c4/0x720
truncate_inode_partial_folio+0xdc/0x160
truncate_inode_pages_range+0x1b4/0x4a8
truncate_pagecache_range+0x84/0xa0
xfs_flush_unmap_range+0x70/0x90 [xfs]
xfs_file_fallocate+0xfc/0x4d8 [xfs]
vfs_fallocate+0x124/0x2e8
ksys_fallocate+0x4c/0xa0
__arm64_sys_fallocate+0x24/0x38
invoke_syscall.constprop.0+0x7c/0xd8
do_el0_svc+0xb4/0xd0
el0_svc+0x44/0x1d8
el0t_64_sync_handler+0x134/0x150
el0t_64_sync+0x17c/0x180
Fix it by decreasing MAX_PAGECACHE_ORDER to the largest supported order
by xarray. For this specific case, MAX_PAGECACHE_ORDER is dropped from
13 to 11 when CONFIG_BASE_SMALL is disabled.
Link: https://lkml.kernel.org/r/20240627003953.1262512-1-gshan@redhat.com
Link: https://lkml.kernel.org/r/20240627003953.1262512-2-gshan@redhat.com
Fixes: 793917d997df ("mm/readahead: Add large folio readahead")
Signed-off-by: Gavin Shan <gshan@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Zhenyu Zhang <zhenyzha@redhat.com>
Cc: <stable@vger.kernel.org> [5.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 82f0b6f041fad768c28b4ad05a683065412c226e ]
Commit 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing
memory_section->usage") changed pfn_section_valid() to add a READ_ONCE()
call around "ms->usage" to fix a race with section_deactivate() where
ms->usage can be cleared. The READ_ONCE() call, by itself, is not enough
to prevent NULL pointer dereference. We need to check its value before
dereferencing it.
Link: https://lkml.kernel.org/r/20240626001639.1350646-1-longman@redhat.com
Fixes: 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|