Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that pstore_register() can correctly pass max_reason to the kmesg
dump facility, introduce a new "max_reason" module parameter and
"max-reason" Device Tree field.
The "dump_oops" module parameter and "dump-oops" Device
Tree field are now considered deprecated, but are now automatically
converted to their corresponding max_reason values when present, though
the new max_reason setting has precedence.
For struct ramoops_platform_data, the "dump_oops" member is entirely
replaced by a new "max_reason" member, with the only existing user
updated in place.
Additionally remove the "reason" filter logic from ramoops_pstore_write(),
as that is not specifically needed anymore, though technically
this is a change in behavior for any ramoops users also setting the
printk.always_kmsg_dump boot param, which will cause ramoops to behave as
if max_reason was set to KMSG_DUMP_MAX.
Co-developed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Link: https://lore.kernel.org/lkml/20200515184434.8470-6-keescook@chromium.org/
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Based on 1 normalized pattern(s):
this software is licensed under the terms of the gnu general public
license version 2 as published by the free software foundation and
may be copied distributed and modified under those terms this
program is distributed in the hope that it will be useful but
without any warranty without even the implied warranty of
merchantability or fitness for a particular purpose see the gnu
general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 285 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141900.642774971@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
In later patches we will need to map types to names, so create a
constant table for that which can also be used in different parts of
old and new code. This saves the type in the PRZ which will be useful
in later patches.
Instead of having an explicit PSTORE_TYPE_UNKNOWN, just use ..._MAX.
This includes removing the now redundant filename templates which can use
a single format string. Also, there's no reason to limit the "is it still
compressed?" test to only PSTORE_TYPE_DMESG when building the pstorefs
filename. Records are zero-initialized, so a backend would need to have
explicitly set compressed=1.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
The struct persistent_ram_zone wasn't well documented. This adds kern-doc
for it.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
When initialing a prz, if invalid data is found (no PERSISTENT_RAM_SIG),
the function call path looks like this:
ramoops_init_prz ->
persistent_ram_new -> persistent_ram_post_init -> persistent_ram_zap
persistent_ram_zap
As we can see, persistent_ram_zap() is called twice.
We can avoid this by adding an option to persistent_ram_new(), and
only call persistent_ram_zap() when it is needed.
Signed-off-by: Peng Wang <wangpeng15@xiaomi.com>
[kees: minor tweak to exit path and commit log]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
When ramoops reserved a memory region in the kernel, it had an unhelpful
label of "persistent_memory". When reading /proc/iomem, it would be
repeated many times, did not hint that it was ramoops in particular,
and didn't clarify very much about what each was used for:
400000000-407ffffff : Persistent Memory (legacy)
400000000-400000fff : persistent_memory
400001000-400001fff : persistent_memory
...
4000ff000-4000fffff : persistent_memory
Instead, this adds meaningful labels for how the various regions are
being used:
400000000-407ffffff : Persistent Memory (legacy)
400000000-400000fff : ramoops:dump(0/252)
400001000-400001fff : ramoops:dump(1/252)
...
4000fc000-4000fcfff : ramoops:dump(252/252)
4000fd000-4000fdfff : ramoops:console
4000fe000-4000fe3ff : ramoops:ftrace(0/3)
4000fe400-4000fe7ff : ramoops:ftrace(1/3)
4000fe800-4000febff : ramoops:ftrace(2/3)
4000fec00-4000fefff : ramoops:ftrace(3/3)
4000ff000-4000fffff : ramoops:pmsg
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Tested-by: Sai Prakash Ranjan <saiprakash.ranjan@codeaurora.org>
Tested-by: Guenter Roeck <groeck@chromium.org>
|
|
Instead of using a stack VLA for the parity workspace, preallocate a
memory region. The preallocation is done to keep from needing to perform
allocations during crash dump writing, etc. This also fixes a missed
release of librs on free.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
If the RAMOOPS_FLAG_FTRACE_PER_CPU flag is passed to ramoops pdata, split
the ftrace space into multiple zones depending on the number of CPUs.
This speeds up the performance of function tracing by about 280% in my
tests as we avoid the locking. The trade off being lesser space available
per CPU. Let the ramoops user decide which option they want based on pdata
flag.
Signed-off-by: Joel Fernandes <joelaf@google.com>
[kees: added max_ftrace_cnt to track size, added DT logic and docs]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
In preparation of not locking at all for certain buffers depending on if
there's contention, make locking optional depending on the initialization
of the prz.
Signed-off-by: Joel Fernandes <joelaf@google.com>
[kees: moved locking flag into prz instead of via caller arguments]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Currently pstore has a global spinlock for all zones. Since the zones
are independent and modify different areas of memory, there's no need
to have a global lock, so we should use a per-zone lock as introduced
here. Also, when ramoops's ftrace use-case has a FTRACE_PER_CPU flag
introduced later, which splits the ftrace memory area into a single zone
per CPU, it will eliminate the need for locking. In preparation for this,
make the locking optional.
Signed-off-by: Joel Fernandes <joelaf@google.com>
[kees: updated commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Removing a bounce buffer copy operation in the pmsg driver path is
always better. We also gain in overall performance by not requesting
a vmalloc on every write as this can cause precious RT tasks, such
as user facing media operation, to stall while memory is being
reclaimed. Added a write_buf_user to the pstore functions, a backup
platform write_buf_user that uses the small buffer that is part of
the instance, and implemented a ramoops write_buf_user that only
supports PSTORE_TYPE_PMSG.
Signed-off-by: Mark Salyzyn <salyzyn@android.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Some architectures have their reserved RAM in 64 Bit address space.
Therefore convert mem_address module parameter to ullong.
Signed-off-by: Wladislav Wiebe <wladislav.wiebe@nokia.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
A secured user-space accessible pstore object. Writes
to /dev/pmsg0 are appended to the buffer, on reboot
the persistent contents are available in
/sys/fs/pstore/pmsg-ramoops-[ID].
One possible use is syslogd, or other daemon, can
write messages, then on reboot provides a means to
triage user-space activities leading up to a panic
as a companion to the pstore dmesg or console logs.
Signed-off-by: Mark Salyzyn <salyzyn@android.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
On some ARMs the memory can be mapped pgprot_noncached() and still
be working for atomic operations. As pointed out by Colin Cross
<ccross@android.com>, in some cases you do want to use
pgprot_noncached() if the SoC supports it to see a debug printk
just before a write hanging the system.
On ARMs, the atomic operations on strongly ordered memory are
implementation defined. So let's provide an optional kernel parameter
for configuring pgprot_noncached(), and use pgprot_writecombine() by
default.
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robherring2@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: stable@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Allow specifying ecc parameters in platform data
Signed-off-by: Arve Hjønnevåg <arve@android.com>
[jstultz: Tweaked commit subject & add commit message]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Anton Vorontsov <anton@enomsg.org>
|
|
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit from the pstore filesystem.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: Anton Vorontsov <cbouatmailru@gmail.com>
Cc: Colin Cross <ccross@android.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Decoding the binary trace w/ a different kernel might be troublesome
since we convert addresses to symbols. For kernels with minimal changes,
the mappings would probably match, but it's not guaranteed at all.
(But still we could convert the addresses by hand, since we do print
raw addresses.)
If we use modules, the symbols could be loaded at different addresses
from the previously booted kernel, and so this would also fail, but
there's nothing we can do about it.
Also, the binary data format that pstore/ram is using in its ringbuffer
may change between the kernels, so here we too must ensure that we're
running the same kernel.
So, there are two questions really:
1. How to compute the unique kernel tag;
2. Where to store it.
In this patch we're using LINUX_VERSION_CODE, just as hibernation
(suspend-to-disk) does. This way we are protecting from the kernel
version mismatch, making sure that we're running the same kernel
version and patch level. We could use CRC of a symbol table (as
suggested by Tony Luck), but for now let's not be that strict.
And as for storing, we are using a small trick here. Instead of
allocating a dedicated buffer for the tag (i.e. another prz), or
hacking ram_core routines to "reserve" some control data in the
buffer, we are just encoding the tag into the buffer signature
(and XOR'ing it with the actual signature value, so that buffers
not needing a tag can just pass zero, which will result into the
plain old PRZ signature).
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Suggested-by: Tony Luck <tony.luck@intel.com>
Suggested-by: Colin Cross <ccross@android.com>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Headers should really include all the needed prototypes, types, defines
etc. to be self-contained. This is a long-standing issue, but apparently
the new tracing code unearthed it (SMP=n is also a prerequisite):
In file included from fs/pstore/internal.h:4:0,
from fs/pstore/ftrace.c:21:
include/linux/pstore.h:43:15: error: field ‘read_mutex’ has incomplete type
While at it, I also added the following:
linux/types.h -> size_t, phys_addr_t, uXX and friends
linux/spinlock.h -> spinlock_t
linux/errno.h -> Exxxx
linux/time.h -> struct timespec (struct passed by value)
struct module and rs_control forward declaration (passed via pointers).
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The ftrace log size is configurable via ramoops.ftrace_size
module option, and the log itself is available via
<pstore-mount>/ftrace-ramoops file.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Nowadays we can use prz->ecc_size as a flag, no need for the special
member in the prz struct.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is now pretty straightforward: instead of using bool, just pass
an integer. For backwards compatibility ramoops.ecc=1 means 16 bytes
ECC (using 1 byte for ECC isn't much of use anyway).
Suggested-by: Arve Hjønnevåg <arve@android.com>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The struct members were never used anywhere outside of
persistent_ram_init_ecc(), so there's actually no need for them
to be in the struct.
If we ever want to make polynomial or symbol size configurable,
it would make more sense to just pass initialized rs_decoder
to the persistent_ram init functions.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Registering the platform driver before module_init allows us to log oopses
that happen during device probing.
This requires changing module_init to postcore_initcall, and switching
from platform_driver_probe to platform_driver_register because the
platform device is not registered when the platform driver is registered;
and because we use driver_register, now can't use create_bundle() (since
it will try to register the same driver once again), so we have to switch
to platform_device_register_data().
Also, some __init -> __devinit changes were needed.
Overall, the registration logic is now much clearer, since we have only
one driver registration point, and just an optional dummy device, which
is created from the module parameters.
Suggested-by: Colin Cross <ccross@android.com>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The code tried to maintain the global list of persistent ram zones,
which isn't a great idea overall, plus since Android's ram_console
is no longer there, we can remove some unused functions.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Colin Cross <ccross@android.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The console log size is configurable via ramoops.console_size
module option, and the log itself is available via
<pstore-mount>/console-ramoops file.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
A handy function that we will use outside of ram_core soon. But
so far just factor it out and start using it in post_init().
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Without the update, we'll only see the new dmesg buffer after the
reboot, but previously we could see it right away. Making an oops
visible in pstore filesystem before reboot is a somewhat dubious
feature, but removing it wasn't an intentional change, so let's
restore it.
For this we have to make persistent_ram_save_old() safe for calling
multiple times, and also extern it.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is now straightforward: just introduce a module parameter and pass
the needed value to persistent_ram_new().
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Marco Stornelli <marco.stornelli@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This is a first step for adding ECC support for pstore RAM backend: we
will use the persistent_ram routines, kindly provided by Google.
Basically, persistent_ram is a set of helper routines to deal with the
[optionally] ECC-protected persistent ram regions.
A bit of Makefile, Kconfig and header files adjustments were needed
because of the move.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Since ramoops was converted to pstore, it has nothing to do with character
devices nowadays. Instead, today it is just a RAM backend for pstore.
The patch just moves things around. There are a few changes were needed
because of the move:
1. Kconfig and Makefiles fixups, of course.
2. In pstore/ram.c we have to play a bit with MODULE_PARAM_PREFIX, this
is needed to keep user experience the same as with ramoops driver
(i.e. so that ramoops.foo kernel command line arguments would still
work).
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: Marco Stornelli <marco.stornelli@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|