summaryrefslogtreecommitdiff
path: root/include/linux/page-flags.h
AgeCommit message (Collapse)AuthorFilesLines
2012-12-27mm: Fix PageHead when !CONFIG_PAGEFLAGS_EXTENDEDChristoffer Dall1-1/+7
Unfortunately with !CONFIG_PAGEFLAGS_EXTENDED, (!PageHead) is false, and (PageHead) is true, for tail pages. If this is indeed the intended behavior, which I doubt because it breaks cache cleaning on some ARM systems, then the nomenclature is highly problematic. This patch makes sure PageHead is only true for head pages and PageTail is only true for tail pages, and neither is true for non-compound pages. [ This buglet seems ancient - seems to have been introduced back in Apr 2008 in commit 6a1e7f777f61: "pageflags: convert to the use of new macros". And the reason nobody noticed is because the PageHead() tests are almost all about just sanity-checking, and only used on pages that are actual page heads. The fact that the old code returned true for tail pages too was thus not really noticeable. - Linus ] Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Will Deacon <Will.Deacon@arm.com> Cc: Steve Capper <Steve.Capper@arm.com> Cc: Christoph Lameter <cl@linux.com> Cc: stable@kernel.org # 2.6.26+ Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-01mm: sl[au]b: add knowledge of PFMEMALLOC reserve pagesMel Gorman1-0/+29
When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. Swap over the network is considered as an option in diskless systems. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap according to the manual at https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download There is also documentation and tutorials on how to setup swap over NBD at places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The nbd-client also documents the use of NBD as swap. Despite this, the fact is that a machine using NBD for swap can deadlock within minutes if swap is used intensively. This patch series addresses the problem. The core issue is that network block devices do not use mempools like normal block devices do. As the host cannot control where they receive packets from, they cannot reliably work out in advance how much memory they might need. Some years ago, Peter Zijlstra developed a series of patches that supported swap over an NFS that at least one distribution is carrying within their kernels. This patch series borrows very heavily from Peter's work to support swapping over NBD as a pre-requisite to supporting swap-over-NFS. The bulk of the complexity is concerned with preserving memory that is allocated from the PFMEMALLOC reserves for use by the network layer which is needed for both NBD and NFS. Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to preserve access to pages allocated under low memory situations to callers that are freeing memory. Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC reserves without setting PFMEMALLOC. Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves for later use by network packet processing. Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set. Patches 7-12 allows network processing to use PFMEMALLOC reserves when the socket has been marked as being used by the VM to clean pages. If packets are received and stored in pages that were allocated under low-memory situations and are unrelated to the VM, the packets are dropped. Patch 11 reintroduces __skb_alloc_page which the networking folk may object to but is needed in some cases to propogate pfmemalloc from a newly allocated page to an skb. If there is a strong objection, this patch can be dropped with the impact being that swap-over-network will be slower in some cases but it should not fail. Patch 13 is a micro-optimisation to avoid a function call in the common case. Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use PFMEMALLOC if necessary. Patch 15 notes that it is still possible for the PFMEMALLOC reserve to be depleted. To prevent this, direct reclaimers get throttled on a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is expected that kswapd and the direct reclaimers already running will clean enough pages for the low watermark to be reached and the throttled processes are woken up. Patch 16 adds a statistic to track how often processes get throttled Some basic performance testing was run using kernel builds, netperf on loopback for UDP and TCP, hackbench (pipes and sockets), iozone and sysbench. Each of them were expected to use the sl*b allocators reasonably heavily but there did not appear to be significant performance variances. For testing swap-over-NBD, a machine was booted with 2G of RAM with a swapfile backed by NBD. 8*NUM_CPU processes were started that create anonymous memory mappings and read them linearly in a loop. The total size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under memory pressure. Without the patches and using SLUB, the machine locks up within minutes and runs to completion with them applied. With SLAB, the story is different as an unpatched kernel run to completion. However, the patched kernel completed the test 45% faster. MICRO 3.5.0-rc2 3.5.0-rc2 vanilla swapnbd Unrecognised test vmscan-anon-mmap-write MMTests Statistics: duration Sys Time Running Test (seconds) 197.80 173.07 User+Sys Time Running Test (seconds) 206.96 182.03 Total Elapsed Time (seconds) 3240.70 1762.09 This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages Allocations of pages below the min watermark run a risk of the machine hanging due to a lack of memory. To prevent this, only callers who have PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to a slab though, nothing prevents other callers consuming free objects within those slabs. This patch limits access to slab pages that were alloced from the PFMEMALLOC reserves. When this patch is applied, pages allocated from below the low watermark are returned with page->pfmemalloc set and it is up to the caller to determine how the page should be protected. SLAB restricts access to any page with page->pfmemalloc set to callers which are known to able to access the PFMEMALLOC reserve. If one is not available, an attempt is made to allocate a new page rather than use a reserve. SLUB is a bit more relaxed in that it only records if the current per-CPU page was allocated from PFMEMALLOC reserve and uses another partial slab if the caller does not have the necessary GFP or process flags. This was found to be sufficient in tests to avoid hangs due to SLUB generally maintaining smaller lists than SLAB. In low-memory conditions it does mean that !PFMEMALLOC allocators can fail a slab allocation even though free objects are available because they are being preserved for callers that are freeing pages. [a.p.zijlstra@chello.nl: Original implementation] [sebastian@breakpoint.cc: Correct order of page flag clearing] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-24Merge tag 'bug-for-3.4' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux Pull <linux/bug.h> cleanup from Paul Gortmaker: "The changes shown here are to unify linux's BUG support under the one <linux/bug.h> file. Due to historical reasons, we have some BUG code in bug.h and some in kernel.h -- i.e. the support for BUILD_BUG in linux/kernel.h predates the addition of linux/bug.h, but old code in kernel.h wasn't moved to bug.h at that time. As a band-aid, kernel.h was including <asm/bug.h> to pseudo link them. This has caused confusion[1] and general yuck/WTF[2] reactions. Here is an example that violates the principle of least surprise: CC lib/string.o lib/string.c: In function 'strlcat': lib/string.c:225:2: error: implicit declaration of function 'BUILD_BUG_ON' make[2]: *** [lib/string.o] Error 1 $ $ grep linux/bug.h lib/string.c #include <linux/bug.h> $ We've included <linux/bug.h> for the BUG infrastructure and yet we still get a compile fail! [We've not kernel.h for BUILD_BUG_ON.] Ugh - very confusing for someone who is new to kernel development. With the above in mind, the goals of this changeset are: 1) find and fix any include/*.h files that were relying on the implicit presence of BUG code. 2) find and fix any C files that were consuming kernel.h and hence relying on implicitly getting some/all BUG code. 3) Move the BUG related code living in kernel.h to <linux/bug.h> 4) remove the asm/bug.h from kernel.h to finally break the chain. During development, the order was more like 3-4, build-test, 1-2. But to ensure that git history for bisect doesn't get needless build failures introduced, the commits have been reorderd to fix the problem areas in advance. [1] https://lkml.org/lkml/2012/1/3/90 [2] https://lkml.org/lkml/2012/1/17/414" Fix up conflicts (new radeon file, reiserfs header cleanups) as per Paul and linux-next. * tag 'bug-for-3.4' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: kernel.h: doesn't explicitly use bug.h, so don't include it. bug: consolidate BUILD_BUG_ON with other bug code BUG: headers with BUG/BUG_ON etc. need linux/bug.h bug.h: add include of it to various implicit C users lib: fix implicit users of kernel.h for TAINT_WARN spinlock: macroize assert_spin_locked to avoid bug.h dependency x86: relocate get/set debugreg fcns to include/asm/debugreg.
2012-03-22thp: allow a hwpoisoned head page to be put back to LRUDean Nelson1-0/+20
Andrea Arcangeli pointed out to me that a check in __memory_failure() which was intended to prevent THP tail pages from being checked for the absence of the PG_lru flag (something that is always the case), was also preventing THP head pages from being checked. A THP head page could actually benefit from the call to shake_page() by ending up being put back to a LRU, provided it had been waiting in a pagevec array. Andrea suggested that the "!PageTransCompound(p)" in the if-statement should be replaced by a "!PageTransTail(p)", thus allowing THP head pages to be checked and possibly shaken. Signed-off-by: Dean Nelson <dnelson@redhat.com> Cc: Jin Dongming <jin.dongming@np.css.fujitsu.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-05BUG: headers with BUG/BUG_ON etc. need linux/bug.hPaul Gortmaker1-0/+1
If a header file is making use of BUG, BUG_ON, BUILD_BUG_ON, or any other BUG variant in a static inline (i.e. not in a #define) then that header really should be including <linux/bug.h> and not just expecting it to be implicitly present. We can make this change risk-free, since if the files using these headers didn't have exposure to linux/bug.h already, they would have been causing compile failures/warnings. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-07-30Merge branch 'slub/lockless' of ↵Linus Torvalds1-5/+0
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6 * 'slub/lockless' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6: (21 commits) slub: When allocating a new slab also prep the first object slub: disable interrupts in cmpxchg_double_slab when falling back to pagelock Avoid duplicate _count variables in page_struct Revert "SLUB: Fix build breakage in linux/mm_types.h" SLUB: Fix build breakage in linux/mm_types.h slub: slabinfo update for cmpxchg handling slub: Not necessary to check for empty slab on load_freelist slub: fast release on full slab slub: Add statistics for the case that the current slab does not match the node slub: Get rid of the another_slab label slub: Avoid disabling interrupts in free slowpath slub: Disable interrupts in free_debug processing slub: Invert locking and avoid slab lock slub: Rework allocator fastpaths slub: Pass kmem_cache struct to lock and freeze slab slub: explicit list_lock taking slub: Add cmpxchg_double_slab() mm: Rearrange struct page slub: Move page->frozen handling near where the page->freelist handling occurs slub: Do not use frozen page flag but a bit in the page counters ...
2011-07-26mm: use const struct page for r/o page-flag accessor methodsIan Campbell1-2/+2
In a subsquent patch I have a const struct page in my hand... [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Ian Campbell <ian.campbell@citrix.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-02slub: Do not use frozen page flag but a bit in the page countersChristoph Lameter1-5/+0
Do not use a page flag for the frozen bit. It needs to be part of the state that is handled with cmpxchg_double(). So use a bit in the counter struct in the page struct for that purpose. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2011-05-29[S390] mm: fix storage key handlingHeiko Carstens1-1/+1
page_get_storage_key() and page_set_storage_key() expect a page address and not its page frame number. This got inconsistent with 2d42552d "[S390] merge page_test_dirty and page_clear_dirty". Result is that we read/write storage keys from random pages and do not have a working dirty bit tracking at all. E.g. SetPageUpdate() doesn't clear the dirty bit of requested pages, which for example ext4 doesn't like very much and panics after a while. Unable to handle kernel paging request at virtual user address (null) Oops: 0004 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: CPU: 1 Not tainted 2.6.39-07551-g139f37f-dirty #152 Process flush-94:0 (pid: 1576, task: 000000003eb34538, ksp: 000000003c287b70) Krnl PSW : 0704c00180000000 0000000000316b12 (jbd2_journal_file_inode+0x10e/0x138) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:0 PM:0 EA:3 Krnl GPRS: 0000000000000000 0000000000000000 0000000000000000 0700000000000000 0000000000316a62 000000003eb34cd0 0000000000000025 000000003c287b88 0000000000000001 000000003c287a70 000000003f1ec678 000000003f1ec000 0000000000000000 000000003e66ec00 0000000000316a62 000000003c287988 Krnl Code: 0000000000316b04: f0a0000407f4 srp 4(11,%r0),2036,0 0000000000316b0a: b9020022 ltgr %r2,%r2 0000000000316b0e: a7740015 brc 7,316b38 >0000000000316b12: e3d0c0000024 stg %r13,0(%r12) 0000000000316b18: 4120c010 la %r2,16(%r12) 0000000000316b1c: 4130d060 la %r3,96(%r13) 0000000000316b20: e340d0600004 lg %r4,96(%r13) 0000000000316b26: c0e50002b567 brasl %r14,36d5f4 Call Trace: ([<0000000000316a62>] jbd2_journal_file_inode+0x5e/0x138) [<00000000002da13c>] mpage_da_map_and_submit+0x2e8/0x42c [<00000000002daac2>] ext4_da_writepages+0x2da/0x504 [<00000000002597e8>] writeback_single_inode+0xf8/0x268 [<0000000000259f06>] writeback_sb_inodes+0xd2/0x18c [<000000000025a700>] writeback_inodes_wb+0x80/0x168 [<000000000025aa92>] wb_writeback+0x2aa/0x324 [<000000000025abde>] wb_do_writeback+0xd2/0x274 [<000000000025ae3a>] bdi_writeback_thread+0xba/0x1c4 [<00000000001737be>] kthread+0xa6/0xb0 [<000000000056c1da>] kernel_thread_starter+0x6/0xc [<000000000056c1d4>] kernel_thread_starter+0x0/0xc INFO: lockdep is turned off. Last Breaking-Event-Address: [<0000000000316a8a>] jbd2_journal_file_inode+0x86/0x138 Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2011-05-23[S390] merge page_test_dirty and page_clear_dirtyMartin Schwidefsky1-1/+1
The page_clear_dirty primitive always sets the default storage key which resets the access control bits and the fetch protection bit. That will surprise a KVM guest that sets non-zero access control bits or the fetch protection bit. Merge page_test_dirty and page_clear_dirty back to a single function and only clear the dirty bit from the storage key. In addition move the function page_test_and_clear_dirty and page_test_and_clear_young to page.h where they belong. This requires to change the parameter from a struct page * to a page frame number. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2011-03-23mm: remove unused TestSetPageLocked() interfaceMichel Lespinasse1-1/+1
TestSetPageLocked() isn't being used anywhere. Also, using it would likely be an error, since the proper interface trylock_page() provides stronger ordering guarantees. Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: remove PG_buddyAndrea Arcangeli1-6/+1
PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can be added to page->flags without overflowing (because of the sparse section bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also has to move the memory hotplug code from _mapcount to lru.next to avoid any risk of clashes. We can't use lru.next for PG_buddy removal, but memory hotplug can use lru.next even more easily than the mapcount instead. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: transparent hugepage coreAndrea Arcangeli1-0/+21
Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: kvm mmu transparent hugepage supportAndrea Arcangeli1-0/+12
This should work for both hugetlbfs and transparent hugepages. [akpm@linux-foundation.org: bring forward PageTransCompound() addition for bisectability] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: clear page compoundAndrea Arcangeli1-1/+16
split_huge_page must transform a compound page to a regular page and needs ClearPageCompound. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: compound_lockAndrea Arcangeli1-1/+11
Add a new compound_lock() needed to serialize put_page against __split_huge_page_refcount(). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14mm: clear PageError bit in msync & fsyncRik van Riel1-1/+1
Temporary IO failures, eg. due to loss of both multipath paths, can permanently leave the PageError bit set on a page, resulting in msync or fsync returning -EIO over and over again, even if IO is now getting to the disk correctly. We already clear the AS_ENOSPC and AS_IO bits in mapping->flags in the filemap_fdatawait_range function. Also clearing the PageError bit on the page allows subsequent msync or fsync calls on this file to return without an error, if the subsequent IO succeeds. Unfortunately data written out in the msync or fsync call that returned -EIO can still get lost, because the page dirty bit appears to not get restored on IO error. However, the alternative could be potentially all of memory filling up with uncleanable dirty pages, hanging the system, so there is no nice choice here... Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Valerie Aurora <vaurora@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Cc: Theodore Ts'o <tytso@mit.edu> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-25[S390] add support for nonquiescing sskeMartin Schwidefsky1-1/+1
Improve performance of the sske operation by using the nonquiescing variant if the affected page has no mappings established. On machines with no support for the new sske variant the mask bit will be ignored. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2010-07-16slub: Use kmem_cache flags to detect if slab is in debugging mode.Christoph Lameter1-2/+0
The cacheline with the flags is reachable from the hot paths after the percpu allocator changes went in. So there is no need anymore to put a flag into each slab page. Get rid of the SlubDebug flag and use the flags in kmem_cache instead. Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2009-12-17Merge branch 'for-33' of git://repo.or.cz/linux-kbuildLinus Torvalds1-1/+1
* 'for-33' of git://repo.or.cz/linux-kbuild: (29 commits) net: fix for utsrelease.h moving to generated gen_init_cpio: fixed fwrite warning kbuild: fix make clean after mismerge kbuild: generate modules.builtin genksyms: properly consider EXPORT_UNUSED_SYMBOL{,_GPL}() score: add asm/asm-offsets.h wrapper unifdef: update to upstream revision 1.190 kbuild: specify absolute paths for cscope kbuild: create include/generated in silentoldconfig scripts/package: deb-pkg: use fakeroot if available scripts/package: add KBUILD_PKG_ROOTCMD variable scripts/package: tar-pkg: use tar --owner=root Kbuild: clean up marker net: add net_tstamp.h to headers_install kbuild: move utsrelease.h to include/generated kbuild: move autoconf.h to include/generated drop explicit include of autoconf.h kbuild: move compile.h to include/generated kbuild: drop include/asm kbuild: do not check for include/asm-$ARCH ... Fixed non-conflicting clean merge of modpost.c as per comments from Stephen Rothwell (modpost.c had grown an include of linux/autoconf.h that needed to be changed to generated/autoconf.h)
2009-12-16mm: export stable page flagsWu Fengguang1-0/+2
Rename get_uflags() to stable_page_flags() and make it a global function for use in the hwpoison page flags filter, which need to compare user page flags with the value provided by user space. Also move KPF_* to kernel-page-flags.h for use by user space tools. Acked-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> CC: Nick Piggin <npiggin@suse.de> CC: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16HWPOISON: Add unpoisoning supportWu Fengguang1-1/+1
The unpoisoning interface is useful for stress testing tools to reclaim poisoned pages (to prevent OOM) There is no hardware level unpoisioning, so this cannot be used for real memory errors, only for software injected errors. Note that it may leak pages silently - those who have been removed from LRU cache, but not isolated from page cache/swap cache at hwpoison time. Especially the stress test of dirty swap cache pages shall reboot system before exhausting memory. AK: Fix comments, add documentation, add printks, rename symbol Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-15mm: CONFIG_MMU for PG_mlockedHugh Dickins1-5/+3
Remove three degrees of obfuscation, left over from when we had CONFIG_UNEVICTABLE_LRU. MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is CONFIG_HAVE_MLOCK is CONFIG_MMU. rmap.o (and memory-failure.o) are only built when CONFIG_MMU, so don't need such conditions at all. Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from 169 defconfigs: leave those to evolve in due course. Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Izik Eidus <ieidus@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Nick Piggin <npiggin@suse.de> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-12kbuild: move bounds.h to include/generatedSam Ravnborg1-1/+1
Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Michal Marek <mmarek@suse.cz>
2009-09-24Merge branch 'hwpoison' of ↵Linus Torvalds1-1/+16
git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6 * 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits) HWPOISON: Enable error_remove_page on btrfs HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs HWPOISON: Add madvise() based injector for hardware poisoned pages v4 HWPOISON: Enable error_remove_page for NFS HWPOISON: Enable .remove_error_page for migration aware file systems HWPOISON: The high level memory error handler in the VM v7 HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process HWPOISON: shmem: call set_page_dirty() with locked page HWPOISON: Define a new error_remove_page address space op for async truncation HWPOISON: Add invalidate_inode_page HWPOISON: Refactor truncate to allow direct truncating of page v2 HWPOISON: check and isolate corrupted free pages v2 HWPOISON: Handle hardware poisoned pages in try_to_unmap HWPOISON: Use bitmask/action code for try_to_unmap behaviour HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2 HWPOISON: Add poison check to page fault handling HWPOISON: Add basic support for poisoned pages in fault handler v3 HWPOISON: Add new SIGBUS error codes for hardware poison signals HWPOISON: Add support for poison swap entries v2 HWPOISON: Export some rmap vma locking to outside world ...
2009-09-22mm: return boolean from page_has_private()Johannes Weiner1-5/+8
Make page_has_private() return a true boolean value and remove the double negations from the two callsites using it for arithmetic. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22mm: perform non-atomic test-clear of PG_mlocked on freeJohannes Weiner1-3/+9
By the time PG_mlocked is cleared in the page freeing path, nobody else is looking at our page->flags anymore. It is thus safe to make the test-and-clear non-atomic and thereby removing an unnecessary and expensive operation from a hotpath. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-16HWPOISON: Add page flag for poisoned pagesAndi Kleen1-1/+16
Hardware poisoned pages need special handling in the VM and shouldn't be touched again. This requires a new page flag. Define it here. The page flags wars seem to be over, so it shouldn't be a problem to get a new one. v2: Add TestSetHWPoison (suggested by Johannes Weiner) Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-08-27x86, pat: Generalize the use of page flag PG_uncachedVenkatesh Pallipadi1-2/+2
Only IA64 was using PG_uncached as of now. We now intend to use this bit in x86 as well, to keep track of memory type of those addresses that have page struct for them. So, generalize the use of that bit across ia64 and x86. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2009-06-17Merge branches 'slab/documentation', 'slab/fixes', 'slob/cleanups' and ↵Pekka Enberg1-2/+0
'slub/fixes' into for-linus
2009-06-17mm: remove CONFIG_UNEVICTABLE_LRU config optionKOSAKI Motohiro1-15/+1
Currently, nobody wants to turn UNEVICTABLE_LRU off. Thus this configurability is unnecessary. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: Minchan Kim <minchan.kim@gmail.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-11slob: use PG_slab for identifying SLOB pagesWu Fengguang1-2/+0
For the sake of consistency. Signed-off-by: Wu Fengguang <fengguang.wu@intel.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Andi Kleen <andi@firstfloor.org> Acked-by: Matt Mackall <mpm@selenic.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
2009-04-03FS-Cache: Recruit a page flags for cache managementDavid Howells1-5/+33
Recruit a page flag to aid in cache management. The following extra flag is defined: (1) PG_fscache (PG_private_2) The marked page is backed by a local cache and is pinning resources in the cache driver. If PG_fscache is set, then things that checked for PG_private will now also check for that. This includes things like truncation and page invalidation. The function page_has_private() had been added to make the checks for both PG_private and PG_private_2 at the same time. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03FS-Cache: Release page->private after failed readaheadDavid Howells1-1/+1
The attached patch causes read_cache_pages() to release page-private data on a page for which add_to_page_cache() fails. If the filler function fails, then the problematic page is left attached to the pagecache (with appropriate flags set, one presumes) and the remaining to-be-attached pages are invalidated and discarded. This permits pages with caching references associated with them to be cleaned up. The invalidatepage() address space op is called (indirectly) to do the honours. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-01nommu: there is no mlock() for NOMMU, so don't provide the bitsDavid Howells1-7/+13
The mlock() facility does not exist for NOMMU since all mappings are effectively locked anyway, so we don't make the bits available when they're not useful. Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Greg Ungerer <gerg@snapgear.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Enrik Berkhan <Enrik.Berkhan@ge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07badpage: simplify page_alloc flag check+clearHugh Dickins1-17/+8
Simplify the PAGE_FLAGS checking and clearing when freeing and allocating a page: check the same flags as before when freeing, clear ALL the flags (unless PageReserved) when freeing, check ALL flags off when allocating. Signed-off-by: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07mm: add Set,ClearPageSwapCache stubsHugh Dickins1-0/+1
If we add NOOP stubs for SetPageSwapCache() and ClearPageSwapCache(), then we can remove the #ifdef CONFIG_SWAPs from mm/migrate.c. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20mlock: mlocked pages are unevictableNick Piggin1-3/+16
Make sure that mlocked pages also live on the unevictable LRU, so kswapd will not scan them over and over again. This is achieved through various strategies: 1) add yet another page flag--PG_mlocked--to indicate that the page is locked for efficient testing in vmscan and, optionally, fault path. This allows early culling of unevictable pages, preventing them from getting to page_referenced()/try_to_unmap(). Also allows separate accounting of mlock'd pages, as Nick's original patch did. Note: Nick's original mlock patch used a PG_mlocked flag. I had removed this in favor of the PG_unevictable flag + an mlock_count [new page struct member]. I restored the PG_mlocked flag to eliminate the new count field. 2) add the mlock/unevictable infrastructure to mm/mlock.c, with internal APIs in mm/internal.h. This is a rework of Nick's original patch to these files, taking into account that mlocked pages are now kept on unevictable LRU list. 3) update vmscan.c:page_evictable() to check PageMlocked() and, if vma passed in, the vm_flags. Note that the vma will only be passed in for new pages in the fault path; and then only if the "cull unevictable pages in fault path" patch is included. 4) add try_to_unlock() to rmap.c to walk a page's rmap and ClearPageMlocked() if no other vmas have it mlocked. Reuses as much of try_to_unmap() as possible. This effectively replaces the use of one of the lru list links as an mlock count. If this mechanism let's pages in mlocked vmas leak through w/o PG_mlocked set [I don't know that it does], we should catch them later in try_to_unmap(). One hopes this will be rare, as it will be relatively expensive. Original mm/internal.h, mm/rmap.c and mm/mlock.c changes: Signed-off-by: Nick Piggin <npiggin@suse.de> splitlru: introduce __get_user_pages(): New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS. because current get_user_pages() can't grab PROT_NONE pages theresore it cause PROT_NONE pages can't munlock. [akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch] [akpm@linux-foundation.org: untangle patch interdependencies] [akpm@linux-foundation.org: fix things after out-of-order merging] [hugh@veritas.com: fix page-flags mess] [lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm'] [kosaki.motohiro@jp.fujitsu.com: build fix] [kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments] [kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20Unevictable LRU InfrastructureLee Schermerhorn1-1/+21
When the system contains lots of mlocked or otherwise unevictable pages, the pageout code (kswapd) can spend lots of time scanning over these pages. Worse still, the presence of lots of unevictable pages can confuse kswapd into thinking that more aggressive pageout modes are required, resulting in all kinds of bad behaviour. Infrastructure to manage pages excluded from reclaim--i.e., hidden from vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to maintain "unevictable" pages on a separate per-zone LRU list, to "hide" them from vmscan. Kosaki Motohiro added the support for the memory controller unevictable lru list. Pages on the unevictable list have both PG_unevictable and PG_lru set. Thus, PG_unevictable is analogous to and mutually exclusive with PG_active--it specifies which LRU list the page is on. The unevictable infrastructure is enabled by a new mm Kconfig option [CONFIG_]UNEVICTABLE_LRU. A new function 'page_evictable(page, vma)' in vmscan.c tests whether or not a page may be evictable. Subsequent patches will add the various !evictable tests. We'll want to keep these tests light-weight for use in shrink_active_list() and, possibly, the fault path. To avoid races between tasks putting pages [back] onto an LRU list and tasks that might be moving the page from non-evictable to evictable state, the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()' -- tests the "evictability" of a page after placing it on the LRU, before dropping the reference. If the page has become unevictable, putback_lru_page() will redo the 'putback', thus moving the page to the unevictable list. This way, we avoid "stranding" evictable pages on the unevictable list. [akpm@linux-foundation.org: fix fallout from out-of-order merge] [riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build] [nishimura@mxp.nes.nec.co.jp: remove redundant mapping check] [kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework] [kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c] [kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure] [kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch] [kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20pageflag helpers for configed-out flagsLee Schermerhorn1-0/+12
Define proper false/noop inline functions for noreclaim page flags when !defined(CONFIG_UNEVICTABLE_LRU) Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20define page_file_cache() functionRik van Riel1-2/+6
Define page_file_cache() function to answer the question: is page backed by a file? Originally part of Rik van Riel's split-lru patch. Extracted to make available for other, independent reclaim patches. Moved inline function to linux/mm_inline.h where it will be needed by subsequent "split LRU" and "noreclaim" patches. Unfortunately this needs to use a page flag, since the PG_swapbacked state needs to be preserved all the way to the point where the page is last removed from the LRU. Trying to derive the status from other info in the page resulted in wrong VM statistics in earlier split VM patchsets. The total number of page flags in use on a 32 bit machine after this patch is 19. [akpm@linux-foundation.org: fix up out-of-order merge fallout] [hugh@veritas.com: splitlru: shmem_getpage SetPageSwapBacked sooner[ Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: MinChan Kim <minchan.kim@gmail.com> Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-05mm: rename page trylockNick Piggin1-1/+1
Converting page lock to new locking bitops requires a change of page flag operation naming, so we might as well convert it to something nicer (!TestSetPageLocked_Lock => trylock_page, SetPageLocked => set_page_locked). This also facilitates lockdeping of page lock. Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-08-01[S390] Optimize storage key operations for anon pagesMartin Schwidefsky1-3/+0
For anonymous pages without a swap cache backing the check in page_remove_rmap for the physical dirty bit in page_remove_rmap is unnecessary. The instructions that are used to check and reset the dirty bit are expensive. Removing the check noticably speeds up process exit. In addition the clearing of the dirty bit in __SetPageUptodate is pointless as well. With these two changes there is no storage key operation for an anonymous page anymore if it does not hit the swap space. The micro benchmark which repeatedly executes an empty shell script gets about 5% faster. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2008-07-24slob: record page flag overlays explicitlyAndy Whitcroft1-0/+7
SLOB reuses two page bits for internal purposes, it overlays PG_active and PG_private. This is hidden away in slob.c. Document these overlays explicitly in the main page-flags enum along with all the others. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24slub: record page flag overlays explicitlyAndy Whitcroft1-0/+7
SLUB reuses two page bits for internal purposes, it overlays PG_active and PG_error. This is hidden away in slub.c. Document these overlays explicitly in the main page-flags enum along with all the others. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24page-flags: record page flag overlays explicitlyAndy Whitcroft1-4/+11
With the recent page flag reorganisation we have a single enum which defines the valid page flags and their values, nice and clear. However there are a number of bits which are overloaded by different subsystems. Firstly there is PG_owner_priv_1 which is used by filesystems and by XEN. Secondly both SLOB and SLUB use a couple of extra page bits to manage internal state for pages they own; both overlay other bits. All of these "aliases" are scattered about the source making it very hard for a reader to know if the bits are safe to rely on in all contexts; confusion here is bad. As we now have a single place where the bits are clearly assigned it makes sense to clarify the reuse of bits by making the aliases explicit and visible with the original bit assignments. This patch creates explicit aliases within the enum itself for the overloaded bits, creates standard bit accessors PageFoo etc. and uses those throughout. This version pulls the bit manipulation out to standard named page bit accessors as suggested by Christoph, it retains the explicit mapping to the overlayed bits. A fusion of both ideas. This has been SLUB and SLOB have been compile tested on x86_64 only, and SLUB boot tested. If people feel this is worth doing then I can run a fuller set of testing. This patch: Some page flags are used for more than one purpose, for example PG_owner_priv_1. Currently there are individual accessors for each user, each built using the common flag name far away from the bit definitions. This makes it hard to see all possible uses of these bits. Now that we have a single enum to generate the bit orders it makes sense to express overlays in the same place. So create per use aliases for this bit in the main page-flags enum and use those in the accessors. [akpm@linux-foundation.org: fix xen] Signed-off-by: Andy Whitcroft <apw@shadowen.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-06-16Merge branch 'linus' into x86/xenIngo Molnar1-0/+24
2008-06-09mm: Minor clean-up of page flags in mm/page_alloc.cRuss Anderson1-0/+24
Minor source code cleanup of page flags in mm/page_alloc.c. Move the definition of the groups of bits to page-flags.h. The purpose of this clean up is that the next patch will conditionally add a page flag to the groups. Doing that in a header file is cleaner than adding #ifdefs to the C code. Signed-off-by: Russ Anderson <rja@sgi.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-05-27xen: implement save/restoreJeremy Fitzhardinge1-0/+1
This patch implements Xen save/restore and migration. Saving is triggered via xenbus, which is polled in drivers/xen/manage.c. When a suspend request comes in, the kernel prepares itself for saving by: 1 - Freeze all processes. This is primarily to prevent any partially-completed pagetable updates from confusing the suspend process. If CONFIG_PREEMPT isn't defined, then this isn't necessary. 2 - Suspend xenbus and other devices 3 - Stop_machine, to make sure all the other vcpus are quiescent. The Xen tools require the domain to run its save off vcpu0. 4 - Within the stop_machine state, it pins any unpinned pgds (under construction or destruction), performs canonicalizes various other pieces of state (mostly converting mfns to pfns), and finally 5 - Suspend the domain Restore reverses the steps used to save the domain, ending when all the frozen processes are thawed. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-04-28PAGEFLAGS_EXTENDED and separate page flags for Head and TailChristoph Lameter1-0/+28
Having separate page flags for the head and the tail of a compound page allows the compiler to use bitops instead of operations on a word to check for a tail page. That is f.e. important for virt_to_head_page() which is used in various critical code paths (kfree for example): Code for PageTail(page) Before: mov (%rdi),%rdx page->flags mov %rdx,%rax 3 bytes and $0x12000,%eax 5 bytes cmp $0x12000,%rax 6 bytes je 897 <kfree+0xa7> After: mov (%rdi),%rax test $0x40,%ah (3 bytes) jne 887 <kfree+0x97> So we go from 14 bytes to 3 bytes and from 3 instructions to one. From the use of 2 registers we go to none. We can only use page flags for this if we have page flags available. This patch introduces CONFIG_PAGEFLAGS_EXTENDED that is set if pageflags are not scarce due to SPARSEMEM using page flags for its sectionid on 32 bit NUMA platforms. Additional page flag definitions can be added to the CONFIG_PAGEFLAGS_EXTENDED section in page-flags.h if the functionality depends on PAGEFLAGS_EXTENDED or if more page flag overlapping tricks are used for the !PAGEFLAGS_EXTENDED fallback (the upcoming virtual compound patch may hook in here and Rik's/Lee's additional page flags to solve the reclaim issues could also be added there [hint... hint... where are these patchsets?]). Avoiding the overlaying of Pg_reclaim also clears the way for possible use of compound pages for the pagecache or on the LRU. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>