summaryrefslogtreecommitdiff
path: root/include/linux/memcontrol.h
AgeCommit message (Collapse)AuthorFilesLines
2015-02-13list_lru: introduce per-memcg listsVladimir Davydov1-0/+14
There are several FS shrinkers, including super_block::s_shrink, that keep reclaimable objects in the list_lru structure. Hence to turn them to memcg-aware shrinkers, it is enough to make list_lru per-memcg. This patch does the trick. It adds an array of lru lists to the list_lru_node structure (per-node part of the list_lru), one for each kmem-active memcg, and dispatches every item addition or removal to the list corresponding to the memcg which the item is accounted to. So now the list_lru structure is not just per node, but per node and per memcg. Not all list_lrus need this feature, so this patch also adds a new method, list_lru_init_memcg, which initializes a list_lru as memcg aware. Otherwise (i.e. if initialized with old list_lru_init), the list_lru won't have per memcg lists. Just like per memcg caches arrays, the arrays of per-memcg lists are indexed by memcg_cache_id, so we must grow them whenever memcg_nr_cache_ids is increased. So we introduce a callback, memcg_update_all_list_lrus, invoked by memcg_alloc_cache_id if the id space is full. The locking is implemented in a manner similar to lruvecs, i.e. we have one lock per node that protects all lists (both global and per cgroup) on the node. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: add rwsem to synchronize against memcg_caches arrays relocationVladimir Davydov1-2/+10
We need a stable value of memcg_nr_cache_ids in kmem_cache_create() (memcg_alloc_cache_params() wants it for root caches), where we only hold the slab_mutex and no memcg-related locks. As a result, we have to update memcg_nr_cache_ids under the slab_mutex, which we can only take on the slab's side (see memcg_update_array_size). This looks awkward and will become even worse when per-memcg list_lru is introduced, which also wants stable access to memcg_nr_cache_ids. To get rid of this dependency between the memcg_nr_cache_ids and the slab_mutex, this patch introduces a special rwsem. The rwsem is held for writing during memcg_caches arrays relocation and memcg_nr_cache_ids updates. Therefore one can take it for reading to get a stable access to memcg_caches arrays and/or memcg_nr_cache_ids. Currently the semaphore is taken for reading only from kmem_cache_create, right before taking the slab_mutex, so right now there's no much point in using rwsem instead of mutex. However, once list_lru is made per-memcg it will allow list_lru initializations to proceed concurrently. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13memcg: rename some cache id related variablesVladimir Davydov1-2/+2
memcg_limited_groups_array_size, which defines the size of memcg_caches arrays, sounds rather cumbersome. Also it doesn't point anyhow that it's related to kmem/caches stuff. So let's rename it to memcg_nr_cache_ids. It's concise and points us directly to memcg_cache_id. Also, rename kmem_limited_groups to memcg_cache_ida. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13vmscan: per memory cgroup slab shrinkersVladimir Davydov1-0/+7
This patch adds SHRINKER_MEMCG_AWARE flag. If a shrinker has this flag set, it will be called per memory cgroup. The memory cgroup to scan objects from is passed in shrink_control->memcg. If the memory cgroup is NULL, a memcg aware shrinker is supposed to scan objects from the global list. Unaware shrinkers are only called on global pressure with memcg=NULL. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: default hierarchy interface for memoryJohannes Weiner1-0/+32
Introduce the basic control files to account, partition, and limit memory using cgroups in default hierarchy mode. This interface versioning allows us to address fundamental design issues in the existing memory cgroup interface, further explained below. The old interface will be maintained indefinitely, but a clearer model and improved workload performance should encourage existing users to switch over to the new one eventually. The control files are thus: - memory.current shows the current consumption of the cgroup and its descendants, in bytes. - memory.low configures the lower end of the cgroup's expected memory consumption range. The kernel considers memory below that boundary to be a reserve - the minimum that the workload needs in order to make forward progress - and generally avoids reclaiming it, unless there is an imminent risk of entering an OOM situation. - memory.high configures the upper end of the cgroup's expected memory consumption range. A cgroup whose consumption grows beyond this threshold is forced into direct reclaim, to work off the excess and to throttle new allocations heavily, but is generally allowed to continue and the OOM killer is not invoked. - memory.max configures the hard maximum amount of memory that the cgroup is allowed to consume before the OOM killer is invoked. - memory.events shows event counters that indicate how often the cgroup was reclaimed while below memory.low, how often it was forced to reclaim excess beyond memory.high, how often it hit memory.max, and how often it entered OOM due to memory.max. This allows users to identify configuration problems when observing a degradation in workload performance. An overcommitted system will have an increased rate of low boundary breaches, whereas increased rates of high limit breaches, maximum hits, or even OOM situations will indicate internally overcommitted cgroups. For existing users of memory cgroups, the following deviations from the current interface are worth pointing out and explaining: - The original lower boundary, the soft limit, is defined as a limit that is per default unset. As a result, the set of cgroups that global reclaim prefers is opt-in, rather than opt-out. The costs for optimizing these mostly negative lookups are so high that the implementation, despite its enormous size, does not even provide the basic desirable behavior. First off, the soft limit has no hierarchical meaning. All configured groups are organized in a global rbtree and treated like equal peers, regardless where they are located in the hierarchy. This makes subtree delegation impossible. Second, the soft limit reclaim pass is so aggressive that it not just introduces high allocation latencies into the system, but also impacts system performance due to overreclaim, to the point where the feature becomes self-defeating. The memory.low boundary on the other hand is a top-down allocated reserve. A cgroup enjoys reclaim protection when it and all its ancestors are below their low boundaries, which makes delegation of subtrees possible. Secondly, new cgroups have no reserve per default and in the common case most cgroups are eligible for the preferred reclaim pass. This allows the new low boundary to be efficiently implemented with just a minor addition to the generic reclaim code, without the need for out-of-band data structures and reclaim passes. Because the generic reclaim code considers all cgroups except for the ones running low in the preferred first reclaim pass, overreclaim of individual groups is eliminated as well, resulting in much better overall workload performance. - The original high boundary, the hard limit, is defined as a strict limit that can not budge, even if the OOM killer has to be called. But this generally goes against the goal of making the most out of the available memory. The memory consumption of workloads varies during runtime, and that requires users to overcommit. But doing that with a strict upper limit requires either a fairly accurate prediction of the working set size or adding slack to the limit. Since working set size estimation is hard and error prone, and getting it wrong results in OOM kills, most users tend to err on the side of a looser limit and end up wasting precious resources. The memory.high boundary on the other hand can be set much more conservatively. When hit, it throttles allocations by forcing them into direct reclaim to work off the excess, but it never invokes the OOM killer. As a result, a high boundary that is chosen too aggressively will not terminate the processes, but instead it will lead to gradual performance degradation. The user can monitor this and make corrections until the minimal memory footprint that still gives acceptable performance is found. In extreme cases, with many concurrent allocations and a complete breakdown of reclaim progress within the group, the high boundary can be exceeded. But even then it's mostly better to satisfy the allocation from the slack available in other groups or the rest of the system than killing the group. Otherwise, memory.max is there to limit this type of spillover and ultimately contain buggy or even malicious applications. - The original control file names are unwieldy and inconsistent in many different ways. For example, the upper boundary hit count is exported in the memory.failcnt file, but an OOM event count has to be manually counted by listening to memory.oom_control events, and lower boundary / soft limit events have to be counted by first setting a threshold for that value and then counting those events. Also, usage and limit files encode their units in the filename. That makes the filenames very long, even though this is not information that a user needs to be reminded of every time they type out those names. To address these naming issues, as well as to signal clearly that the new interface carries a new configuration model, the naming conventions in it necessarily differ from the old interface. - The original limit files indicate the state of an unset limit with a very high number, and a configured limit can be unset by echoing -1 into those files. But that very high number is implementation and architecture dependent and not very descriptive. And while -1 can be understood as an underflow into the highest possible value, -2 or -10M etc. do not work, so it's not inconsistent. memory.low, memory.high, and memory.max will use the string "infinity" to indicate and set the highest possible value. [akpm@linux-foundation.org: use seq_puts() for basic strings] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Greg Thelen <gthelen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12vmscan: force scan offline memory cgroupsVladimir Davydov1-0/+6
Since commit b2052564e66d ("mm: memcontrol: continue cache reclaim from offlined groups") pages charged to a memory cgroup are not reparented when the cgroup is removed. Instead, they are supposed to be reclaimed in a regular way, along with pages accounted to online memory cgroups. However, an lruvec of an offline memory cgroup will sooner or later get so small that it will be scanned only at low scan priorities (see get_scan_count()). Therefore, if there are enough reclaimable pages in big lruvecs, pages accounted to offline memory cgroups will never be scanned at all, wasting memory. Fix this by unconditionally forcing scanning dead lruvecs from kswapd. [akpm@linux-foundation.org: fix build] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: memcontrol: track move_lock state internallyJohannes Weiner1-8/+4
The complexity of memcg page stat synchronization is currently leaking into the callsites, forcing them to keep track of the move_lock state and the IRQ flags. Simplify the API by tracking it in the memcg. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11memcg: zap memcg_slab_caches and memcg_slab_mutexVladimir Davydov1-2/+0
mem_cgroup->memcg_slab_caches is a list of kmem caches corresponding to the given cgroup. Currently, it is only used on css free in order to destroy all caches corresponding to the memory cgroup being freed. The list is protected by memcg_slab_mutex. The mutex is also used to protect kmem_cache->memcg_params->memcg_caches arrays and synchronizes kmem_cache_destroy vs memcg_unregister_all_caches. However, we can perfectly get on without these two. To destroy all caches corresponding to a memory cgroup, we can walk over the global list of kmem caches, slab_caches, and we can do all the synchronization stuff using the slab_mutex instead of the memcg_slab_mutex. This patch therefore gets rid of the memcg_slab_caches and memcg_slab_mutex. Apart from this nice cleanup, it also: - assures that rcu_barrier() is called once at max when a root cache is destroyed or a memory cgroup is freed, no matter how many caches have SLAB_DESTROY_BY_RCU flag set; - fixes the race between kmem_cache_destroy and kmem_cache_create that exists, because memcg_cleanup_cache_params, which is called from kmem_cache_destroy after checking that kmem_cache->refcount=0, releases the slab_mutex, which gives kmem_cache_create a chance to make an alias to a cache doomed to be destroyed. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11memcg: zap __memcg_{charge,uncharge}_slabVladimir Davydov1-2/+3
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's zap them and call these functions directly. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13memcg: fix possible use-after-free in memcg_kmem_get_cache()Vladimir Davydov1-2/+12
Suppose task @t that belongs to a memory cgroup @memcg is going to allocate an object from a kmem cache @c. The copy of @c corresponding to @memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory cgroup destruction we can access the memory cgroup's copy of the cache after it was destroyed: CPU0 CPU1 ---- ---- [ current=@t @mc->memcg_params->nr_pages=0 ] kmem_cache_alloc(@c): call memcg_kmem_get_cache(@c); proceed to allocation from @mc: alloc a page for @mc: ... move @t from @memcg destroy @memcg: mem_cgroup_css_offline(@memcg): memcg_unregister_all_caches(@memcg): kmem_cache_destroy(@mc) add page to @mc We could fix this issue by taking a reference to a per-memcg cache, but that would require adding a per-cpu reference counter to per-memcg caches, which would look cumbersome. Instead, let's take a reference to a memory cgroup, which already has a per-cpu reference counter, in the beginning of kmem_cache_alloc to be dropped in the end, and move per memcg caches destruction from css offline to css free. As a side effect, per-memcg caches will be destroyed not one by one, but all at once when the last page accounted to the memory cgroup is freed. This doesn't sound as a high price for code readability though. Note, this patch does add some overhead to the kmem_cache_alloc hot path, but it is pretty negligible - it's just a function call plus a per cpu counter decrement, which is comparable to what we already have in memcg_kmem_get_cache. Besides, it's only relevant if there are memory cgroups with kmem accounting enabled. I don't think we can find a way to handle this race w/o it, because alloc_page called from kmem_cache_alloc may sleep so we can't flush all pending kmallocs w/o reference counting. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/memcontrol.c: remove the unused arg in __memcg_kmem_get_cache()Zhang Zhen1-2/+2
The gfp was passed in but never used in this function. Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm: move page->mem_cgroup bad page handling into generic codeJohannes Weiner1-17/+0
Now that the external page_cgroup data structure and its lookup is gone, let the generic bad_page() check for page->mem_cgroup sanity. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm: embed the memcg pointer directly into struct pageJohannes Weiner1-5/+1
Memory cgroups used to have 5 per-page pointers. To allow users to disable that amount of overhead during runtime, those pointers were allocated in a separate array, with a translation layer between them and struct page. There is now only one page pointer remaining: the memcg pointer, that indicates which cgroup the page is associated with when charged. The complexity of runtime allocation and the runtime translation overhead is no longer justified to save that *potential* 0.19% of memory. With CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding after the page->private member and doesn't even increase struct page, and then this patch actually saves space. Remaining users that care can still compile their kernels without CONFIG_MEMCG. text data bss dec hex filename 8828345 1725264 983040 11536649 b00909 vmlinux.old 8827425 1725264 966656 11519345 afc571 vmlinux.new [mhocko@suse.cz: update Documentation/cgroups/memory.txt] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm, memcg: fix potential undefined behaviour in page stat accountingMichal Hocko1-3/+3
Since commit d7365e783edb ("mm: memcontrol: fix missed end-writeback page accounting") mem_cgroup_end_page_stat consumes locked and flags variables directly rather than via pointers which might trigger C undefined behavior as those variables are initialized only in the slow path of mem_cgroup_begin_page_stat. Although mem_cgroup_end_page_stat handles parameters correctly and touches them only when they hold a sensible value it is caller which loads a potentially uninitialized value which then might allow compiler to do crazy things. I haven't seen any warning from gcc and it seems that the current version (4.9) doesn't exploit this type undefined behavior but Sasha has reported the following: UBSan: Undefined behaviour in mm/rmap.c:1084:2 load of value 255 is not a valid value for type '_Bool' CPU: 4 PID: 8304 Comm: rngd Not tainted 3.18.0-rc2-next-20141029-sasha-00039-g77ed13d-dirty #1427 Call Trace: dump_stack (lib/dump_stack.c:52) ubsan_epilogue (lib/ubsan.c:159) __ubsan_handle_load_invalid_value (lib/ubsan.c:482) page_remove_rmap (mm/rmap.c:1084 mm/rmap.c:1096) unmap_page_range (./arch/x86/include/asm/atomic.h:27 include/linux/mm.h:463 mm/memory.c:1146 mm/memory.c:1258 mm/memory.c:1279 mm/memory.c:1303) unmap_single_vma (mm/memory.c:1348) unmap_vmas (mm/memory.c:1377 (discriminator 3)) exit_mmap (mm/mmap.c:2837) mmput (kernel/fork.c:659) do_exit (./arch/x86/include/asm/thread_info.h:168 kernel/exit.c:462 kernel/exit.c:747) do_group_exit (include/linux/sched.h:775 kernel/exit.c:873) SyS_exit_group (kernel/exit.c:901) tracesys_phase2 (arch/x86/kernel/entry_64.S:529) Fix this by using pointer parameters for both locked and flags and be more robust for future compiler changes even though the current code is implemented correctly. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm: memcontrol: drop bogus RCU locking from mem_cgroup_same_or_subtree()Johannes Weiner1-7/+6
None of the mem_cgroup_same_or_subtree() callers actually require it to take the RCU lock, either because they hold it themselves or they have css references. Remove it. To make the API change clear, rename the leftover helper to mem_cgroup_is_descendant() to match cgroup_is_descendant(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm: memcontrol: pull the NULL check from __mem_cgroup_same_or_subtree()Johannes Weiner1-2/+3
The NULL in mm_match_cgroup() comes from a possibly exiting mm->owner. It makes a lot more sense to check where it's looked up, rather than check for it in __mem_cgroup_same_or_subtree() where it's unexpected. No other callsite passes NULL to __mem_cgroup_same_or_subtree(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm: memcontrol: lockless page countersJohannes Weiner1-3/+2
Memory is internally accounted in bytes, using spinlock-protected 64-bit counters, even though the smallest accounting delta is a page. The counter interface is also convoluted and does too many things. Introduce a new lockless word-sized page counter API, then change all memory accounting over to it. The translation from and to bytes then only happens when interfacing with userspace. The removed locking overhead is noticable when scaling beyond the per-cpu charge caches - on a 4-socket machine with 144-threads, the following test shows the performance differences of 288 memcgs concurrently running a page fault benchmark: vanilla: 18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% ) 1,380,638 context-switches # 0.074 K/sec ( +- 0.75% ) 24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% ) 1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% ) 50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% ) 1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% ) 1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% ) 132.474343877 seconds time elapsed ( +- 0.21% ) lockless: 12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% ) 832,850 context-switches # 0.068 K/sec ( +- 0.54% ) 15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% ) 1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% ) 32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% ) <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend 9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% ) 2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% ) 1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% ) 91.369330729 seconds time elapsed ( +- 0.45% ) On top of improved scalability, this also gets rid of the icky long long types in the very heart of memcg, which is great for 32 bit and also makes the code a lot more readable. Notable differences between the old and new API: - res_counter_charge() and res_counter_charge_nofail() become page_counter_try_charge() and page_counter_charge() resp. to match the more common kernel naming scheme of try_do()/do() - res_counter_uncharge_until() is only ever used to cancel a local counter and never to uncharge bigger segments of a hierarchy, so it's replaced by the simpler page_counter_cancel() - res_counter_set_limit() is replaced by page_counter_limit(), which expects its callers to serialize against themselves - res_counter_memparse_write_strategy() is replaced by page_counter_limit(), which rounds down to the nearest page size - rather than up. This is more reasonable for explicitely requested hard upper limits. - to keep charging light-weight, page_counter_try_charge() charges speculatively, only to roll back if the result exceeds the limit. Because of this, a failing bigger charge can temporarily lock out smaller charges that would otherwise succeed. The error is bounded to the difference between the smallest and the biggest possible charge size, so for memcg, this means that a failing THP charge can send base page charges into reclaim upto 2MB (4MB) before the limit would have been reached. This should be acceptable. [akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse] [akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-30mm: memcontrol: fix missed end-writeback page accountingJohannes Weiner1-41/+17
Commit 0a31bc97c80c ("mm: memcontrol: rewrite uncharge API") changed page migration to uncharge the old page right away. The page is locked, unmapped, truncated, and off the LRU, but it could race with writeback ending, which then doesn't unaccount the page properly: test_clear_page_writeback() migration wait_on_page_writeback() TestClearPageWriteback() mem_cgroup_migrate() clear PCG_USED mem_cgroup_update_page_stat() if (PageCgroupUsed(pc)) decrease memcg pages under writeback release pc->mem_cgroup->move_lock The per-page statistics interface is heavily optimized to avoid a function call and a lookup_page_cgroup() in the file unmap fast path, which means it doesn't verify whether a page is still charged before clearing PageWriteback() and it has to do it in the stat update later. Rework it so that it looks up the page's memcg once at the beginning of the transaction and then uses it throughout. The charge will be verified before clearing PageWriteback() and migration can't uncharge the page as long as that is still set. The RCU lock will protect the memcg past uncharge. As far as losing the optimization goes, the following test results are from a microbenchmark that maps, faults, and unmaps a 4GB sparse file three times in a nested fashion, so that there are two negative passes that don't account but still go through the new transaction overhead. There is no actual difference: old: 33.195102545 seconds time elapsed ( +- 0.01% ) new: 33.199231369 seconds time elapsed ( +- 0.03% ) The time spent in page_remove_rmap()'s callees still adds up to the same, but the time spent in the function itself seems reduced: # Children Self Command Shared Object Symbol old: 0.12% 0.11% filemapstress [kernel.kallsyms] [k] page_remove_rmap new: 0.12% 0.08% filemapstress [kernel.kallsyms] [k] page_remove_rmap Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: <stable@vger.kernel.org> [3.17.x] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10memcg: move memcg_update_cache_size() to slab_common.cVladimir Davydov1-1/+0
`While growing per memcg caches arrays, we jump between memcontrol.c and slab_common.c in a weird way: memcg_alloc_cache_id - memcontrol.c memcg_update_all_caches - slab_common.c memcg_update_cache_size - memcontrol.c There's absolutely no reason why memcg_update_cache_size can't live on the slab's side though. So let's move it there and settle it comfortably amid per-memcg cache allocation functions. Besides, this patch cleans this function up a bit, removing all the useless comments from it, and renames it to memcg_update_cache_params to conform to memcg_alloc/free_cache_params, which we already have in slab_common.c. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10memcg: move memcg_{alloc,free}_cache_params to slab_common.cVladimir Davydov1-14/+0
The only reason why they live in memcontrol.c is that we get/put css reference to the owner memory cgroup in them. However, we can do that in memcg_{un,}register_cache. OTOH, there are several reasons to move them to slab_common.c. First, I think that the less public interface functions we have in memcontrol.h the better. Since the functions I move don't depend on memcontrol, I think it's worth making them private to slab, especially taking into account that the arrays are defined on the slab's side too. Second, the way how per-memcg arrays are updated looks rather awkward: it proceeds from memcontrol.c (__memcg_activate_kmem) to slab_common.c (memcg_update_all_caches) and back to memcontrol.c again (memcg_update_array_size). In the following patches I move the function relocating the arrays (memcg_update_array_size) to slab_common.c and therefore get rid this circular call path. I think we should have the cache allocation stuff in the same place where we have relocation, because it's easier to follow the code then. So I move arrays alloc/free functions to slab_common.c too. The third point isn't obvious. I'm going to make the list_lru structure per-memcg to allow targeted kmem reclaim. That means we will have per-memcg arrays in list_lrus too. It turns out that it's much easier to update these arrays in list_lru.c rather than in memcontrol.c, because all the stuff we need is defined there. This patch makes memcg caches arrays allocation path conform that of the upcoming list_lru. So let's move these functions to slab_common.c and make them static. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Glauber Costa <glommer@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09mm: memcontrol: use page lists for uncharge batchingJohannes Weiner1-10/+2
Pages are now uncharged at release time, and all sources of batched uncharges operate on lists of pages. Directly use those lists, and get rid of the per-task batching state. This also batches statistics accounting, in addition to the res counter charges, to reduce IRQ-disabling and re-enabling. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09mm: memcontrol: rewrite uncharge APIJohannes Weiner1-34/+15
The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-09mm: memcontrol: rewrite charge APIJohannes Weiner1-39/+14
These patches rework memcg charge lifetime to integrate more naturally with the lifetime of user pages. This drastically simplifies the code and reduces charging and uncharging overhead. The most expensive part of charging and uncharging is the page_cgroup bit spinlock, which is removed entirely after this series. Here are the top-10 profile entries of a stress test that reads a 128G sparse file on a freshly booted box, without even a dedicated cgroup (i.e. executing in the root memcg). Before: 15.36% cat [kernel.kallsyms] [k] copy_user_generic_string 13.31% cat [kernel.kallsyms] [k] memset 11.48% cat [kernel.kallsyms] [k] do_mpage_readpage 4.23% cat [kernel.kallsyms] [k] get_page_from_freelist 2.38% cat [kernel.kallsyms] [k] put_page 2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge 2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common 1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn After: 15.67% cat [kernel.kallsyms] [k] copy_user_generic_string 13.48% cat [kernel.kallsyms] [k] memset 11.42% cat [kernel.kallsyms] [k] do_mpage_readpage 3.98% cat [kernel.kallsyms] [k] get_page_from_freelist 2.46% cat [kernel.kallsyms] [k] put_page 2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list 1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup 1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn 1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk 1.30% cat [kernel.kallsyms] [k] kfree As you can see, the memcg footprint has shrunk quite a bit. text data bss dec hex filename 37970 9892 400 48262 bc86 mm/memcontrol.o.old 35239 9892 400 45531 b1db mm/memcontrol.o This patch (of 4): The memcg charge API charges pages before they are rmapped - i.e. have an actual "type" - and so every callsite needs its own set of charge and uncharge functions to know what type is being operated on. Worse, uncharge has to happen from a context that is still type-specific, rather than at the end of the page's lifetime with exclusive access, and so requires a lot of synchronization. Rewrite the charge API to provide a generic set of try_charge(), commit_charge() and cancel_charge() transaction operations, much like what's currently done for swap-in: mem_cgroup_try_charge() attempts to reserve a charge, reclaiming pages from the memcg if necessary. mem_cgroup_commit_charge() commits the page to the charge once it has a valid page->mapping and PageAnon() reliably tells the type. mem_cgroup_cancel_charge() aborts the transaction. This reduces the charge API and enables subsequent patches to drastically simplify uncharging. As pages need to be committed after rmap is established but before they are added to the LRU, page_add_new_anon_rmap() must stop doing LRU additions again. Revive lru_cache_add_active_or_unevictable(). [hughd@google.com: fix shmem_unuse] [hughd@google.com: Add comments on the private use of -EAGAIN] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05memcg: cleanup kmem cache creation/destruction functions namingVladimir Davydov1-1/+1
Current names are rather inconsistent. Let's try to improve them. Brief change log: ** old name ** ** new name ** kmem_cache_create_memcg memcg_create_kmem_cache memcg_kmem_create_cache memcg_regsiter_cache memcg_kmem_destroy_cache memcg_unregister_cache kmem_cache_destroy_memcg_children memcg_cleanup_cache_params mem_cgroup_destroy_all_caches memcg_unregister_all_caches create_work memcg_register_cache_work memcg_create_cache_work_func memcg_register_cache_func memcg_create_cache_enqueue memcg_schedule_register_cache Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05memcg: get rid of memcg_create_cache_nameVladimir Davydov1-2/+0
Instead of calling back to memcontrol.c from kmem_cache_create_memcg in order to just create the name of a per memcg cache, let's allocate it in place. We only need to pass the memcg name to kmem_cache_create_memcg for that - everything else can be done in slab_common.c. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05memcg, slab: simplify synchronization schemeVladimir Davydov1-10/+0
At present, we have the following mutexes protecting data related to per memcg kmem caches: - slab_mutex. This one is held during the whole kmem cache creation and destruction paths. We also take it when updating per root cache memcg_caches arrays (see memcg_update_all_caches). As a result, taking it guarantees there will be no changes to any kmem cache (including per memcg). Why do we need something else then? The point is it is private to slab implementation and has some internal dependencies with other mutexes (get_online_cpus). So we just don't want to rely upon it and prefer to introduce additional mutexes instead. - activate_kmem_mutex. Initially it was added to synchronize initializing kmem limit (memcg_activate_kmem). However, since we can grow per root cache memcg_caches arrays only on kmem limit initialization (see memcg_update_all_caches), we also employ it to protect against memcg_caches arrays relocation (e.g. see __kmem_cache_destroy_memcg_children). - We have a convention not to take slab_mutex in memcontrol.c, but we want to walk over per memcg memcg_slab_caches lists there (e.g. for destroying all memcg caches on offline). So we have per memcg slab_caches_mutex's protecting those lists. The mutexes are taken in the following order: activate_kmem_mutex -> slab_mutex -> memcg::slab_caches_mutex Such a syncrhonization scheme has a number of flaws, for instance: - We can't call kmem_cache_{destroy,shrink} while walking over a memcg::memcg_slab_caches list due to locking order. As a result, in mem_cgroup_destroy_all_caches we schedule the memcg_cache_params::destroy work shrinking and destroying the cache. - We don't have a mutex to synchronize per memcg caches destruction between memcg offline (mem_cgroup_destroy_all_caches) and root cache destruction (__kmem_cache_destroy_memcg_children). Currently we just don't bother about it. This patch simplifies it by substituting per memcg slab_caches_mutex's with the global memcg_slab_mutex. It will be held whenever a new per memcg cache is created or destroyed, so it protects per root cache memcg_caches arrays and per memcg memcg_slab_caches lists. The locking order is following: activate_kmem_mutex -> memcg_slab_mutex -> slab_mutex This allows us to call kmem_cache_{create,shrink,destroy} under the memcg_slab_mutex. As a result, we don't need memcg_cache_params::destroy work any more - we can simply destroy caches while iterating over a per memcg slab caches list. Also using the global mutex simplifies synchronization between concurrent per memcg caches creation/destruction, e.g. mem_cgroup_destroy_all_caches vs __kmem_cache_destroy_memcg_children. The downside of this is that we substitute per-memcg slab_caches_mutex's with a hummer-like global mutex, but since we already take either the slab_mutex or the cgroup_mutex along with a memcg::slab_caches_mutex, it shouldn't hurt concurrency a lot. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05memcg, slab: merge memcg_{bind,release}_pages to memcg_{un}charge_slabVladimir Davydov1-2/+2
Currently we have two pairs of kmemcg-related functions that are called on slab alloc/free. The first is memcg_{bind,release}_pages that count the total number of pages allocated on a kmem cache. The second is memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource counter. Let's just merge them to keep the code clean. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05memcg, slab: do not schedule cache destruction when last page goes awayVladimir Davydov1-1/+0
This patchset is a part of preparations for kmemcg re-parenting. It targets at simplifying kmemcg work-flows and synchronization. First, it removes async per memcg cache destruction (see patches 1, 2). Now caches are only destroyed on memcg offline. That means the caches that are not empty on memcg offline will be leaked. However, they are already leaked, because memcg_cache_params::nr_pages normally never drops to 0 so the destruction work is never scheduled except kmem_cache_shrink is called explicitly. In the future I'm planning reaping such dead caches on vmpressure or periodically. Second, it substitutes per memcg slab_caches_mutex's with the global memcg_slab_mutex, which should be taken during the whole per memcg cache creation/destruction path before the slab_mutex (see patch 3). This greatly simplifies synchronization among various per memcg cache creation/destruction paths. I'm still not quite sure about the end picture, in particular I don't know whether we should reap dead memcgs' kmem caches periodically or try to merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for more details), but whichever way we choose, this set looks like a reasonable change to me, because it greatly simplifies kmemcg work-flows and eases further development. This patch (of 3): After a memcg is offlined, we mark its kmem caches that cannot be deleted right now due to pending objects as dead by setting the memcg_cache_params::dead flag, so that memcg_release_pages will schedule cache destruction (memcg_cache_params::destroy) as soon as the last slab of the cache is freed (memcg_cache_params::nr_pages drops to zero). I guess the idea was to destroy the caches as soon as possible, i.e. immediately after freeing the last object. However, it just doesn't work that way, because kmem caches always preserve some pages for the sake of performance, so that nr_pages never gets to zero unless the cache is shrunk explicitly using kmem_cache_shrink. Of course, we could account the total number of objects on the cache or check if all the slabs allocated for the cache are empty on kmem_cache_free and schedule destruction if so, but that would be too costly. Thus we have a piece of code that works only when we explicitly call kmem_cache_shrink, but complicates the whole picture a lot. Moreover, it's racy in fact. For instance, kmem_cache_shrink may free the last slab and thus schedule cache destruction before it finishes checking that the cache is empty, which can lead to use-after-free. So I propose to remove this async cache destruction from memcg_release_pages, and check if the cache is empty explicitly after calling kmem_cache_shrink instead. This will simplify things a lot w/o introducing any functional changes. And regarding dead memcg caches (i.e. those that are left hanging around after memcg offline for they have objects), I suppose we should reap them either periodically or on vmpressure as Glauber suggested initially. I'm going to implement this later. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm: get rid of __GFP_KMEMCGVladimir Davydov1-1/+1
Currently to allocate a page that should be charged to kmemcg (e.g. threadinfo), we pass __GFP_KMEMCG flag to the page allocator. The page allocated is then to be freed by free_memcg_kmem_pages. Apart from looking asymmetrical, this also requires intrusion to the general allocation path. So let's introduce separate functions that will alloc/free pages charged to kmemcg. The new functions are called alloc_kmem_pages and free_kmem_pages. They should be used when the caller actually would like to use kmalloc, but has to fall back to the page allocator for the allocation is large. They only differ from alloc_pages and free_pages in that besides allocating or freeing pages they also charge them to the kmem resource counter of the current memory cgroup. [sfr@canb.auug.org.au: export kmalloc_order() to modules] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05sl[au]b: charge slabs to kmemcg explicitlyVladimir Davydov1-11/+4
We have only a few places where we actually want to charge kmem so instead of intruding into the general page allocation path with __GFP_KMEMCG it's better to explictly charge kmem there. All kmem charges will be easier to follow that way. This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG from memcg caches' allocflags. Instead it makes slab allocation path call memcg_charge_kmem directly getting memcg to charge from the cache's memcg params. This also eliminates any possibility of misaccounting an allocation going from one memcg's cache to another memcg, because now we always charge slabs against the memcg the cache belongs to. That's why this patch removes the big comment to memcg_kmem_get_cache. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08memcg, slab: do not destroy children caches if parent has aliasesVladimir Davydov1-5/+1
Currently we destroy children caches at the very beginning of kmem_cache_destroy(). This is wrong, because the root cache will not necessarily be destroyed in the end - if it has aliases (refcount > 0), kmem_cache_destroy() will simply decrement its refcount and return. In this case, at best we will get a bunch of warnings in dmesg, like this one: kmem_cache_destroy kmalloc-32:0: Slab cache still has objects CPU: 1 PID: 7139 Comm: modprobe Tainted: G B W 3.13.0+ #117 Call Trace: dump_stack+0x49/0x5b kmem_cache_destroy+0xdf/0xf0 kmem_cache_destroy_memcg_children+0x97/0xc0 kmem_cache_destroy+0xf/0xf0 xfs_mru_cache_uninit+0x21/0x30 [xfs] exit_xfs_fs+0x2e/0xc44 [xfs] SyS_delete_module+0x198/0x1f0 system_call_fastpath+0x16/0x1b At worst - if kmem_cache_destroy() will race with an allocation from a memcg cache - the kernel will panic. This patch fixes this by moving children caches destruction after the check if the cache has aliases. Plus, it forbids destroying a root cache if it still has children caches, because each children cache keeps a reference to its parent. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08memcg, slab: separate memcg vs root cache creation pathsVladimir Davydov1-6/+0
Memcg-awareness turned kmem_cache_create() into a dirty interweaving of memcg-only and except-for-memcg calls. To clean this up, let's move the code responsible for memcg cache creation to a separate function. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08memcg, slab: cleanup memcg cache creationVladimir Davydov1-0/+9
This patch cleans up the memcg cache creation path as follows: - Move memcg cache name creation to a separate function to be called from kmem_cache_create_memcg(). This allows us to get rid of the mutex protecting the temporary buffer used for the name formatting, because the whole cache creation path is protected by the slab_mutex. - Get rid of memcg_create_kmem_cache(). This function serves as a proxy to kmem_cache_create_memcg(). After separating the cache name creation path, it would be reduced to a function call, so let's inline it. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08memcg: rename high level charging functionsMichal Hocko1-4/+4
mem_cgroup_newpage_charge is used only for charging anonymous memory so it is better to rename it to mem_cgroup_charge_anon. mem_cgroup_cache_charge is used for file backed memory so rename it to mem_cgroup_charge_file. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08memcg: get_mem_cgroup_from_mm()Johannes Weiner1-6/+0
Instead of returning NULL from try_get_mem_cgroup_from_mm() when the mm owner is exiting, just return root_mem_cgroup. This makes sense for all callsites and gets rid of some of them having to fallback manually. [fengguang.wu@intel.com: fix warnings] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-02-08cgroup: clean up cgroup_subsys names and initializationTejun Heo1-1/+1
cgroup_subsys is a bit messier than it needs to be. * The name of a subsys can be different from its internal identifier defined in cgroup_subsys.h. Most subsystems use the matching name but three - cpu, memory and perf_event - use different ones. * cgroup_subsys_id enums are postfixed with _subsys_id and each cgroup_subsys is postfixed with _subsys. cgroup.h is widely included throughout various subsystems, it doesn't and shouldn't have claim on such generic names which don't have any qualifier indicating that they belong to cgroup. * cgroup_subsys->subsys_id should always equal the matching cgroup_subsys_id enum; however, we require each controller to initialize it and then BUG if they don't match, which is a bit silly. This patch cleans up cgroup_subsys names and initialization by doing the followings. * cgroup_subsys_id enums are now postfixed with _cgrp_id, and each cgroup_subsys with _cgrp_subsys. * With the above, renaming subsys identifiers to match the userland visible names doesn't cause any naming conflicts. All non-matching identifiers are renamed to match the official names. cpu_cgroup -> cpu mem_cgroup -> memory perf -> perf_event * controllers no longer need to initialize ->subsys_id and ->name. They're generated in cgroup core and set automatically during boot. * Redundant cgroup_subsys declarations removed. * While updating BUG_ON()s in cgroup_init_early(), convert them to WARN()s. BUGging that early during boot is stupid - the kernel can't print anything, even through serial console and the trap handler doesn't even link stack frame properly for back-tracing. This patch doesn't introduce any behavior changes. v2: Rebased on top of fe1217c4f3f7 ("net: net_cls: move cgroupfs classid handling into core"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: "David S. Miller" <davem@davemloft.net> Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Aristeu Rozanski <aris@redhat.com> Acked-by: Ingo Molnar <mingo@redhat.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Thomas Graf <tgraf@suug.ch>
2014-01-24memcg, slab: clean up memcg cache initialization/destructionVladimir Davydov1-5/+4
Currently, we have rather a messy function set relating to per-memcg kmem cache initialization/destruction. Per-memcg caches are created in memcg_create_kmem_cache(). This function calls kmem_cache_create_memcg() to allocate and initialize a kmem cache and then "registers" the new cache in the memcg_params::memcg_caches array of the parent cache. During its work-flow, kmem_cache_create_memcg() executes the following memcg-related functions: - memcg_alloc_cache_params(), to initialize memcg_params of the newly created cache; - memcg_cache_list_add(), to add the new cache to the memcg_slab_caches list. On the other hand, kmem_cache_destroy() called on a cache destruction only calls memcg_release_cache(), which does all the work: it cleans the reference to the cache in its parent's memcg_params::memcg_caches, removes the cache from the memcg_slab_caches list, and frees memcg_params. Such an inconsistency between destruction and initialization paths make the code difficult to read, so let's clean this up a bit. This patch moves all the code relating to registration of per-memcg caches (adding to memcg list, setting the pointer to a cache from its parent) to the newly created memcg_register_cache() and memcg_unregister_cache() functions making the initialization and destruction paths look symmetrical. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24memcg, slab: kmem_cache_create_memcg(): fix memleak on fail pathVladimir Davydov1-5/+9
We do not free the cache's memcg_params if __kmem_cache_create fails. Fix this. Plus, rename memcg_register_cache() to memcg_alloc_cache_params(), because it actually does not register the cache anywhere, but simply initialize kmem_cache::memcg_params. [akpm@linux-foundation.org: fix build] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Glauber Costa <glommer@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-17mm: memcg: handle non-error OOM situations more gracefullyJohannes Weiner1-39/+11
Commit 3812c8c8f395 ("mm: memcg: do not trap chargers with full callstack on OOM") assumed that only a few places that can trigger a memcg OOM situation do not return VM_FAULT_OOM, like optional page cache readahead. But there are many more and it's impractical to annotate them all. First of all, we don't want to invoke the OOM killer when the failed allocation is gracefully handled, so defer the actual kill to the end of the fault handling as well. This simplifies the code quite a bit for added bonus. Second, since a failed allocation might not be the abrupt end of the fault, the memcg OOM handler needs to be re-entrant until the fault finishes for subsequent allocation attempts. If an allocation is attempted after the task already OOMed, allow it to bypass the limit so that it can quickly finish the fault and invoke the OOM killer. Reported-by: azurIt <azurit@pobox.sk> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-25revert "memcg, vmscan: integrate soft reclaim tighter with zone shrinking code"Andrew Morton1-3/+7
Revert commit 3b38722efd9f ("memcg, vmscan: integrate soft reclaim tighter with zone shrinking code") I merged this prematurely - Michal and Johannes still disagree about the overall design direction and the future remains unclear. Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-25revert "vmscan, memcg: do softlimit reclaim also for targeted reclaim"Andrew Morton1-4/+2
Revert commit a5b7c87f9207 ("vmscan, memcg: do softlimit reclaim also for targeted reclaim") I merged this prematurely - Michal and Johannes still disagree about the overall design direction and the future remains unclear. Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-25revert "memcg: enhance memcg iterator to support predicates"Andrew Morton1-43/+6
Revert commit de57780dc659 ("memcg: enhance memcg iterator to support predicates") I merged this prematurely - Michal and Johannes still disagree about the overall design direction and the future remains unclear. Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13memcg: add per cgroup writeback pages accountingSha Zhengju1-0/+1
Add memcg routines to count writeback pages, later dirty pages will also be accounted. After Kame's commit 89c06bd52fb9 ("memcg: use new logic for page stat accounting"), we can use 'struct page' flag to test page state instead of per page_cgroup flag. But memcg has a feature to move a page from a cgroup to another one and may have race between "move" and "page stat accounting". So in order to avoid the race we have designed a new lock: mem_cgroup_begin_update_page_stat() modify page information -->(a) mem_cgroup_update_page_stat() -->(b) mem_cgroup_end_update_page_stat() It requires both (a) and (b)(writeback pages accounting) to be pretected in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for !CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu read lock in the most cases (no task is moving), and spin_lock_irqsave on top in the slow path. There're two writeback interfaces to modify: test_{clear/set}_page_writeback(). And the lock order is: --> memcg->move_lock --> mapping->tree_lock Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Greg Thelen <gthelen@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13memcg: remove MEMCG_NR_FILE_MAPPEDSha Zhengju1-8/+19
While accounting memcg page stat, it's not worth to use MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the complexity and presumed performance overhead. We can use MEM_CGROUP_STAT_FILE_MAPPED directly. Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13mm: memcg: do not trap chargers with full callstack on OOMJohannes Weiner1-0/+21
The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: mem_cgroup_handle_oom+0x241/0x3b0 mem_cgroup_cache_charge+0xbe/0xe0 add_to_page_cache_locked+0x4c/0x140 add_to_page_cache_lru+0x22/0x50 grab_cache_page_write_begin+0x8b/0xe0 ext3_write_begin+0x88/0x270 generic_file_buffered_write+0x116/0x290 __generic_file_aio_write+0x27c/0x480 generic_file_aio_write+0x76/0xf0 # takes ->i_mutex do_sync_write+0xea/0x130 vfs_write+0xf3/0x1f0 sys_write+0x51/0x90 system_call_fastpath+0x18/0x1d OOM kill victim: do_truncate+0x58/0xa0 # takes i_mutex do_last+0x250/0xa30 path_openat+0xd7/0x440 do_filp_open+0x49/0xa0 do_sys_open+0x106/0x240 sys_open+0x20/0x30 system_call_fastpath+0x18/0x1d The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: azurIt <azurit@pobox.sk> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13mm: memcg: enable memcg OOM killer only for user faultsJohannes Weiner1-0/+44
System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13memcg: enhance memcg iterator to support predicatesMichal Hocko1-6/+43
The caller of the iterator might know that some nodes or even subtrees should be skipped but there is no way to tell iterators about that so the only choice left is to let iterators to visit each node and do the selection outside of the iterating code. This, however, doesn't scale well with hierarchies with many groups where only few groups are interesting. This patch adds mem_cgroup_iter_cond variant of the iterator with a callback which gets called for every visited node. There are three possible ways how the callback can influence the walk. Either the node is visited, it is skipped but the tree walk continues down the tree or the whole subtree of the current group is skipped. [hughd@google.com: fix memcg-less page reclaim] Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13vmscan, memcg: do softlimit reclaim also for targeted reclaimMichal Hocko1-2/+4
Soft reclaim has been done only for the global reclaim (both background and direct). Since "memcg: integrate soft reclaim tighter with zone shrinking code" there is no reason for this limitation anymore as the soft limit reclaim doesn't use any special code paths and it is a part of the zone shrinking code which is used by both global and targeted reclaims. From the semantic point of view it is natural to consider soft limit before touching all groups in the hierarchy tree which is touching the hard limit because soft limit tells us where to push back when there is a memory pressure. It is not important whether the pressure comes from the limit or imbalanced zones. This patch simply enables soft reclaim unconditionally in mem_cgroup_should_soft_reclaim so it is enabled for both global and targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn about the root of the reclaim to know where to stop checking soft limit state of parents up the hierarchy. Say we have A (over soft limit) \ B (below s.l., hit the hard limit) / \ C D (below s.l.) B is the source of the outside memory pressure now for D but we shouldn't soft reclaim it because it is behaving well under B subtree and we can still reclaim from C (pressumably it is over the limit). mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the hierarchy at B (root of the memory pressure). Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-13memcg, vmscan: integrate soft reclaim tighter with zone shrinking codeMichal Hocko1-7/+3
This patchset is sitting out of tree for quite some time without any objections. I would be really happy if it made it into 3.12. I do not want to push it too hard but I think this work is basically ready and waiting more doesn't help. The basic idea is quite simple. Pull soft reclaim into shrink_zone in the first step and get rid of the previous soft reclaim infrastructure. shrink_zone is done in two passes now. First it tries to do the soft limit reclaim and it falls back to reclaim-all mode if no group is over the limit or no pages have been scanned. The second pass happens at the same priority so the only time we waste is the memcg tree walk which has been updated in the third step to have only negligible overhead. As a bonus we will get rid of a _lot_ of code by this and soft reclaim will not stand out like before when it wasn't integrated into the zone shrinking code and it reclaimed at priority 0 (the testing results show that some workloads suffers from such an aggressive reclaim). The clean up is in a separate patch because I felt it would be easier to review that way. The second step is soft limit reclaim integration into targeted reclaim. It should be rather straight forward. Soft limit has been used only for the global reclaim so far but it makes sense for any kind of pressure coming from up-the-hierarchy, including targeted reclaim. The third step (patches 4-8) addresses the tree walk overhead by enhancing memcg iterators to enable skipping whole subtrees and tracking number of over soft limit children at each level of the hierarchy. This information is updated same way the old soft limit tree was updated (from memcg_check_events) so we shouldn't see an additional overhead. In fact mem_cgroup_update_soft_limit is much simpler than tree manipulation done previously. __shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for mem_cgroup_iter so the decision whether a particular group should be visited is done at the iterator level which allows us to decide to skip the whole subtree as well (if there is no child in excess). This reduces the tree walk overhead considerably. * TEST 1 ======== My primary test case was a parallel kernel build with 2 groups (make is running with -j8 with a distribution .config in a separate cgroup without any hard limit) on a 32 CPU machine booted with 1GB memory and both builds run taskset to Node 0 cpus. I was mostly interested in 2 setups. Default - no soft limit set and - and 0 soft limit set to both groups. The first one should tell us whether the rework regresses the default behavior while the second one should show us improvements in an extreme case where both workloads are always over the soft limit. /usr/bin/time -v has been used to collect the statistics and each configuration had 3 runs after fresh boot without any other load on the system. base is mmotm-2013-07-18-16-40 rework all 8 patches applied on top of base * No-limit User no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6 no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6 System no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6 no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6 Elapsed no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6 no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6 The results are within noise. Elapsed time has a bigger variance but the average looks good. * 0-limit User 0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6 0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6 System 0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6 0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6 Elapsed 0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6 0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6 The improvement is really huge here (even bigger than with my previous testing and I suspect that this highly depends on the storage). Page fault statistics tell us at least part of the story: Minor 0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6 0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6 Major 0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6 0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6 Same as with my previous testing Minor faults are more or less within noise but Major fault count is way bellow the base kernel. While this looks as a nice win it is fair to say that 0-limit configuration is quite artificial. So I was playing with 0-no-limit loads as well. * TEST 2 ======== The following results are from 2 groups configuration on a 16GB machine (single NUMA node). - A running stream IO (dd if=/dev/zero of=local.file bs=1024) with 2*TotalMem with 0 soft limit. - B running a mem_eater which consumes TotalMem-1G without any limit. The mem_eater consumes the memory in 100 chunks with 1s nap after each mmap+poppulate so that both loads have chance to fight for the memory. The expected result is that B shouldn't be reclaimed and A shouldn't see a big dropdown in elapsed time. User base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3 rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3 System base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3 rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3 Elapsed base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3 rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3 System time improved slightly as well as Elapsed. My previous testing has shown worse numbers but this again seem to depend on the storage speed. My theory is that the writeback doesn't catch up and prio-0 soft reclaim falls into wait on writeback page too often in the base kernel. The patched kernel doesn't do that because the soft reclaim is done from the kswapd/direct reclaim context. This can be seen on the following graph nicely. The A's group usage_in_bytes regurarly drops really low very often. All 3 runs http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png resp. a detail of the single run http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png mem_eater seems to be doing better as well. It gets to the full allocation size faster as can be seen on the following graph: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png /proc/meminfo collected during the test also shows that rework kernel hasn't swapped that much (well almost not at all): base: max: 123900 K avg: 56388.29 K rework: max: 300 K avg: 128.68 K kswapd and direct reclaim statistics are of no use unfortunatelly because soft reclaim is not accounted properly as the counters are hidden by global_reclaim() checks in the base kernel. * TEST 3 ======== Another test was the same configuration as TEST2 except the stream IO was replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB left. Kbuild did better with the rework kernel here as well: User base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3 rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3 System base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3 rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3 Elapsed base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3 rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3 Minor base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3 rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3 Major base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3 rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3 Again we can see a significant improvement in Elapsed (it also seems to be more stable), there is a huge dropdown for the Major page faults and much more swapping: base: max: 583736 K avg: 112547.43 K rework: max: 4012 K avg: 124.36 K Graphs from all three runs show the variability of the kbuild quite nicely. It even seems that it took longer after every run with the base kernel which would be quite surprising as the source tree for the build is removed and caches are dropped after each run so the build operates on a freshly extracted sources everytime. http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png My other testing shows that this is just a matter of timing and other runs behave differently the std for Elapsed time is similar ~50. Example of other three runs: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png So to wrap this up. The series is still doing good and improves the soft limit. The testing results for bunch of cgroups with both stream IO and kbuild loads can be found in "memcg: track children in soft limit excess to improve soft limit". This patch: Memcg soft reclaim has been traditionally triggered from the global reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim then picked up a group which exceeds the soft limit the most and reclaimed it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages. The infrastructure requires per-node-zone trees which hold over-limit groups and keep them up-to-date (via memcg_check_events) which is not cost free. Although this overhead hasn't turned out to be a bottle neck the implementation is suboptimal because mem_cgroup_update_tree has no idea which zones consumed memory over the limit so we could easily end up having a group on a node-zone tree having only few pages from that node-zone. This patch doesn't try to fix node-zone trees management because it seems that integrating soft reclaim into zone shrinking sounds much easier and more appropriate for several reasons. First of all 0 priority reclaim was a crude hack which might lead to big stalls if the group's LRUs are big and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim should be applicable also to the targeted reclaim which is awkward right now without additional hacks. Last but not least the whole infrastructure eats quite some code. After this patch shrink_zone is done in 2 passes. First it tries to do the soft reclaim if appropriate (only for global reclaim for now to keep compatible with the original state) and fall back to ignoring soft limit if no group is eligible to soft reclaim or nothing has been scanned during the first pass. Only groups which are over their soft limit or any of their parents up the hierarchy is over the limit are considered eligible during the first pass. Soft limit tree which is not necessary anymore will be removed in the follow up patch to make this patch smaller and easier to review. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-09cgroup: pass around cgroup_subsys_state instead of cgroup in file methodsTejun Heo1-1/+1
cgroup is currently in the process of transitioning to using struct cgroup_subsys_state * as the primary handle instead of struct cgroup. Please see the previous commit which converts the subsystem methods for rationale. This patch converts all cftype file operations to take @css instead of @cgroup. cftypes for the cgroup core files don't have their subsytem pointer set. These will automatically use the dummy_css added by the previous patch and can be converted the same way. Most subsystem conversions are straight forwards but there are some interesting ones. * freezer: update_if_frozen() is also converted to take @css instead of @cgroup for consistency. This will make the code look simpler too once iterators are converted to use css. * memory/vmpressure: mem_cgroup_from_css() needs to be exported to vmpressure while mem_cgroup_from_cont() can be made static. Updated accordingly. * cpu: cgroup_tg() doesn't have any user left. Removed. * cpuacct: cgroup_ca() doesn't have any user left. Removed. * hugetlb: hugetlb_cgroup_form_cgroup() doesn't have any user left. Removed. * net_cls: cgrp_cls_state() doesn't have any user left. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Aristeu Rozanski <aris@redhat.com> Acked-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Steven Rostedt <rostedt@goodmis.org>