Age | Commit message (Collapse) | Author | Files | Lines |
|
Provide a mechanism to retrieve basic status information about
the device, including the "supported" flag indicating whether
SED-OPAL is supported. The information returned is from the various
feature descriptors received during the discovery0 step, and so
this ioctl does nothing more than perform the discovery0 step
and then save the information received. See "struct opal_status"
and OPAL_FL_* bits for the status information currently returned.
This is necessary to be able to check whether a device is OPAL
enabled, set up, locked or unlocked from userspace programs
like systemd-cryptsetup and libcryptsetup. Right now we just
have to assume the user 'knows' or blindly attempt setup/lock/unlock
operations.
Signed-off-by: Douglas Miller <dougmill@linux.vnet.ibm.com>
Tested-by: Luca Boccassi <bluca@debian.org>
Reviewed-by: Scott Bauer <sbauer@plzdonthack.me>
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Link: https://lore.kernel.org/r/20220816140713.84893-1-luca.boccassi@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This feature gives the user RW access to any opal table with admin1
authority. The flags described in the new structure determines if the user
wants to read/write the data. Flags are checked for valid values in
order to allow future features to be added to the ioctl.
The user can provide the desired table's UID. Also, the ioctl provides a
size and offset field and internally will loop data accesses to return
the full data block. Read overrun is prevented by the initiator's
sec_send_recv() backend. The ioctl provides a private field with the
intention to accommodate any future expansions to the ioctl.
Reviewed-by: Scott Bauer <sbauer@plzdonthack.me>
Reviewed-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Revanth Rajashekar <revanth.rajashekar@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Allow modification of the shadow mbr. If the shadow mbr is not marked as
done, this data will be presented read only as the device content. Only
after marking the shadow mbr as done and unlocking a locking range the
actual content is accessible.
Co-authored-by: David Kozub <zub@linux.fjfi.cvut.cz>
Signed-off-by: Jonas Rabenstein <jonas.rabenstein@studium.uni-erlangen.de>
Signed-off-by: David Kozub <zub@linux.fjfi.cvut.cz>
Reviewed-by: Scott Bauer <sbauer@plzdonthack.me>
Reviewed-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Enable users to mark the shadow mbr as done without completely
deactivating the shadow mbr feature. This may be useful on reboots,
when the power to the disk is not disconnected in between and the shadow
mbr stores the required boot files. Of course, this saves also the
(few) commands required to enable the feature if it is already enabled
and one only wants to mark the shadow mbr as done.
Co-authored-by: David Kozub <zub@linux.fjfi.cvut.cz>
Signed-off-by: Jonas Rabenstein <jonas.rabenstein@studium.uni-erlangen.de>
Signed-off-by: David Kozub <zub@linux.fjfi.cvut.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed by: Scott Bauer <sbauer@plzdonthack.me>
Reviewed-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
PSID is a 32 character password printed on the drive label,
to prove its physical access. This PSID reverttper function
is very useful to regain the control over the drive when it
is locked and the user can no longer access it because of some
failures. However, *all the data on the drive is completely
erased*. This method is advisable only when the user is exhausted
of all other recovery methods.
PSID capabilities are described in:
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Storage-Opal_Feature_Set_PSID_v1.00_r1.00.pdf
Signed-off-by: Revanth Rajashekar <revanth.rajashekar@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
All these files have some form of the usual GPLv2 boilerplate. Switch
them to use SPDX tags instead.
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Before we free the opal structure we need to clean up any saved
locking ranges that the user had told us to unlock from a suspend.
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Insted of bloating the containing structure with it all the time this
allocates struct opal_dev dynamically. Additionally this allows moving
the definition of struct opal_dev into sed-opal.c. For this a new
private data field is added to it that is passed to the send/receive
callback. After that a lot of internals can be made private as well.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Scott Bauer <scott.bauer@intel.com>
Reviewed-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When CONFIG_KASAN is enabled, compilation fails:
block/sed-opal.c: In function 'sed_ioctl':
block/sed-opal.c:2447:1: error: the frame size of 2256 bytes is larger than 2048 bytes [-Werror=frame-larger-than=]
Moved all the ioctl structures off the stack and dynamically allocate
using _IOC_SIZE()
Fixes: 455a7b238cd6 ("block: Add Sed-opal library")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This patch implements the necessary logic to bring an Opal
enabled drive out of a factory-enabled into a working
Opal state.
This patch set also enables logic to save a password to
be replayed during a resume from suspend.
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Rafael Antognolli <Rafael.Antognolli@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|