summaryrefslogtreecommitdiff
path: root/include/linux/random.h
AgeCommit message (Collapse)AuthorFilesLines
2017-07-15Merge tag 'random_for_linus' of ↵Linus Torvalds1-0/+26
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random Pull random updates from Ted Ts'o: "Add wait_for_random_bytes() and get_random_*_wait() functions so that callers can more safely get random bytes if they can block until the CRNG is initialized. Also print a warning if get_random_*() is called before the CRNG is initialized. By default, only one single-line warning will be printed per boot. If CONFIG_WARN_ALL_UNSEEDED_RANDOM is defined, then a warning will be printed for each function which tries to get random bytes before the CRNG is initialized. This can get spammy for certain architecture types, so it is not enabled by default" * tag 'random_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/random: random: reorder READ_ONCE() in get_random_uXX random: suppress spammy warnings about unseeded randomness random: warn when kernel uses unseeded randomness net/route: use get_random_int for random counter net/neighbor: use get_random_u32 for 32-bit hash random rhashtable: use get_random_u32 for hash_rnd ceph: ensure RNG is seeded before using iscsi: ensure RNG is seeded before use cifs: use get_random_u32 for 32-bit lock random random: add get_random_{bytes,u32,u64,int,long,once}_wait family random: add wait_for_random_bytes() API
2017-07-13random,stackprotect: introduce get_random_canary functionRik van Riel1-0/+21
Patch series "stackprotector: ascii armor the stack canary", v2. Zero out the first byte of the stack canary value on 64 bit systems, in order to mitigate unterminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in execshield and Daniel Micay's linux-hardened tree. Also see https://github.com/thestinger/linux-hardened/ This patch (of 5): Introduce get_random_canary(), which provides a random unsigned long canary value with the first byte zeroed out on 64 bit architectures, in order to mitigate non-terminated C string overflows. The null byte both prevents C string functions from reading the canary, and from writing it if the canary value were guessed or obtained through some other means. Reducing the entropy by 8 bits is acceptable on 64-bit systems, which will still have 56 bits of entropy left, but not on 32 bit systems, so the "ascii armor" canary is only implemented on 64-bit systems. Inspired by the "ascii armor" code in the old execshield patches, and Daniel Micay's linux-hardened tree. Link: http://lkml.kernel.org/r/20170524155751.424-2-riel@redhat.com Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Daniel Micay <danielmicay@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-20random: add get_random_{bytes,u32,u64,int,long,once}_wait familyJason A. Donenfeld1-0/+25
These functions are simple convenience wrappers that call wait_for_random_bytes before calling the respective get_random_* function. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-06-20random: add wait_for_random_bytes() APIJason A. Donenfeld1-0/+1
This enables users of get_random_{bytes,u32,u64,int,long} to wait until the pool is ready before using this function, in case they actually want to have reliable randomness. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-01-27random: convert get_random_int/long into get_random_u32/u64Jason A. Donenfeld1-2/+15
Many times, when a user wants a random number, he wants a random number of a guaranteed size. So, thinking of get_random_int and get_random_long in terms of get_random_u32 and get_random_u64 makes it much easier to achieve this. It also makes the code simpler. On 32-bit platforms, get_random_int and get_random_long are both aliased to get_random_u32. On 64-bit platforms, int->u32 and long->u64. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2017-01-27random: use chacha20 for get_random_int/longJason A. Donenfeld1-1/+0
Now that our crng uses chacha20, we can rely on its speedy characteristics for replacing MD5, while simultaneously achieving a higher security guarantee. Before the idea was to use these functions if you wanted random integers that aren't stupidly insecure but aren't necessarily secure either, a vague gray zone, that hopefully was "good enough" for its users. With chacha20, we can strengthen this claim, since either we're using an rdrand-like instruction, or we're using the same crng as /dev/urandom. And it's faster than what was before. We could have chosen to replace this with a SipHash-derived function, which might be slightly faster, but at the cost of having yet another RNG construction in the kernel. By moving to chacha20, we have a single RNG to analyze and verify, and we also already get good performance improvements on all platforms. Implementation-wise, rather than use a generic buffer for both get_random_int/long and memcpy based on the size needs, we use a specific buffer for 32-bit reads and for 64-bit reads. This way, we're guaranteed to always have aligned accesses on all platforms. While slightly more verbose in C, the assembly this generates is a lot simpler than otherwise. Finally, on 32-bit platforms where longs and ints are the same size, we simply alias get_random_int to get_random_long. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Suggested-by: Theodore Ts'o <tytso@mit.edu> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2016-10-15Merge tag 'gcc-plugins-v4.9-rc1' of ↵Linus Torvalds1-2/+13
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull gcc plugins update from Kees Cook: "This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals" * tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: latent_entropy: Mark functions with __latent_entropy gcc-plugins: Add latent_entropy plugin
2016-10-12random: remove unused randomize_range()Jason Cooper1-1/+0
All call sites for randomize_range have been updated to use the much simpler and more robust randomize_addr(). Remove the now unnecessary code. Link: http://lkml.kernel.org/r/20160803233913.32511-8-jason@lakedaemon.net Signed-off-by: Jason Cooper <jason@lakedaemon.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-12random: simplify API for random address requestsJason Cooper1-0/+1
To date, all callers of randomize_range() have set the length to 0, and check for a zero return value. For the current callers, the only way to get zero returned is if end <= start. Since they are all adding a constant to the start address, this is unnecessary. We can remove a bunch of needless checks by simplifying the API to do just what everyone wants, return an address between [start, start + range). While we're here, s/get_random_int/get_random_long/. No current call site is adversely affected by get_random_int(), since all current range requests are < UINT_MAX. However, we should match caller expectations to avoid coming up short (ha!) in the future. All current callers to randomize_range() chose to use the start address if randomize_range() failed. Therefore, we simplify things by just returning the start address on error. randomize_range() will be removed once all callers have been converted over to randomize_addr(). Link: http://lkml.kernel.org/r/20160803233913.32511-2-jason@lakedaemon.net Signed-off-by: Jason Cooper <jason@lakedaemon.net> Acked-by: Kees Cook <keescook@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Roberts, William C" <william.c.roberts@intel.com> Cc: Yann Droneaud <ydroneaud@opteya.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Nick Kralevich <nnk@google.com> Cc: Jeffrey Vander Stoep <jeffv@google.com> Cc: Daniel Cashman <dcashman@android.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-11latent_entropy: Mark functions with __latent_entropyEmese Revfy1-2/+2
The __latent_entropy gcc attribute can be used only on functions and variables. If it is on a function then the plugin will instrument it for gathering control-flow entropy. If the attribute is on a variable then the plugin will initialize it with random contents. The variable must be an integer, an integer array type or a structure with integer fields. These specific functions have been selected because they are init functions (to help gather boot-time entropy), are called at unpredictable times, or they have variable loops, each of which provide some level of latent entropy. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-11gcc-plugins: Add latent_entropy pluginEmese Revfy1-0/+11
This adds a new gcc plugin named "latent_entropy". It is designed to extract as much possible uncertainty from a running system at boot time as possible, hoping to capitalize on any possible variation in CPU operation (due to runtime data differences, hardware differences, SMP ordering, thermal timing variation, cache behavior, etc). At the very least, this plugin is a much more comprehensive example for how to manipulate kernel code using the gcc plugin internals. The need for very-early boot entropy tends to be very architecture or system design specific, so this plugin is more suited for those sorts of special cases. The existing kernel RNG already attempts to extract entropy from reliable runtime variation, but this plugin takes the idea to a logical extreme by permuting a global variable based on any variation in code execution (e.g. a different value (and permutation function) is used to permute the global based on loop count, case statement, if/then/else branching, etc). To do this, the plugin starts by inserting a local variable in every marked function. The plugin then adds logic so that the value of this variable is modified by randomly chosen operations (add, xor and rol) and random values (gcc generates separate static values for each location at compile time and also injects the stack pointer at runtime). The resulting value depends on the control flow path (e.g., loops and branches taken). Before the function returns, the plugin mixes this local variable into the latent_entropy global variable. The value of this global variable is added to the kernel entropy pool in do_one_initcall() and _do_fork(), though it does not credit any bytes of entropy to the pool; the contents of the global are just used to mix the pool. Additionally, the plugin can pre-initialize arrays with build-time random contents, so that two different kernel builds running on identical hardware will not have the same starting values. Signed-off-by: Emese Revfy <re.emese@gmail.com> [kees: expanded commit message and code comments] Signed-off-by: Kees Cook <keescook@chromium.org>
2016-06-08x86, asm: use bool for bitops and other assembly outputsH. Peter Anvin1-6/+6
The gcc people have confirmed that using "bool" when combined with inline assembly always is treated as a byte-sized operand that can be assumed to be 0 or 1, which is exactly what the SET instruction emits. Change the output types and intermediate variables of as many operations as practical to "bool". Signed-off-by: H. Peter Anvin <hpa@zytor.com> Link: http://lkml.kernel.org/r/1465414726-197858-3-git-send-email-hpa@linux.intel.com Reviewed-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-05-21lib/uuid.c: move generate_random_uuid() to uuid.cAndy Shevchenko1-1/+0
Let's gather the UUID related functions under one hood. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Dmitry Kasatkin <dmitry.kasatkin@gmail.com> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-27drivers: char: random: add get_random_long()Daniel Cashman1-0/+1
Commit d07e22597d1d ("mm: mmap: add new /proc tunable for mmap_base ASLR") added the ability to choose from a range of values to use for entropy count in generating the random offset to the mmap_base address. The maximum value on this range was set to 32 bits for 64-bit x86 systems, but this value could be increased further, requiring more than the 32 bits of randomness provided by get_random_int(), as is already possible for arm64. Add a new function: get_random_long() which more naturally fits with the mmap usage of get_random_int() but operates exactly the same as get_random_int(). Also, fix the shifting constant in mmap_rnd() to be an unsigned long so that values greater than 31 bits generate an appropriate mask without overflow. This is especially important on x86, as its shift instruction uses a 5-bit mask for the shift operand, which meant that any value for mmap_rnd_bits over 31 acts as a no-op and effectively disables mmap_base randomization. Finally, replace calls to get_random_int() with get_random_long() where appropriate. This patch (of 2): Add get_random_long(). Signed-off-by: Daniel Cashman <dcashman@android.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: David S. Miller <davem@davemloft.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Nick Kralevich <nnk@google.com> Cc: Jeff Vander Stoep <jeffv@google.com> Cc: Mark Salyzyn <salyzyn@android.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-08random32: add prandom_init_once helper for own rngsDaniel Borkmann1-0/+6
Add a prandom_init_once() facility that works on the rnd_state, so that users that are keeping their own state independent from prandom_u32() can initialize their taus113 per cpu states. The motivation here is similar to net_get_random_once(): initialize the state as late as possible in the hope that enough entropy has been collected for the seeding. prandom_init_once() makes use of the recently introduced prandom_seed_full_state() helper and is generic enough so that it could also be used on fast-paths due to the DO_ONCE(). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-10random: Remove kernel blocking APIHerbert Xu1-1/+0
This patch removes the kernel blocking API as it has been completely replaced by the callback API. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-10random: Add callback API for random pool readinessHerbert Xu1-0/+9
The get_blocking_random_bytes API is broken because the wait can be arbitrarily long (potentially forever) so there is no safe way of calling it from within the kernel. This patch replaces it with a callback API instead. The callback is invoked potentially from interrupt context so the user needs to schedule their own work thread if necessary. In addition to adding callbacks, they can also be removed as otherwise this opens up a way for user-space to allocate kernel memory with no bound (by opening algif_rng descriptors and then closing them). Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-05-27random: Blocking API for accessing nonblocking_poolStephan Mueller1-0/+1
The added API calls provide a synchronous function call get_blocking_random_bytes where the caller is blocked until the nonblocking_pool is initialized. CC: Andreas Steffen <andreas.steffen@strongswan.org> CC: Theodore Ts'o <tytso@mit.edu> CC: Sandy Harris <sandyinchina@gmail.com> Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-08-25random32: improvements to prandom_bytesDaniel Borkmann1-2/+2
This patch addresses a couple of minor items, mostly addesssing prandom_bytes(): 1) prandom_bytes{,_state}() should use size_t for length arguments, 2) We can use put_unaligned() when filling the array instead of open coding it [ perhaps some archs will further benefit from their own arch specific implementation when GCC cannot make up for it ], 3) Fix a typo, 4) Better use unsigned int as type for getting the arch seed, 5) Make use of prandom_u32_max() for timer slack. Regarding the change to put_unaligned(), callers of prandom_bytes() which internally invoke prandom_bytes_state(), don't bother as they expect the array to be filled randomly and don't have any control of the internal state what-so-ever (that's also why we have periodic reseeding there, etc), so they really don't care. Now for the direct callers of prandom_bytes_state(), which are solely located in test cases for MTD devices, that is, drivers/mtd/tests/{oobtest.c,pagetest.c,subpagetest.c}: These tests basically fill a test write-vector through prandom_bytes_state() with an a-priori defined seed each time and write that to a MTD device. Later on, they set up a read-vector and read back that blocks from the device. So in the verification phase, the write-vector is being re-setup [ so same seed and prandom_bytes_state() called ], and then memcmp()'ed against the read-vector to check if the data is the same. Akinobu, Lothar and I also tested this patch and it runs through the 3 relevant MTD test cases w/o any errors on the nandsim device (simulator for MTD devs) for x86_64, ppc64, ARM (i.MX28, i.MX53 and i.MX6): # modprobe nandsim first_id_byte=0x20 second_id_byte=0xac \ third_id_byte=0x00 fourth_id_byte=0x15 # modprobe mtd_oobtest dev=0 # modprobe mtd_pagetest dev=0 # modprobe mtd_subpagetest dev=0 We also don't have any users depending directly on a particular result of the PRNG (except the PRNG self-test itself), and that's just fine as it e.g. allowed us easily to do things like upgrading from taus88 to taus113. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Tested-by: Akinobu Mita <akinobu.mita@gmail.com> Tested-by: Lothar Waßmann <LW@KARO-electronics.de> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-20random: Add arch_has_random[_seed]()H. Peter Anvin1-0/+8
Add predicate functions for having arch_get_random[_seed]*(). The only current use is to avoid the loop in arch_random_refill() when arch_get_random_seed_long() is unavailable. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2014-03-20x86, random: Enable the RDSEED instructionH. Peter Anvin1-0/+8
Upcoming Intel silicon adds a new RDSEED instruction, which is similar to RDRAND but provides a stronger guarantee: unlike RDRAND, RDSEED will always reseed the PRNG from the true random number source between each read. Thus, the output of RDSEED is guaranteed to be 100% entropic, unlike RDRAND which is only architecturally guaranteed to be 1/512 entropic (although in practice is much more.) The RDSEED instruction takes the same time to execute as RDRAND, but RDSEED unlike RDRAND can legitimately return failure (CF=0) due to entropy exhaustion if too many threads on too many cores are hammering the RDSEED instruction at the same time. Therefore, we have to be more conservative and only use it in places where we can tolerate failures. This patch introduces the primitives arch_get_random_seed_{int,long}() but does not use it yet. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <michael@ellerman.id.au> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2014-01-22random32: add prandom_u32_max and convert open coded usersDaniel Borkmann1-1/+17
Many functions have open coded a function that returns a random number in range [0,N-1]. Under the assumption that we have a PRNG such as taus113 with being well distributed in [0, ~0U] space, we can implement such a function as uword t = (n*m')>>32, where m' is a random number obtained from PRNG, n the right open interval border and t our resulting random number, with n,m',t in u32 universe. Lets go with Joe and simply call it prandom_u32_max(), although technically we have an right open interval endpoint, but that we have documented. Other users can further be migrated to the new prandom_u32_max() function later on; for now, we need to make sure to migrate reciprocal_divide() users for the reciprocal_divide() follow-up fixup since their function signatures are going to change. Joint work with Hannes Frederic Sowa. Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11random32: upgrade taus88 generator to taus113 from errata paperDaniel Borkmann1-5/+6
Since we use prandom*() functions quite often in networking code i.e. in UDP port selection, netfilter code, etc, upgrade the PRNG from Pierre L'Ecuyer's original paper "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213 to the version published in his errata paper [1]. The Tausworthe generator is a maximally-equidistributed generator, that is fast and has good statistical properties [1]. The version presented there upgrades the 3 state LFSR to a 4 state LFSR with increased periodicity from about 2^88 to 2^113. The algorithm is presented in [1] by the very same author who also designed the original algorithm in [2]. Also, by increasing the state, we make it a bit harder for attackers to "guess" the PRNGs internal state. See also discussion in [3]. Now, as we use this sort of weak initialization discussed in [3] only between core_initcall() until late_initcall() time [*] for prandom32*() users, namely in prandom_init(), it is less relevant from late_initcall() onwards as we overwrite seeds through prandom_reseed() anyways with a seed source of higher entropy, that is, get_random_bytes(). In other words, a exhaustive keysearch of 96 bit would be needed. Now, with the help of this patch, this state-search increases further to 128 bit. Initialization needs to make sure that s1 > 1, s2 > 7, s3 > 15, s4 > 127. taus88 and taus113 algorithm is also part of GSL. I added a test case in the next patch to verify internal behaviour of this patch with GSL and ran tests with the dieharder 3.31.1 RNG test suite: $ dieharder -g 052 -a -m 10 -s 1 -S 4137730333 #taus88 $ dieharder -g 054 -a -m 10 -s 1 -S 4137730333 #taus113 With this seed configuration, in order to compare both, we get the following differences: algorithm taus88 taus113 rands/second [**] 1.61e+08 1.37e+08 sts_serial(4, 1st run) WEAK PASSED sts_serial(9, 2nd run) WEAK PASSED rgb_lagged_sum(31) WEAK PASSED We took out diehard_sums test as according to the authors it is considered broken and unusable [4]. Despite that and the slight decrease in performance (which is acceptable), taus113 here passes all 113 tests (only rgb_minimum_distance_5 in WEAK, the rest PASSED). In general, taus/taus113 is considered "very good" by the authors of dieharder [5]. The papers [1][2] states a single warm-up step is sufficient by running quicktaus once on each state to ensure proper initialization of ~s_{0}: Our selection of (s) according to Table 1 of [1] row 1 holds the condition L - k <= r - s, that is, (32 32 32 32) - (31 29 28 25) <= (25 27 15 22) - (18 2 7 13) with r = k - q and q = (6 2 13 3) as also stated by the paper. So according to [2] we are safe with one round of quicktaus for initialization. However we decided to include the warm-up phase of the PRNG as done in GSL in every case as a safety net. We also use the warm up phase to make the output of the RNG easier to verify by the GSL output. In prandom_init(), we also mix random_get_entropy() into it, just like drivers/char/random.c does it, jiffies ^ random_get_entropy(). random-get_entropy() is get_cycles(). xor is entropy preserving so it is fine if it is not implemented by some architectures. Note, this PRNG is *not* used for cryptography in the kernel, but rather as a fast PRNG for various randomizations i.e. in the networking code, or elsewhere for debugging purposes, for example. [*]: In order to generate some "sort of pseduo-randomness", since get_random_bytes() is not yet available for us, we use jiffies and initialize states s1 - s3 with a simple linear congruential generator (LCG), that is x <- x * 69069; and derive s2, s3, from the 32bit initialization from s1. So the above quote from [3] accounts only for the time from core to late initcall, not afterwards. [**] Single threaded run on MacBook Air w/ Intel Core i5-3317U [1] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps [2] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps [3] http://thread.gmane.org/gmane.comp.encryption.general/12103/ [4] http://code.google.com/p/dieharder/source/browse/trunk/libdieharder/diehard_sums.c?spec=svn490&r=490#20 [5] http://www.phy.duke.edu/~rgb/General/dieharder.php Joint work with Hannes Frederic Sowa. Cc: Florian Weimer <fweimer@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11random32: move rnd_state to linux/random.hDaniel Borkmann1-0/+4
struct rnd_state got mistakenly pulled into uapi header. It is not used anywhere and does also not belong there! Commit 5960164fde ("lib/random32: export pseudo-random number generator for modules"), the last commit on rnd_state before it got moved to uapi, says: This patch moves the definition of struct rnd_state and the inline __seed() function to linux/random.h. It renames the static __random32() function to prandom32() and exports it for use in modules. Hence, the structure was moved from lib/random32.c to linux/random.h so that it can be used within modules (FCoE-related code in this case), but not from user space. However, it seems to have been mistakenly moved to uapi header through the uapi script. Since no-one should make use of it from the linux headers, move the structure back to the kernel for internal use, so that it can be modified on demand. Joint work with Hannes Frederic Sowa. Cc: Joe Eykholt <jeykholt@cisco.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11random32: add prandom_reseed_late() and call when nonblocking pool becomes ↵Hannes Frederic Sowa1-0/+1
initialized The Tausworthe PRNG is initialized at late_initcall time. At that time the entropy pool serving get_random_bytes is not filled sufficiently. This patch adds an additional reseeding step as soon as the nonblocking pool gets marked as initialized. On some machines it might be possible that late_initcall gets called after the pool has been initialized. In this situation we won't reseed again. (A call to prandom_seed_late blocks later invocations of early reseed attempts.) Joint work with Daniel Borkmann. Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-11-11random32: fix off-by-one in seeding requirementDaniel Borkmann1-3/+3
For properly initialising the Tausworthe generator [1], we have a strict seeding requirement, that is, s1 > 1, s2 > 7, s3 > 15. Commit 697f8d0348 ("random32: seeding improvement") introduced a __seed() function that imposes boundary checks proposed by the errata paper [2] to properly ensure above conditions. However, we're off by one, as the function is implemented as: "return (x < m) ? x + m : x;", and called with __seed(X, 1), __seed(X, 7), __seed(X, 15). Thus, an unwanted seed of 1, 7, 15 would be possible, whereas the lower boundary should actually be of at least 2, 8, 16, just as GSL does. Fix this, as otherwise an initialization with an unwanted seed could have the effect that Tausworthe's PRNG properties cannot not be ensured. Note that this PRNG is *not* used for cryptography in the kernel. [1] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps [2] http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps Joint work with Hannes Frederic Sowa. Fixes: 697f8d0348a6 ("random32: seeding improvement") Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Florian Weimer <fweimer@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-09-23random: run random_int_secret_init() run after all late_initcallsTheodore Ts'o1-0/+1
The some platforms (e.g., ARM) initializes their clocks as late_initcalls for some unknown reason. So make sure random_int_secret_init() is run after all of the late_initcalls are run. Cc: stable@vger.kernel.org Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2013-05-08remove unused random32() and srandom32()Akinobu Mita1-7/+0
After finishing a naming transition, remove unused backward compatibility wrapper macros Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-23soreuseport: infrastructureTom Herbert1-0/+6
Definitions and macros for implementing soreusport. Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-18prandom: introduce prandom_bytes() and prandom_bytes_state()Akinobu Mita1-0/+2
Add functions to get the requested number of pseudo-random bytes. The difference from get_random_bytes() is that it generates pseudo-random numbers by prandom_u32(). It doesn't consume the entropy pool, and the sequence is reproducible if the same rnd_state is used. So it is suitable for generating random bytes for testing. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Cc: David Laight <david.laight@aculab.com> Cc: Michel Lespinasse <walken@google.com> Cc: Robert Love <robert.w.love@intel.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18random32: rename random32 to prandomAkinobu Mita1-5/+12
This renames all random32 functions to have 'prandom_' prefix as follows: void prandom_seed(u32 seed); /* rename from srandom32() */ u32 prandom_u32(void); /* rename from random32() */ void prandom_seed_state(struct rnd_state *state, u64 seed); /* rename from prandom32_seed() */ u32 prandom_u32_state(struct rnd_state *state); /* rename from prandom32() */ The purpose of this renaming is to prevent some kernel developers from assuming that prandom32() and random32() might imply that only prandom32() was the one using a pseudo-random number generator by prandom32's "p", and the result may be a very embarassing security exposure. This concern was expressed by Theodore Ts'o. And furthermore, I'm going to introduce new functions for getting the requested number of pseudo-random bytes. If I continue to use both prandom32 and random32 prefixes for these functions, the confusion is getting worse. As a result of this renaming, "prandom_" is the common prefix for pseudo-random number library. Currently, srandom32() and random32() are preserved because it is difficult to rename too many users at once. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Robert Love <robert.w.love@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Valdis Kletnieks <valdis.kletnieks@vt.edu> Cc: David Laight <david.laight@aculab.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Artem Bityutskiy <dedekind1@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-13UAPI: (Scripted) Disintegrate include/linuxDavid Howells1-42/+1
Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michael Kerrisk <mtk.manpages@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Acked-by: Dave Jones <davej@redhat.com>
2012-07-19random: remove rand_initialize_irq()Theodore Ts'o1-2/+0
With the new interrupt sampling system, we are no longer using the timer_rand_state structure in the irq descriptor, so we can stop initializing it now. [ Merged in fixes from Sedat to find some last missing references to rand_initialize_irq() ] Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
2012-07-15random: add new get_random_bytes_arch() functionTheodore Ts'o1-0/+1
Create a new function, get_random_bytes_arch() which will use the architecture-specific hardware random number generator if it is present. Change get_random_bytes() to not use the HW RNG, even if it is avaiable. The reason for this is that the hw random number generator is fast (if it is present), but it requires that we trust the hardware manufacturer to have not put in a back door. (For example, an increasing counter encrypted by an AES key known to the NSA.) It's unlikely that Intel (for example) was paid off by the US Government to do this, but it's impossible for them to prove otherwise --- especially since Bull Mountain is documented to use AES as a whitener. Hence, the output of an evil, trojan-horse version of RDRAND is statistically indistinguishable from an RDRAND implemented to the specifications claimed by Intel. Short of using a tunnelling electronic microscope to reverse engineer an Ivy Bridge chip and disassembling and analyzing the CPU microcode, there's no way for us to tell for sure. Since users of get_random_bytes() in the Linux kernel need to be able to support hardware systems where the HW RNG is not present, most time-sensitive users of this interface have already created their own cryptographic RNG interface which uses get_random_bytes() as a seed. So it's much better to use the HW RNG to improve the existing random number generator, by mixing in any entropy returned by the HW RNG into /dev/random's entropy pool, but to always _use_ /dev/random's entropy pool. This way we get almost of the benefits of the HW RNG without any potential liabilities. The only benefits we forgo is the speed/performance enhancements --- and generic kernel code can't depend on depend on get_random_bytes() having the speed of a HW RNG anyway. For those places that really want access to the arch-specific HW RNG, if it is available, we provide get_random_bytes_arch(). Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
2012-07-15random: create add_device_randomness() interfaceLinus Torvalds1-0/+1
Add a new interface, add_device_randomness() for adding data to the random pool that is likely to differ between two devices (or possibly even per boot). This would be things like MAC addresses or serial numbers, or the read-out of the RTC. This does *not* add any actual entropy to the pool, but it initializes the pool to different values for devices that might otherwise be identical and have very little entropy available to them (particularly common in the embedded world). [ Modified by tytso to mix in a timestamp, since there may be some variability caused by the time needed to detect/configure the hardware in question. ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
2012-07-15random: make 'add_interrupt_randomness()' do something saneTheodore Ts'o1-1/+1
We've been moving away from add_interrupt_randomness() for various reasons: it's too expensive to do on every interrupt, and flooding the CPU with interrupts could theoretically cause bogus floods of entropy from a somewhat externally controllable source. This solves both problems by limiting the actual randomness addition to just once a second or after 64 interrupts, whicever comes first. During that time, the interrupt cycle data is buffered up in a per-cpu pool. Also, we make sure the the nonblocking pool used by urandom is initialized before we start feeding the normal input pool. This assures that /dev/urandom is returning unpredictable data as soon as possible. (Based on an original patch by Linus, but significantly modified by tytso.) Tested-by: Eric Wustrow <ewust@umich.edu> Reported-by: Eric Wustrow <ewust@umich.edu> Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu> Reported-by: Zakir Durumeric <zakir@umich.edu> Reported-by: J. Alex Halderman <jhalderm@umich.edu>. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: stable@vger.kernel.org
2011-10-28Merge branch 'x86-rdrand-for-linus' of ↵Linus Torvalds1-0/+13
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip * 'x86-rdrand-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, random: Verify RDRAND functionality and allow it to be disabled x86, random: Architectural inlines to get random integers with RDRAND random: Add support for architectural random hooks Fix up trivial conflicts in drivers/char/random.c: the architectural random hooks touched "get_random_int()" that was simplified to use MD5 and not do the keyptr thing any more (see commit 6e5714eaf77d: "net: Compute protocol sequence numbers and fragment IDs using MD5").
2011-08-07net: Compute protocol sequence numbers and fragment IDs using MD5.David S. Miller1-12/+0
Computers have become a lot faster since we compromised on the partial MD4 hash which we use currently for performance reasons. MD5 is a much safer choice, and is inline with both RFC1948 and other ISS generators (OpenBSD, Solaris, etc.) Furthermore, only having 24-bits of the sequence number be truly unpredictable is a very serious limitation. So the periodic regeneration and 8-bit counter have been removed. We compute and use a full 32-bit sequence number. For ipv6, DCCP was found to use a 32-bit truncated initial sequence number (it needs 43-bits) and that is fixed here as well. Reported-by: Dan Kaminsky <dan@doxpara.com> Tested-by: Willy Tarreau <w@1wt.eu> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-08-01random: Add support for architectural random hooksH. Peter Anvin1-0/+13
Add support for architecture-specific hooks into the kernel-directed random number generator interfaces. This patchset does not use the architecture random number generator interfaces for the userspace-directed interfaces (/dev/random and /dev/urandom), thus eliminating the need to distinguish between them based on a pool pointer. Changes in version 3: - Moved the hooks from extract_entropy() to get_random_bytes(). - Changes the hooks to inlines. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "Theodore Ts'o" <tytso@mit.edu>
2011-07-22ipv6: make fragment identifications less predictableEric Dumazet1-0/+1
IPv6 fragment identification generation is way beyond what we use for IPv4 : It uses a single generator. Its not scalable and allows DOS attacks. Now inetpeer is IPv6 aware, we can use it to provide a more secure and scalable frag ident generator (per destination, instead of system wide) This patch : 1) defines a new secure_ipv6_id() helper 2) extends inet_getid() to provide 32bit results 3) extends ipv6_select_ident() with a new dest parameter Reported-by: Fernando Gont <fernando@gont.com.ar> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-27lib/random32: export pseudo-random number generator for modulesJoe Eykholt1-0/+28
This patch moves the definition of struct rnd_state and the inline __seed() function to linux/random.h. It renames the static __random32() function to prandom32() and exports it for use in modules. prandom32() is useful as a privately-seeded pseudo random number generator that can give the same result every time it is initialized. For FCoE FC-BB-6 VN2VN mode self-selected unique FC address generation, we need an pseudo-random number generator seeded with the 64-bit world-wide port name. A truly random generator or one seeded with randomness won't do because the same sequence of numbers should be generated each time we boot or the link comes up. A prandom32_seed() inline function is added to the header file. It is inlined not for speed, but so the function won't be expanded in the base kernel, but only in the module that uses it. Signed-off-by: Joe Eykholt <jeykholt@cisco.com> Acked-by: Matt Mackall <mpm@selenic.com> Cc: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-30headers_check fix: linux/random.hJaswinder Singh Rajput1-0/+1
fix the following 'make headers_check' warning: usr/include/linux/random.h:39: found __[us]{8,16,32,64} type without #include <linux/types.h> Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
2009-01-03sparseirq: move set/get_timer_rand_state back to .cYinghai Lu1-50/+0
those two functions only used in that C file Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-12-12sparse irqs: handle !GENIRQ platformsIngo Molnar1-1/+1
Impact: build fix fix: In file included from /home/mingo/tip/arch/m68k/amiga/amiints.c:39: /home/mingo/tip/include/linux/interrupt.h:21: error: expected identifier or '(' /home/mingo/tip/arch/m68k/amiga/amiints.c: In function 'amiga_init_IRQ': Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-08sparse irq_desc[] array: core kernel and x86 changesYinghai Lu1-0/+51
Impact: new feature Problem on distro kernels: irq_desc[NR_IRQS] takes megabytes of RAM with NR_CPUS set to large values. The goal is to be able to scale up to much larger NR_IRQS value without impacting the (important) common case. To solve this, we generalize irq_desc[NR_IRQS] to an (optional) array of irq_desc pointers. When CONFIG_SPARSE_IRQ=y is used, we use kzalloc_node to get irq_desc, this also makes the IRQ descriptors NUMA-local (to the site that calls request_irq()). This gets rid of the irq_cfg[] static array on x86 as well: irq_cfg now uses desc->chip_data for x86 to store irq_cfg. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-02-12[PATCH] mark struct file_operations const 1Arjan van de Ven1-1/+1
Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-03[RANDOM]: Annotate random.h IP helpers.Al Viro1-10/+10
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-10-17[PATCH] rename net_random to random32Stephen Hemminger1-0/+3
Make net_random() more widely available by calling it random32 akpm: hopefully this will permit the removal of carta_random32. That needs confirmation from Stephane - this code looks somewhat more computationally expensive, and has a different (ie: callee-stateful) interface. [akpm@osdl.org: lots of build fixes, cleanups] Signed-off-by: Stephen Hemminger <shemminger@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Stephane Eranian <eranian@hpl.hp.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-04[INET6]: Generalise tcp_v6_hash_connectArnaldo Carvalho de Melo1-2/+2
Renaming it to inet6_hash_connect, making it possible to ditch dccp_v6_hash_connect and share the same code with TCP instead. Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-01-04[INET]: Generalise tcp_v4_hash_connectArnaldo Carvalho de Melo1-1/+1
Renaming it to inet_hash_connect, making it possible to ditch dccp_v4_hash_connect and share the same code with TCP instead. Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com> Signed-off-by: David S. Miller <davem@davemloft.net>