| Age | Commit message (Collapse) | Author | Files | Lines |
|
commit f2d2f9598ebb0158a3fe17cda0106d7752e654a2 upstream.
Introduce and use {pgd,p4d}_populate_kernel() in core MM code when
populating PGD and P4D entries for the kernel address space. These
helpers ensure proper synchronization of page tables when updating the
kernel portion of top-level page tables.
Until now, the kernel has relied on each architecture to handle
synchronization of top-level page tables in an ad-hoc manner. For
example, see commit 9b861528a801 ("x86-64, mem: Update all PGDs for direct
mapping and vmemmap mapping changes").
However, this approach has proven fragile for following reasons:
1) It is easy to forget to perform the necessary page table
synchronization when introducing new changes.
For instance, commit 4917f55b4ef9 ("mm/sparse-vmemmap: improve memory
savings for compound devmaps") overlooked the need to synchronize
page tables for the vmemmap area.
2) It is also easy to overlook that the vmemmap and direct mapping areas
must not be accessed before explicit page table synchronization.
For example, commit 8d400913c231 ("x86/vmemmap: handle unpopulated
sub-pmd ranges")) caused crashes by accessing the vmemmap area
before calling sync_global_pgds().
To address this, as suggested by Dave Hansen, introduce _kernel() variants
of the page table population helpers, which invoke architecture-specific
hooks to properly synchronize page tables. These are introduced in a new
header file, include/linux/pgalloc.h, so they can be called from common
code.
They reuse existing infrastructure for vmalloc and ioremap.
Synchronization requirements are determined by ARCH_PAGE_TABLE_SYNC_MASK,
and the actual synchronization is performed by
arch_sync_kernel_mappings().
This change currently targets only x86_64, so only PGD and P4D level
helpers are introduced. Currently, these helpers are no-ops since no
architecture sets PGTBL_{PGD,P4D}_MODIFIED in ARCH_PAGE_TABLE_SYNC_MASK.
In theory, PUD and PMD level helpers can be added later if needed by other
architectures. For now, 32-bit architectures (x86-32 and arm) only handle
PGTBL_PMD_MODIFIED, so p*d_populate_kernel() will never affect them unless
we introduce a PMD level helper.
[harry.yoo@oracle.com: fix KASAN build error due to p*d_populate_kernel()]
Link: https://lkml.kernel.org/r/20250822020727.202749-1-harry.yoo@oracle.com
Link: https://lkml.kernel.org/r/20250818020206.4517-3-harry.yoo@oracle.com
Fixes: 8d400913c231 ("x86/vmemmap: handle unpopulated sub-pmd ranges")
Signed-off-by: Harry Yoo <harry.yoo@oracle.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Kiryl Shutsemau <kas@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: bibo mao <maobibo@loongson.cn>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Christoph Lameter (Ampere) <cl@gentwo.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Huth <thuth@redhat.com>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
[ Adjust context ]
Signed-off-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7cc183f2e67d19b03ee5c13a6664b8c6cc37ff9d upstream.
During our internal testing, we started observing intermittent boot
failures when the machine uses 4-level paging and has a large amount of
persistent memory:
BUG: unable to handle page fault for address: ffffe70000000034
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP NOPTI
RIP: 0010:__init_single_page+0x9/0x6d
Call Trace:
<TASK>
__init_zone_device_page+0x17/0x5d
memmap_init_zone_device+0x154/0x1bb
pagemap_range+0x2e0/0x40f
memremap_pages+0x10b/0x2f0
devm_memremap_pages+0x1e/0x60
dev_dax_probe+0xce/0x2ec [device_dax]
dax_bus_probe+0x6d/0xc9
[... snip ...]
</TASK>
It turns out that the kernel panics while initializing vmemmap (struct
page array) when the vmemmap region spans two PGD entries, because the new
PGD entry is only installed in init_mm.pgd, but not in the page tables of
other tasks.
And looking at __populate_section_memmap():
if (vmemmap_can_optimize(altmap, pgmap))
// does not sync top level page tables
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
else
// sync top level page tables in x86
r = vmemmap_populate(start, end, nid, altmap);
In the normal path, vmemmap_populate() in arch/x86/mm/init_64.c
synchronizes the top level page table (See commit 9b861528a801 ("x86-64,
mem: Update all PGDs for direct mapping and vmemmap mapping changes")) so
that all tasks in the system can see the new vmemmap area.
However, when vmemmap_can_optimize() returns true, the optimized path
skips synchronization of top-level page tables. This is because
vmemmap_populate_compound_pages() is implemented in core MM code, which
does not handle synchronization of the top-level page tables. Instead,
the core MM has historically relied on each architecture to perform this
synchronization manually.
We're not the first party to encounter a crash caused by not-sync'd top
level page tables: earlier this year, Gwan-gyeong Mun attempted to address
the issue [1] [2] after hitting a kernel panic when x86 code accessed the
vmemmap area before the corresponding top-level entries were synced. At
that time, the issue was believed to be triggered only when struct page
was enlarged for debugging purposes, and the patch did not get further
updates.
It turns out that current approach of relying on each arch to handle the
page table sync manually is fragile because 1) it's easy to forget to sync
the top level page table, and 2) it's also easy to overlook that the
kernel should not access the vmemmap and direct mapping areas before the
sync.
# The solution: Make page table sync more code robust and harder to miss
To address this, Dave Hansen suggested [3] [4] introducing
{pgd,p4d}_populate_kernel() for updating kernel portion of the page tables
and allow each architecture to explicitly perform synchronization when
installing top-level entries. With this approach, we no longer need to
worry about missing the sync step, reducing the risk of future
regressions.
The new interface reuses existing ARCH_PAGE_TABLE_SYNC_MASK,
PGTBL_P*D_MODIFIED and arch_sync_kernel_mappings() facility used by
vmalloc and ioremap to synchronize page tables.
pgd_populate_kernel() looks like this:
static inline void pgd_populate_kernel(unsigned long addr, pgd_t *pgd,
p4d_t *p4d)
{
pgd_populate(&init_mm, pgd, p4d);
if (ARCH_PAGE_TABLE_SYNC_MASK & PGTBL_PGD_MODIFIED)
arch_sync_kernel_mappings(addr, addr);
}
It is worth noting that vmalloc() and apply_to_range() carefully
synchronizes page tables by calling p*d_alloc_track() and
arch_sync_kernel_mappings(), and thus they are not affected by this patch
series.
This series was hugely inspired by Dave Hansen's suggestion and hence
added Suggested-by: Dave Hansen.
Cc stable because lack of this series opens the door to intermittent
boot failures.
This patch (of 3):
Move ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to
linux/pgtable.h so that they can be used outside of vmalloc and ioremap.
Link: https://lkml.kernel.org/r/20250818020206.4517-1-harry.yoo@oracle.com
Link: https://lkml.kernel.org/r/20250818020206.4517-2-harry.yoo@oracle.com
Link: https://lore.kernel.org/linux-mm/20250220064105.808339-1-gwan-gyeong.mun@intel.com [1]
Link: https://lore.kernel.org/linux-mm/20250311114420.240341-1-gwan-gyeong.mun@intel.com [2]
Link: https://lore.kernel.org/linux-mm/d1da214c-53d3-45ac-a8b6-51821c5416e4@intel.com [3]
Link: https://lore.kernel.org/linux-mm/4d800744-7b88-41aa-9979-b245e8bf794b@intel.com [4]
Fixes: 8d400913c231 ("x86/vmemmap: handle unpopulated sub-pmd ranges")
Signed-off-by: Harry Yoo <harry.yoo@oracle.com>
Acked-by: Kiryl Shutsemau <kas@kernel.org>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: bibo mao <maobibo@loongson.cn>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Christoph Lameter (Ampere) <cl@gentwo.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dev Jain <dev.jain@arm.com>
Cc: Dmitriy Vyukov <dvyukov@google.com>
Cc: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Huth <thuth@redhat.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 691ee97e1a9de0cdb3efb893c1f180e3f4a35e32 upstream.
Patch series "Fix lazy mmu mode", v2.
I'm planning to implement lazy mmu mode for arm64 to optimize vmalloc. As
part of that, I will extend lazy mmu mode to cover kernel mappings in
vmalloc table walkers. While lazy mmu mode is already used for kernel
mappings in a few places, this will extend it's use significantly.
Having reviewed the existing lazy mmu implementations in powerpc, sparc
and x86, it looks like there are a bunch of bugs, some of which may be
more likely to trigger once I extend the use of lazy mmu. So this series
attempts to clarify the requirements and fix all the bugs in advance of
that series. See patch #1 commit log for all the details.
This patch (of 5):
The docs, implementations and use of arch_[enter|leave]_lazy_mmu_mode() is
a bit of a mess (to put it politely). There are a number of issues
related to nesting of lazy mmu regions and confusion over whether the
task, when in a lazy mmu region, is preemptible or not. Fix all the
issues relating to the core-mm. Follow up commits will fix the
arch-specific implementations. 3 arches implement lazy mmu; powerpc,
sparc and x86.
When arch_[enter|leave]_lazy_mmu_mode() was first introduced by commit
6606c3e0da53 ("[PATCH] paravirt: lazy mmu mode hooks.patch"), it was
expected that lazy mmu regions would never nest and that the appropriate
page table lock(s) would be held while in the region, thus ensuring the
region is non-preemptible. Additionally lazy mmu regions were only used
during manipulation of user mappings.
Commit 38e0edb15bd0 ("mm/apply_to_range: call pte function with lazy
updates") started invoking the lazy mmu mode in apply_to_pte_range(),
which is used for both user and kernel mappings. For kernel mappings the
region is no longer protected by any lock so there is no longer any
guarantee about non-preemptibility. Additionally, for RT configs, the
holding the PTL only implies no CPU migration, it doesn't prevent
preemption.
Commit bcc6cc832573 ("mm: add default definition of set_ptes()") added
arch_[enter|leave]_lazy_mmu_mode() to the default implementation of
set_ptes(), used by x86. So after this commit, lazy mmu regions can be
nested. Additionally commit 1a10a44dfc1d ("sparc64: implement the new
page table range API") and commit 9fee28baa601 ("powerpc: implement the
new page table range API") did the same for the sparc and powerpc
set_ptes() overrides.
powerpc couldn't deal with preemption so avoids it in commit b9ef323ea168
("powerpc/64s: Disable preemption in hash lazy mmu mode"), which
explicitly disables preemption for the whole region in its implementation.
x86 can support preemption (or at least it could until it tried to add
support nesting; more on this below). Sparc looks to be totally broken in
the face of preemption, as far as I can tell.
powerpc can't deal with nesting, so avoids it in commit 47b8def9358c
("powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes"),
which removes the lazy mmu calls from its implementation of set_ptes().
x86 attempted to support nesting in commit 49147beb0ccb ("x86/xen: allow
nesting of same lazy mode") but as far as I can tell, this breaks its
support for preemption.
In short, it's all a mess; the semantics for
arch_[enter|leave]_lazy_mmu_mode() are not clearly defined and as a result
the implementations all have different expectations, sticking plasters and
bugs.
arm64 is aiming to start using these hooks, so let's clean everything up
before adding an arm64 implementation. Update the documentation to state
that lazy mmu regions can never be nested, must not be called in interrupt
context and preemption may or may not be enabled for the duration of the
region. And fix the generic implementation of set_ptes() to avoid
nesting.
arch-specific fixes to conform to the new spec will proceed this one.
These issues were spotted by code review and I have no evidence of issues
being reported in the wild.
Link: https://lkml.kernel.org/r/20250303141542.3371656-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20250303141542.3371656-2-ryan.roberts@arm.com
Fixes: bcc6cc832573 ("mm: add default definition of set_ptes()")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juegren Gross <jgross@suse.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit dc84bc2aba85a1508f04a936f9f9a15f64ebfb31 ]
If track_pfn_copy() fails, we already added the dst VMA to the maple
tree. As fork() fails, we'll cleanup the maple tree, and stumble over
the dst VMA for which we neither performed any reservation nor copied
any page tables.
Consequently untrack_pfn() will see VM_PAT and try obtaining the
PAT information from the page table -- which fails because the page
table was not copied.
The easiest fix would be to simply clear the VM_PAT flag of the dst VMA
if track_pfn_copy() fails. However, the whole thing is about "simply"
clearing the VM_PAT flag is shaky as well: if we passed track_pfn_copy()
and performed a reservation, but copying the page tables fails, we'll
simply clear the VM_PAT flag, not properly undoing the reservation ...
which is also wrong.
So let's fix it properly: set the VM_PAT flag only if the reservation
succeeded (leaving it clear initially), and undo the reservation if
anything goes wrong while copying the page tables: clearing the VM_PAT
flag after undoing the reservation.
Note that any copied page table entries will get zapped when the VMA will
get removed later, after copy_page_range() succeeded; as VM_PAT is not set
then, we won't try cleaning VM_PAT up once more and untrack_pfn() will be
happy. Note that leaving these page tables in place without a reservation
is not a problem, as we are aborting fork(); this process will never run.
A reproducer can trigger this usually at the first try:
https://gitlab.com/davidhildenbrand/scratchspace/-/raw/main/reproducers/pat_fork.c
WARNING: CPU: 26 PID: 11650 at arch/x86/mm/pat/memtype.c:983 get_pat_info+0xf6/0x110
Modules linked in: ...
CPU: 26 UID: 0 PID: 11650 Comm: repro3 Not tainted 6.12.0-rc5+ #92
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:get_pat_info+0xf6/0x110
...
Call Trace:
<TASK>
...
untrack_pfn+0x52/0x110
unmap_single_vma+0xa6/0xe0
unmap_vmas+0x105/0x1f0
exit_mmap+0xf6/0x460
__mmput+0x4b/0x120
copy_process+0x1bf6/0x2aa0
kernel_clone+0xab/0x440
__do_sys_clone+0x66/0x90
do_syscall_64+0x95/0x180
Likely this case was missed in:
d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
... and instead of undoing the reservation we simply cleared the VM_PAT flag.
Keep the documentation of these functions in include/linux/pgtable.h,
one place is more than sufficient -- we should clean that up for the other
functions like track_pfn_remap/untrack_pfn separately.
Fixes: d155df53f310 ("x86/mm/pat: clear VM_PAT if copy_p4d_range failed")
Fixes: 2ab640379a0a ("x86: PAT: hooks in generic vm code to help archs to track pfnmap regions - v3")
Reported-by: xingwei lee <xrivendell7@gmail.com>
Reported-by: yuxin wang <wang1315768607@163.com>
Reported-by: Marius Fleischer <fleischermarius@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/20250321112323.153741-1-david@redhat.com
Closes: https://lore.kernel.org/lkml/CABOYnLx_dnqzpCW99G81DmOr+2UzdmZMk=T3uxwNxwz+R1RAwg@mail.gmail.com/
Closes: https://lore.kernel.org/lkml/CAJg=8jwijTP5fre8woS4JVJQ8iUA6v+iNcsOgtj9Zfpc3obDOQ@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
There're:
- 8 archs (arc, arm64, include, mips, powerpc, s390, sh, x86) that
support pte_pgprot().
- 2 archs (x86, sparc) that support pmd_pgprot().
- 1 arch (x86) that support pud_pgprot().
Always define them to be used in generic code, and then we don't need to
fiddle with "#ifdef"s when doing so.
Link: https://lkml.kernel.org/r/20240826204353.2228736-9-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Introduce arch_check_zapped_pud() to sanity check shadow stack on PUD
zaps. It has the same logic as the PMD helper.
One thing to mention is, it might be a good idea to use page_table_check
in the future for trapping wrong setups of shadow stack pgtable entries
[1]. That is left for the future as a separate effort.
[1] https://lore.kernel.org/all/59d518698f664e07c036a5098833d7b56b953305.camel@intel.com
Link: https://lkml.kernel.org/r/20240812181225.1360970-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On powerpc 8xx, when a page is 8M size, the information is in the PMD
entry. So allow architectures to provide __pte_leaf_size() instead of
pte_leaf_size() and provide the PMD entry to that function.
When __pte_leaf_size() is not defined, define it as a pte_leaf_size() so
that architectures not interested in the PMD arguments are not impacted.
Only define a default pte_leaf_size() when __pte_leaf_size() is not
defined to make sure nobody adds new calls to pte_leaf_size() in the core.
Link: https://lkml.kernel.org/r/c7c008f0a314bf8029ad7288fdc908db1ec7e449.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Should do_swap_page() have the capability to directly map a large folio,
metadata restoration becomes necessary for a specified number of pages
denoted as nr. It's important to highlight that metadata restoration is
solely required by the SPARC platform, which, however, does not enable
THP_SWAP. Consequently, in the present kernel configuration, there exists
no practical scenario where users necessitate the restoration of nr
metadata. Platforms implementing THP_SWAP might invoke this function with
nr values exceeding 1, subsequent to do_swap_page() successfully mapping
an entire large folio. Nonetheless, their arch_do_swap_page_nr()
functions remain empty.
Link: https://lkml.kernel.org/r/20240529082824.150954-5-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chuanhua Han <hanchuanhua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's make update_mmu_tlb() simply a generic wrapper around
update_mmu_tlb_range(). Only the latter can now be overridden by the
architecture. We can now remove __HAVE_ARCH_UPDATE_MMU_TLB as well.
Link: https://lkml.kernel.org/r/20240522061204.117421-3-libang.li@antgroup.com
Signed-off-by: Bang Li <libang.li@antgroup.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Add update_mmu_tlb_range() to simplify code", v4.
This series of commits mainly adds the update_mmu_tlb_range() to batch
update tlb in an address range and implement update_mmu_tlb() using
update_mmu_tlb_range().
After commit 19eaf44954df ("mm: thp: support allocation of anonymous
multi-size THP"), We may need to batch update tlb of a certain address
range by calling update_mmu_tlb() in a loop. Using the
update_mmu_tlb_range(), we can simplify the code and possibly reduce the
execution of some unnecessary code in some architectures.
This patch (of 3):
Add update_mmu_tlb_range(), we can batch update tlb of an address range.
Link: https://lkml.kernel.org/r/20240522061204.117421-1-libang.li@antgroup.com
Link: https://lkml.kernel.org/r/20240522061204.117421-2-libang.li@antgroup.com
Signed-off-by: Bang Li <libang.li@antgroup.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free",
v10.
This patchset adds support for lazyfreeing multi-size THP (mTHP) without
needing to first split the large folio via split_folio(). However, we
still need to split a large folio that is not fully mapped within the
target range.
If a large folio is locked or shared, or if we fail to split it, we just
leave it in place and advance to the next PTE in the range. But note that
the behavior is changed; previously, any failure of this sort would cause
the entire operation to give up. As large folios become more common,
sticking to the old way could result in wasted opportunities.
Performance Testing
===================
On an Intel I5 CPU, lazyfreeing a 1GiB VMA backed by PTE-mapped folios of
the same size results in the following runtimes for madvise(MADV_FREE) in
seconds (shorter is better):
Folio Size | Old | New | Change
------------------------------------------
4KiB | 0.590251 | 0.590259 | 0%
16KiB | 2.990447 | 0.185655 | -94%
32KiB | 2.547831 | 0.104870 | -95%
64KiB | 2.457796 | 0.052812 | -97%
128KiB | 2.281034 | 0.032777 | -99%
256KiB | 2.230387 | 0.017496 | -99%
512KiB | 2.189106 | 0.010781 | -99%
1024KiB | 2.183949 | 0.007753 | -99%
2048KiB | 0.002799 | 0.002804 | 0%
This patch (of 4):
This commit introduces clear_young_dirty_ptes() to replace mkold_ptes().
By doing so, we can use the same function for both use cases
(madvise_pageout and madvise_free), and it also provides the flexibility
to only clear the dirty flag in the future if needed.
Link: https://lkml.kernel.org/r/20240418134435.6092-1-ioworker0@gmail.com
Link: https://lkml.kernel.org/r/20240418134435.6092-2-ioworker0@gmail.com
Signed-off-by: Lance Yang <ioworker0@gmail.com>
Suggested-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Jeff Xie <xiehuan09@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Rework madvise_cold_or_pageout_pte_range() to avoid splitting any large
folio that is fully and contiguously mapped in the pageout/cold vm range.
This change means that large folios will be maintained all the way to swap
storage. This both improves performance during swap-out, by eliding the
cost of splitting the folio, and sets us up nicely for maintaining the
large folio when it is swapped back in (to be covered in a separate
series).
Folios that are not fully mapped in the target range are still split, but
note that behavior is changed so that if the split fails for any reason
(folio locked, shared, etc) we now leave it as is and move to the next pte
in the range and continue work on the proceeding folios. Previously any
failure of this sort would cause the entire operation to give up and no
folios mapped at higher addresses were paged out or made cold. Given
large folios are becoming more common, this old behavior would have likely
lead to wasted opportunities.
While we are at it, change the code that clears young from the ptes to use
ptep_test_and_clear_young(), via the new mkold_ptes() batch helper
function. This is more efficent than get_and_clear/modify/set, especially
for contpte mappings on arm64, where the old approach would require
unfolding/refolding and the new approach can be done in place.
Link: https://lkml.kernel.org/r/20240408183946.2991168-8-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that we no longer have a convenient flag in the cluster to determine
if a folio is large, free_swap_and_cache() will take a reference and lock
a large folio much more often, which could lead to contention and (e.g.)
failure to split large folios, etc.
Let's solve that problem by batch freeing swap and cache with a new
function, free_swap_and_cache_nr(), to free a contiguous range of swap
entries together. This allows us to first drop a reference to each swap
slot before we try to release the cache folio. This means we only try to
release the folio once, only taking the reference and lock once - much
better than the previous 512 times for the 2M THP case.
Contiguous swap entries are gathered in zap_pte_range() and
madvise_free_pte_range() in a similar way to how present ptes are already
gathered in zap_pte_range().
While we are at it, let's simplify by converting the return type of both
functions to void. The return value was used only by zap_pte_range() to
print a bad pte, and was ignored by everyone else, so the extra reporting
wasn't exactly guaranteed. We will still get the warning with most of the
information from get_swap_device(). With the batch version, we wouldn't
know which pte was bad anyway so could print the wrong one.
[ryan.roberts@arm.com: fix a build warning on parisc]
Link: https://lkml.kernel.org/r/20240409111840.3173122-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240408183946.2991168-3-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Gao Xiang <xiang@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The "prot" parameter is unused, and using it instead of what's stored in
that particular PTE would very likely be wrong. Let's simply remove it.
Link: https://lkml.kernel.org/r/20240327143301.741807-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andreas Larsson <andreas@gaisler.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The comment in the code explains the reasons. We took a different
approach comparing to pmd_pfn() by providing a fallback function.
Another option is to provide some lower level config options (compare to
HUGETLB_PAGE or THP) to identify which layer an arch can support for such
huge mappings. However that can be an overkill.
[peterx@redhat.com: fix loongson defconfig]
Link: https://lkml.kernel.org/r/20240403013249.1418299-4-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240327152332.950956-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert directly from a pmd to a folio without going through another
representation first. For now this is just a slightly shorter way to
write it, but it might end up being more efficient later.
Link: https://lkml.kernel.org/r/20240326202833.523759-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit d0637c505f8a1 ("arm64: enable THP_SWAP for arm64") brings up
THP_SWAP on ARM64, but it doesn't enable THP_SWP on hardware with MTE as
the MTE code works with the assumption tags save/restore is always
handling a folio with only one page.
The limitation should be removed as more and more ARM64 SoCs have this
feature. Co-existence of MTE and THP_SWAP becomes more and more
important.
This patch makes MTE tags saving support large folios, then we don't need
to split large folios into base pages for swapping out on ARM64 SoCs with
MTE any more.
arch_prepare_to_swap() should take folio rather than page as parameter
because we support THP swap-out as a whole. It saves tags for all pages
in a large folio.
As now we are restoring tags based-on folio, in arch_swap_restore(), we
may increase some extra loops and early-exitings while refaulting a large
folio which is still in swapcache in do_swap_page(). In case a large
folio has nr pages, do_swap_page() will only set the PTE of the particular
page which is causing the page fault. Thus do_swap_page() runs nr times,
and each time, arch_swap_restore() will loop nr times for those subpages
in the folio. So right now the algorithmic complexity becomes O(nr^2).
Once we support mapping large folios in do_swap_page(), extra loops and
early-exitings will decrease while not being completely removed as a large
folio might get partially tagged in corner cases such as, 1. a large
folio in swapcache can be partially unmapped, thus, MTE tags for the
unmapped pages will be invalidated; 2. users might use mprotect() to set
MTEs on a part of a large folio.
arch_thp_swp_supported() is dropped since ARM64 MTE was the only one who
needed it.
Link: https://lkml.kernel.org/r/20240322114136.61386-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There's one small section already, but since we're going to remove
pXd_huge(), that comment may start to obsolete.
Rewrite that section with more information, hopefully with that the API is
crystal clear on what it implies.
Link: https://lkml.kernel.org/r/20240318200404.448346-15-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bjorn Andersson <andersson@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Fabio Estevam <festevam@denx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Konrad Dybcio <konrad.dybcio@linaro.org>
Cc: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Cc: Lucas Stach <l.stach@pengutronix.de>
Cc: Mark Salter <msalter@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Shawn Guo <shawnguo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The last architecture redefining pgd_offset_k() was IA64 and it was
removed by commit cf8e8658100d ("arch: Remove Itanium (IA-64)
architecture")
There is no need anymore to guard generic version of pgd_offset_k()
with #ifndef pgd_offset_k
Link: https://lkml.kernel.org/r/59d3f47d5615d18cca1986f269be2fcb3df34556.1710589838.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Even if pXd_leaf() API is defined globally, it's not clear on the retval,
and there are three types used (bool, int, unsigned log).
Always return a boolean for pXd_leaf() APIs.
Link: https://lkml.kernel.org/r/20240305043750.93762-11-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Some architectures (e.g. arm64) can tell from looking at a pte, if some
follow-on ptes also map contiguous physical memory with the same pgprot.
(for arm64, these are contpte mappings).
Take advantage of this knowledge to optimize folio_pte_batch() so that it
can skip these ptes when scanning to create a batch. By default, if an
arch does not opt-in, folio_pte_batch() returns a compile-time 1, so the
changes are optimized out and the behaviour is as before.
arm64 will opt-in to providing this hint in the next patch, which will
greatly reduce the cost of ptep_get() when scanning a range of contptes.
Link: https://lkml.kernel.org/r/20240215103205.2607016-16-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that the all architecture overrides of pte_next_pfn() have been
replaced with pte_advance_pfn(), we can simplify the definition of the
generic pte_next_pfn() macro so that it is unconditionally defined.
Link: https://lkml.kernel.org/r/20240215103205.2607016-7-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The goal is to be able to advance a PTE by an arbitrary number of PFNs.
So introduce a new API that takes a nr param. Define the default
implementation here and allow for architectures to override.
pte_next_pfn() becomes a wrapper around pte_advance_pfn().
Follow up commits will convert each overriding architecture's
pte_next_pfn() to pte_advance_pfn().
Link: https://lkml.kernel.org/r/20240215103205.2607016-4-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Transparent Contiguous PTEs for User Mappings", v6.
This is a series to opportunistically and transparently use contpte
mappings (set the contiguous bit in ptes) for user memory when those
mappings meet the requirements. The change benefits arm64, but there is
some (very) minor refactoring for x86 to enable its integration with
core-mm.
It is part of a wider effort to improve performance by allocating and
mapping variable-sized blocks of memory (folios). One aim is for the 4K
kernel to approach the performance of the 16K kernel, but without breaking
compatibility and without the associated increase in memory. Another aim
is to benefit the 16K and 64K kernels by enabling 2M THP, since this is
the contpte size for those kernels. We have good performance data that
demonstrates both aims are being met (see below).
Of course this is only one half of the change. We require the mapped
physical memory to be the correct size and alignment for this to actually
be useful (i.e. 64K for 4K pages, or 2M for 16K/64K pages). Fortunately
folios are solving this problem for us. Filesystems that support it (XFS,
AFS, EROFS, tmpfs, ...) will allocate large folios up to the PMD size
today, and more filesystems are coming. And for anonymous memory,
"multi-size THP" is now upstream.
Patch Layout
============
In this version, I've split the patches to better show each optimization:
- 1-2: mm prep: misc code and docs cleanups
- 3-6: mm,arm64,x86 prep: Add pte_advance_pfn() and make pte_next_pfn() a
generic wrapper around it
- 7-11: arm64 prep: Refactor ptep helpers into new layer
- 12: functional contpte implementation
- 23-18: various optimizations on top of the contpte implementation
Testing
=======
I've tested this series on both Ampere Altra (bare metal) and Apple M2 (VM):
- mm selftests (inc new tests written for multi-size THP); no regressions
- Speedometer Java script benchmark in Chromium web browser; no issues
- Kernel compilation; no issues
- Various tests under high memory pressure with swap enabled; no issues
Performance
===========
High Level Use Cases
~~~~~~~~~~~~~~~~~~~~
First some high level use cases (kernel compilation and speedometer JavaScript
benchmarks). These are running on Ampere Altra (I've seen similar improvements
on Android/Pixel 6).
baseline: mm-unstable (mTHP switched off)
mTHP: + enable 16K, 32K, 64K mTHP sizes "always"
mTHP + contpte: + this series
mTHP + contpte + exefolio: + patch at [6], which series supports
Kernel Compilation with -j8 (negative is faster):
| kernel | real-time | kern-time | user-time |
|---------------------------|-----------|-----------|-----------|
| baseline | 0.0% | 0.0% | 0.0% |
| mTHP | -5.0% | -39.1% | -0.7% |
| mTHP + contpte | -6.0% | -41.4% | -1.5% |
| mTHP + contpte + exefolio | -7.8% | -43.1% | -3.4% |
Kernel Compilation with -j80 (negative is faster):
| kernel | real-time | kern-time | user-time |
|---------------------------|-----------|-----------|-----------|
| baseline | 0.0% | 0.0% | 0.0% |
| mTHP | -5.0% | -36.6% | -0.6% |
| mTHP + contpte | -6.1% | -38.2% | -1.6% |
| mTHP + contpte + exefolio | -7.4% | -39.2% | -3.2% |
Speedometer (positive is faster):
| kernel | runs_per_min |
|:--------------------------|--------------|
| baseline | 0.0% |
| mTHP | 1.5% |
| mTHP + contpte | 3.2% |
| mTHP + contpte + exefolio | 4.5% |
Micro Benchmarks
~~~~~~~~~~~~~~~~
The following microbenchmarks are intended to demonstrate the performance of
fork() and munmap() do not regress. I'm showing results for order-0 (4K)
mappings, and for order-9 (2M) PTE-mapped THP. Thanks to David for sharing his
benchmarks.
baseline: mm-unstable + batch zap [7] series
contpte-basic: + patches 0-19; functional contpte implementation
contpte-batch: + patches 20-23; implement new batched APIs
contpte-inline: + patch 24; __always_inline to help compiler
contpte-fold: + patch 25; fold contpte mapping when sensible
Primary platform is Ampere Altra bare metal. I'm also showing results for M2 VM
(on top of MacOS) for reference, although experience suggests this might not be
the most reliable for performance numbers of this sort:
| FORK | order-0 | order-9 |
| Ampere Altra |------------------------|------------------------|
| (pte-map) | mean | stdev | mean | stdev |
|----------------|------------|-----------|------------|-----------|
| baseline | 0.0% | 2.7% | 0.0% | 0.2% |
| contpte-basic | 6.3% | 1.4% | 1948.7% | 0.2% |
| contpte-batch | 7.6% | 2.0% | -1.9% | 0.4% |
| contpte-inline | 3.6% | 1.5% | -1.0% | 0.2% |
| contpte-fold | 4.6% | 2.1% | -1.8% | 0.2% |
| MUNMAP | order-0 | order-9 |
| Ampere Altra |------------------------|------------------------|
| (pte-map) | mean | stdev | mean | stdev |
|----------------|------------|-----------|------------|-----------|
| baseline | 0.0% | 0.5% | 0.0% | 0.3% |
| contpte-basic | 1.8% | 0.3% | 1104.8% | 0.1% |
| contpte-batch | -0.3% | 0.4% | 2.7% | 0.1% |
| contpte-inline | -0.1% | 0.6% | 0.9% | 0.1% |
| contpte-fold | 0.1% | 0.6% | 0.8% | 0.1% |
| FORK | order-0 | order-9 |
| Apple M2 VM |------------------------|------------------------|
| (pte-map) | mean | stdev | mean | stdev |
|----------------|------------|-----------|------------|-----------|
| baseline | 0.0% | 1.4% | 0.0% | 0.8% |
| contpte-basic | 6.8% | 1.2% | 469.4% | 1.4% |
| contpte-batch | -7.7% | 2.0% | -8.9% | 0.7% |
| contpte-inline | -6.0% | 2.1% | -6.0% | 2.0% |
| contpte-fold | 5.9% | 1.4% | -6.4% | 1.4% |
| MUNMAP | order-0 | order-9 |
| Apple M2 VM |------------------------|------------------------|
| (pte-map) | mean | stdev | mean | stdev |
|----------------|------------|-----------|------------|-----------|
| baseline | 0.0% | 0.6% | 0.0% | 0.4% |
| contpte-basic | 1.6% | 0.6% | 233.6% | 0.7% |
| contpte-batch | 1.9% | 0.3% | -3.9% | 0.4% |
| contpte-inline | 2.2% | 0.8% | -1.6% | 0.9% |
| contpte-fold | 1.5% | 0.7% | -1.7% | 0.7% |
Misc
~~~~
John Hubbard at Nvidia has indicated dramatic 10x performance improvements
for some workloads at [8], when using 64K base page kernel.
[1] https://lore.kernel.org/linux-arm-kernel/20230622144210.2623299-1-ryan.roberts@arm.com/
[2] https://lore.kernel.org/linux-arm-kernel/20231115163018.1303287-1-ryan.roberts@arm.com/
[3] https://lore.kernel.org/linux-arm-kernel/20231204105440.61448-1-ryan.roberts@arm.com/
[4] https://lore.kernel.org/lkml/20231218105100.172635-1-ryan.roberts@arm.com/
[5] https://lore.kernel.org/linux-mm/633af0a7-0823-424f-b6ef-374d99483f05@arm.com/
[6] https://lore.kernel.org/lkml/08c16f7d-f3b3-4f22-9acc-da943f647dc3@arm.com/
[7] https://lore.kernel.org/linux-mm/20240214204435.167852-1-david@redhat.com/
[8] https://lore.kernel.org/linux-mm/c507308d-bdd4-5f9e-d4ff-e96e4520be85@nvidia.com/
[9] https://gitlab.arm.com/linux-arm/linux-rr/-/tree/features/granule_perf/contpte-lkml_v6
This patch (of 18):
set_ptes() spec implies that it can only be used to set a present pte
because it interprets the PFN field to increment it. However,
set_pte_at() has been implemented on top of set_ptes() since set_ptes()
was introduced, and set_pte_at() allows setting a pte to a not-present
state. So clarify the spec to state that when nr==1, new state of pte may
be present or not present. When nr>1, new state of all ptes must be
present.
While we are at it, tighten the spec to set requirements around the
initial state of ptes; when nr==1 it may be either present or not-present.
But when nr>1 all ptes must initially be not-present. All set_ptes()
callsites already conform to this requirement. Stating it explicitly is
useful because it allows for a simplification to the upcoming arm64
contpte implementation.
Link: https://lkml.kernel.org/r/20240215103205.2607016-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20240215103205.2607016-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Similar to how we optimized fork(), let's implement PTE batching when
consecutive (present) PTEs map consecutive pages of the same large folio.
Most infrastructure we need for batching (mmu gather, rmap) is already
there. We only have to add get_and_clear_full_ptes() and
clear_full_ptes(). Similarly, extend zap_install_uffd_wp_if_needed() to
process a PTE range.
We won't bother sanity-checking the mapcount of all subpages, but only
check the mapcount of the first subpage we process. If there is a real
problem hiding somewhere, we can trigger it simply by using small folios,
or when we zap single pages of a large folio. Ideally, we had that check
in rmap code (including for delayed rmap), but then we cannot print the
PTE. Let's keep it simple for now. If we ever have a cheap
folio_mapcount(), we might just want to check for underflows there.
To keep small folios as fast as possible force inlining of a specialized
variant using __always_inline with nr=1.
Link: https://lkml.kernel.org/r/20240214204435.167852-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yin Fengwei <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's implement PTE batching when consecutive (present) PTEs map
consecutive pages of the same large folio, and all other PTE bits besides
the PFNs are equal.
We will optimize folio_pte_batch() separately, to ignore selected PTE
bits. This patch is based on work by Ryan Roberts.
Use __always_inline for __copy_present_ptes() and keep the handling for
single PTEs completely separate from the multi-PTE case: we really want
the compiler to optimize for the single-PTE case with small folios, to not
degrade performance.
Note that PTE batching will never exceed a single page table and will
always stay within VMA boundaries.
Further, processing PTE-mapped THP that maybe pinned and have
PageAnonExclusive set on at least one subpage should work as expected, but
there is room for improvement: We will repeatedly (1) detect a PTE batch
(2) detect that we have to copy a page (3) fall back and allocate a single
page to copy a single page. For now we won't care as pinned pages are a
corner case, and we should rather look into maintaining only a single
PageAnonExclusive bit for large folios.
Link: https://lkml.kernel.org/r/20240129124649.189745-14-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's provide pte_next_pfn(), independently of set_ptes(). This allows
for using the generic pte_next_pfn() version in some arch-specific
set_ptes() implementations, and prepares for reusing pte_next_pfn() in
other context.
Link: https://lkml.kernel.org/r/20240129124649.189745-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Russell King (Oracle) <linux@armlinux.org.uk>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V updates from Palmer Dabbelt:
- Support for many new extensions in hwprobe, along with a handful of
cleanups
- Various cleanups to our page table handling code, so we alwayse use
{READ,WRITE}_ONCE
- Support for the which-cpus flavor of hwprobe
- Support for XIP kernels has been resurrected
* tag 'riscv-for-linus-6.8-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (52 commits)
riscv: hwprobe: export Zicond extension
riscv: hwprobe: export Zacas ISA extension
riscv: add ISA extension parsing for Zacas
dt-bindings: riscv: add Zacas ISA extension description
riscv: hwprobe: export Ztso ISA extension
riscv: add ISA extension parsing for Ztso
use linux/export.h rather than asm-generic/export.h
riscv: Remove SHADOW_OVERFLOW_STACK_SIZE macro
riscv; fix __user annotation in save_v_state()
riscv: fix __user annotation in traps_misaligned.c
riscv: Select ARCH_WANTS_NO_INSTR
riscv: Remove obsolete rv32_defconfig file
riscv: Allow disabling of BUILTIN_DTB for XIP
riscv: Fixed wrong register in XIP_FIXUP_FLASH_OFFSET macro
riscv: Make XIP bootable again
riscv: Fix set_direct_map_default_noflush() to reset _PAGE_EXEC
riscv: Fix module_alloc() that did not reset the linear mapping permissions
riscv: Fix wrong usage of lm_alias() when splitting a huge linear mapping
riscv: Check if the code to patch lies in the exit section
riscv: Use the same CPU operations for all CPUs
...
|
|
Add dummy pmd_dirty() for architectures that don't provide it.
This is similar to commit 6617da8fb565 ("mm: add dummy pmd_young()
for architectures not having it").
Link: https://lkml.kernel.org/r/20231227141205.2200125-5-kinseyho@google.com
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202312210606.1Etqz3M4-lkp@intel.com/
Closes: https://lore.kernel.org/oe-kbuild-all/202312210042.xQEiqlEh-lkp@intel.com/
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Suggested-by: Yu Zhao <yuzhao@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Donet Tom <donettom@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/mglru: Kconfig cleanup", v4.
This series is the result of the following discussion:
https://lore.kernel.org/47066176-bd93-55dd-c2fa-002299d9e034@linux.ibm.com/
It mainly avoids building the code that walks page tables on CPUs that
use it, i.e., those don't support hardware accessed bit. Specifically,
it introduces a new Kconfig to guard some of functions added by
commit bd74fdaea146 ("mm: multi-gen LRU: support page table walks")
on CPUs like POWER9, on which the series was tested.
This patch (of 5):
Some architectures are able to set the accessed bit in PTEs when PTEs
are used as part of linear address translations.
Add CONFIG_ARCH_HAS_HW_PTE_YOUNG for such architectures to be able to
override arch_has_hw_pte_young().
Link: https://lkml.kernel.org/r/20231227141205.2200125-1-kinseyho@google.com
Link: https://lkml.kernel.org/r/20231227141205.2200125-2-kinseyho@google.com
Signed-off-by: Kinsey Ho <kinseyho@google.com>
Co-developed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Tested-by: Donet Tom <donettom@linux.vnet.ibm.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Instead of directly dereferencing page tables entries, which can cause
issues (see commit 20a004e7b017 ("arm64: mm: Use READ_ONCE/WRITE_ONCE when
accessing page tables"), let's introduce new functions to get the
pud/p4d/pgd entries (the pte and pmd versions already exist).
Note that arm pgd_t is actually an array so pgdp_get() is defined as a
macro to avoid a build error.
Those new functions will be used in subsequent commits by the riscv
architecture.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20231213203001.179237-3-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
In order to fix the L1TF vulnerability, x86 can invert the PTE bits for
PROT_NONE VMAs, which means we cannot move from one PTE to the next by
adding 1 to the PFN field of the PTE. This results in the BUG reported at
[1].
Abstract advancing the PTE to the next PFN through a pte_next_pfn()
function/macro.
Link: https://lkml.kernel.org/r/20230920040958.866520-1-willy@infradead.org
Fixes: bcc6cc832573 ("mm: add default definition of set_ptes()")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: syzbot+55cc72f8cc3a549119df@syzkaller.appspotmail.com
Closes: https://lkml.kernel.org/r/000000000000d099fa0604f03351@google.com [1]
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 shadow stack support from Dave Hansen:
"This is the long awaited x86 shadow stack support, part of Intel's
Control-flow Enforcement Technology (CET).
CET consists of two related security features: shadow stacks and
indirect branch tracking. This series implements just the shadow stack
part of this feature, and just for userspace.
The main use case for shadow stack is providing protection against
return oriented programming attacks. It works by maintaining a
secondary (shadow) stack using a special memory type that has
protections against modification. When executing a CALL instruction,
the processor pushes the return address to both the normal stack and
to the special permission shadow stack. Upon RET, the processor pops
the shadow stack copy and compares it to the normal stack copy.
For more information, refer to the links below for the earlier
versions of this patch set"
Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/
* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
x86/shstk: Change order of __user in type
x86/ibt: Convert IBT selftest to asm
x86/shstk: Don't retry vm_munmap() on -EINTR
x86/kbuild: Fix Documentation/ reference
x86/shstk: Move arch detail comment out of core mm
x86/shstk: Add ARCH_SHSTK_STATUS
x86/shstk: Add ARCH_SHSTK_UNLOCK
x86: Add PTRACE interface for shadow stack
selftests/x86: Add shadow stack test
x86/cpufeatures: Enable CET CR4 bit for shadow stack
x86/shstk: Wire in shadow stack interface
x86: Expose thread features in /proc/$PID/status
x86/shstk: Support WRSS for userspace
x86/shstk: Introduce map_shadow_stack syscall
x86/shstk: Check that signal frame is shadow stack mem
x86/shstk: Check that SSP is aligned on sigreturn
x86/shstk: Handle signals for shadow stack
x86/shstk: Introduce routines modifying shstk
x86/shstk: Handle thread shadow stack
x86/shstk: Add user-mode shadow stack support
...
|
|
Patch series "Change calling convention for ->huge_fault", v2.
There are two unrelated changes to the calling convention for
->huge_fault. I've bundled them together to help people notice the
change. The first is to improve scalability of DAX page faults by
allowing them to be handled under the VMA lock. The second is to remove
enum page_entry_size since it's really unnecessary. The changelogs and
documentation updates hopefully work to that end.
This patch (of 3):
Allow this to be used in generic code. Also add PUD_ORDER.
Link: https://lkml.kernel.org/r/20230818202335.2739663-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230818202335.2739663-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since pte_index is always defined, we don't need to check whether it's
defined or not. Delete the slow version that doesn't depend on it and
remove the #define since nobody needs to test for it.
Link: https://lkml.kernel.org/r/20230819031837.3160096-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Christian Dietrich <stettberger@dokucode.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that all architectures are converted, we can remove the PFN_PTE_SHIFT
ifdef and we can define set_pte_at() unconditionally.
Link: https://lkml.kernel.org/r/20230802151406.3735276-33-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Most architectures can just define set_pte() and PFN_PTE_SHIFT to use this
definition. It's also a handy spot to document the guarantees provided by
the MM.
Link: https://lkml.kernel.org/r/20230802151406.3735276-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Suggested-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Especially the "For PROT_NONE VMAs, the PTEs are not marked
_PAGE_PROTNONE" part is wrong: doing an mprotect(PROT_NONE) will end up
marking all PTEs on x86_64 as _PAGE_PROTNONE, making pte_protnone()
indicate "yes".
So let's improve the comment, so it's easier to grasp which semantics
pte_protnone() actually has.
Link: https://lkml.kernel.org/r/20230803143208.383663-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: liubo <liubo254@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect and move_huge_pud helpers are only used when
CONFIG_TRANSPARENT_HUGEPAGE is enabled. Similar to pmdp_set_wrprotect and
move_huge_pmd_helpers use architecture override only if
CONFIG_TRANSPARENT_HUGEPAGE is set
Link: https://lkml.kernel.org/r/20230724190759.483013-7-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This helps architectures to override pmd_same and pud_same independently.
Link: https://lkml.kernel.org/r/20230724190759.483013-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We will use this in a later patch to do tlb flush when clearing pud
entries on powerpc. This is similar to commit 93a98695f2f9 ("mm: change
pmdp_huge_get_and_clear_full take vm_area_struct as arg")
Link: https://lkml.kernel.org/r/20230724190759.483013-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
support
Patch series "Add support for DAX vmemmap optimization for ppc64", v6.
This patch series implements changes required to support DAX vmemmap
optimization for ppc64. The vmemmap optimization is only enabled with
radix MMU translation and 1GB PUD mapping with 64K page size.
The patch series also splits the hugetlb vmemmap optimization as a
separate Kconfig variable so that architectures can enable DAX vmemmap
optimization without enabling hugetlb vmemmap optimization. This should
enable architectures like arm64 to enable DAX vmemmap optimization while
they can't enable hugetlb vmemmap optimization. More details of the same
are in patch "mm/vmemmap optimization: Split hugetlb and devdax vmemmap
optimization".
With 64K page size for 16384 pages added (1G) we save 14 pages
With 4K page size for 262144 pages added (1G) we save 4094 pages
With 4K page size for 512 pages added (2M) we save 6 pages
This patch (of 13):
Architectures like powerpc would like to enable transparent huge page pud
support only with radix translation. To support that add
has_transparent_pud_hugepage() helper that architectures can override.
[aneesh.kumar@linux.ibm.com: use the new has_transparent_pud_hugepage()]
Link: https://lkml.kernel.org/r/87tttrvtaj.fsf@linux.ibm.com
Link: https://lkml.kernel.org/r/20230724190759.483013-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20230724190759.483013-2-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in __page_table_check_pud_clear and
page_table_check_pud_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in page_table_check_pmd_clear and
__page_table_check_pmd_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove unused addr in page_table_check_pte_clear and
__page_table_check_pte_clear.
Link: https://lkml.kernel.org/r/20230713172636.1705415-4-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add the generic pte_free_defer(), to call pte_free() via call_rcu().
pte_free_defer() will be called inside khugepaged's retract_page_tables()
loop, where allocating extra memory cannot be relied upon. This version
suits all those architectures which use an unfragmented page for one page
table (none of whose pte_free()s use the mm arg which was passed to it).
Link: https://lkml.kernel.org/r/78e921b0-b681-a1b0-dc20-44c9efa4ef3c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There is a faint risk that __pte_offset_map(), on a 32-bit architecture
with a 64-bit pmd_t e.g. x86-32 with CONFIG_X86_PAE=y, would succeed on a
pmdval assembled from a pmd_low and a pmd_high which never belonged
together: their combination not pointing to a page table at all, perhaps
not even a valid pfn. pmdp_get_lockless() is not enough to prevent that.
Guard against that (on such configs) by local_irq_save() blocking TLB
flush between present updates, as linux/pgtable.h suggests. It's only
needed around the pmdp_get_lockless() in __pte_offset_map(): a race when
__pte_offset_map_lock() repeats the pmdp_get_lockless() after getting the
lock, would just send it back to __pte_offset_map() again.
Complement this pmdp_get_lockless_start() and pmdp_get_lockless_end(),
used only locally in __pte_offset_map(), with a pmdp_get_lockless_sync()
synonym for tlb_remove_table_sync_one(): to send the necessary interrupt
at the right moment on those configs which do not already send it.
CONFIG_GUP_GET_PXX_LOW_HIGH is enabled when required by mips, sh and x86.
It is not enabled by arm-32 CONFIG_ARM_LPAE: my understanding is that Will
Deacon's 2020 enhancements to READ_ONCE() are sufficient for arm. It is
not enabled by arc, but its pmd_t is 32-bit even when pte_t 64-bit.
Limit the IRQ disablement to CONFIG_HIGHPTE? Perhaps, but would need a
little more work, to retry if pmd_low good for page table, but pmd_high
non-zero from THP (and that might be making x86-specific assumptions).
Link: https://lkml.kernel.org/r/3adcd8f-9191-2df1-d7ea-c4877698aad@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: free retracted page table by RCU", v3.
Some mmap_lock avoidance i.e. latency reduction. Initially just for the
case of collapsing shmem or file pages to THPs: the usefulness of
MADV_COLLAPSE on shmem is being limited by that mmap_write_lock it
currently requires.
Likely to be relied upon later in other contexts e.g. freeing of empty
page tables (but that's not work I'm doing). mmap_write_lock avoidance
when collapsing to anon THPs? Perhaps, but again that's not work I've
done: a quick attempt was not as easy as the shmem/file case.
These changes (though of course not these exact patches) have been in
Google's data centre kernel for three years now: we do rely upon them.
This patch (of 13):
Before putting them to use (several commits later), add rcu_read_lock() to
pte_offset_map(), and rcu_read_unlock() to pte_unmap(). Make this a
separate commit, since it risks exposing imbalances: prior commits have
fixed all the known imbalances, but we may find some have been missed.
Link: https://lkml.kernel.org/r/7cd843a9-aa80-14f-5eb2-33427363c20@google.com
Link: https://lkml.kernel.org/r/d3b01da5-2a6-833c-6681-67a3e024a16f@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which requires some core mm changes to function
properly.
One sharp edge is that PTEs that are both Write=0 and Dirty=1 are
treated as shadow by the CPU, but this combination used to be created by
the kernel on x86. Previous patches have changed the kernel to now avoid
creating these PTEs unless they are for shadow stack memory. In case any
missed corners of the kernel are still creating PTEs like this for
non-shadow stack memory, and to catch any re-introductions of the logic,
warn if any shadow stack PTEs (Write=0, Dirty=1) are found in non-shadow
stack VMAs when they are being zapped. This won't catch transient cases
but should have decent coverage.
In order to check if a PTE is shadow stack in core mm code, add two arch
breakouts arch_check_zapped_pte/pmd(). This will allow shadow stack
specific code to be kept in arch/x86.
Only do the check if shadow stack is supported by the CPU and configured
because in rare cases older CPUs may write Dirty=1 to a Write=0 CPU on
older CPUs. This check is handled in pte_shstk()/pmd_shstk().
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-18-rick.p.edgecombe%40intel.com
|
|
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). Future patches will make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Previous work pte_mkwrite() renamed pte_mkwrite_novma() and converted
callers that don't have a VMA were to use pte_mkwrite_novma(). So now
change pte_mkwrite() to take a VMA and change the remaining callers to
pass a VMA. Apply the same changes for pmd_mkwrite().
No functional change.
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/all/20230613001108.3040476-4-rick.p.edgecombe%40intel.com
|