Age | Commit message (Collapse) | Author | Files | Lines |
|
Let the file system know how much dirty data exists at the passed
in offset. This allows file systems to allocate the right amount
of space that actually is written back if they can't eagerly
convert (e.g. because they don't support unwritten extents).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20231207072710.176093-15-hch@lst.de
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The ->map_blocks interface returns a valid range for writeback, but we
still call back into it for every block, which is a bit inefficient.
Change iomap_writepage_map to use the valid range in the map until the
end of the folio or the dirty range inside the folio instead of calling
back into every block.
Note that the range is not used over folio boundaries as we need to be
able to check the mapping sequence count under the folio lock.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20231207072710.176093-14-hch@lst.de
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Back in the days when a single bio could only be filled to the hardware
limits, and we scheduled a work item for each bio completion, chaining
multiple bios for a single ioend made a lot of sense to reduce the number
of completions. But these days bios can be filled until we reach the
number of vectors or total size limit, which means we can always fit at
least 1 megabyte worth of data in the worst case, but usually a lot more
due to large folios. The only thing bio chaining is buying us now is
to reduce the size of the allocation from an ioend with an embedded bio
into a plain bio, which is a 52 bytes differences on 64-bit systems.
This is not worth the added complexity, so remove the bio chaining and
only use the bio embedded into the ioend. This will help to simplify
further changes to the iomap writeback code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20231207072710.176093-10-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The io_folios member in struct iomap_ioend counts the number of folios
added to an ioend. It is only used at submission time and can thus be
moved to iomap_writepage_ctx instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20231207072710.176093-4-hch@lst.de
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Pull block updates from Jens Axboe:
"Pretty quiet round for this release. This contains:
- Add support for zoned storage to ublk (Andreas, Ming)
- Series improving performance for drivers that mark themselves as
needing a blocking context for issue (Bart)
- Cleanup the flush logic (Chengming)
- sed opal keyring support (Greg)
- Fixes and improvements to the integrity support (Jinyoung)
- Add some exports for bcachefs that we can hopefully delete again in
the future (Kent)
- deadline throttling fix (Zhiguo)
- Series allowing building the kernel without buffer_head support
(Christoph)
- Sanitize the bio page adding flow (Christoph)
- Write back cache fixes (Christoph)
- MD updates via Song:
- Fix perf regression for raid0 large sequential writes (Jan)
- Fix split bio iostat for raid0 (David)
- Various raid1 fixes (Heinz, Xueshi)
- raid6test build fixes (WANG)
- Deprecate bitmap file support (Christoph)
- Fix deadlock with md sync thread (Yu)
- Refactor md io accounting (Yu)
- Various non-urgent fixes (Li, Yu, Jack)
- Various fixes and cleanups (Arnd, Azeem, Chengming, Damien, Li,
Ming, Nitesh, Ruan, Tejun, Thomas, Xu)"
* tag 'for-6.6/block-2023-08-28' of git://git.kernel.dk/linux: (113 commits)
block: use strscpy() to instead of strncpy()
block: sed-opal: keyring support for SED keys
block: sed-opal: Implement IOC_OPAL_REVERT_LSP
block: sed-opal: Implement IOC_OPAL_DISCOVERY
blk-mq: prealloc tags when increase tagset nr_hw_queues
blk-mq: delete redundant tagset map update when fallback
blk-mq: fix tags leak when shrink nr_hw_queues
ublk: zoned: support REQ_OP_ZONE_RESET_ALL
md: raid0: account for split bio in iostat accounting
md/raid0: Fix performance regression for large sequential writes
md/raid0: Factor out helper for mapping and submitting a bio
md raid1: allow writebehind to work on any leg device set WriteMostly
md/raid1: hold the barrier until handle_read_error() finishes
md/raid1: free the r1bio before waiting for blocked rdev
md/raid1: call free_r1bio() before allow_barrier() in raid_end_bio_io()
blk-cgroup: Fix NULL deref caused by blkg_policy_data being installed before init
drivers/rnbd: restore sysfs interface to rnbd-client
md/raid5-cache: fix null-ptr-deref for r5l_flush_stripe_to_raid()
raid6: test: only check for Altivec if building on powerpc hosts
raid6: test: make sure all intermediate and artifact files are .gitignored
...
|
|
Add a new config option that controls building the buffer_head code, and
select it from all file systems and stacking drivers that need it.
For the block device nodes and alternative iomap based buffered I/O path
is provided when buffer_head support is not enabled, and iomap needs a
a small tweak to define the IOMAP_F_BUFFER_HEAD flag to 0 to not call
into the buffer_head code when it doesn't exist.
Otherwise this is just Kconfig and ifdef changes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20230801172201.1923299-7-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
When filesystem blocksize is less than folio size (either with
mapping_large_folio_support() or with blocksize < pagesize) and when the
folio is uptodate in pagecache, then even a byte write can cause
an entire folio to be written to disk during writeback. This happens
because we currently don't have a mechanism to track per-block dirty
state within struct iomap_folio_state. We currently only track uptodate
state.
This patch implements support for tracking per-block dirty state in
iomap_folio_state->state bitmap. This should help improve the filesystem
write performance and help reduce write amplification.
Performance testing of below fio workload reveals ~16x performance
improvement using nvme with XFS (4k blocksize) on Power (64K pagesize)
FIO reported write bw scores improved from around ~28 MBps to ~452 MBps.
1. <test_randwrite.fio>
[global]
ioengine=psync
rw=randwrite
overwrite=1
pre_read=1
direct=0
bs=4k
size=1G
dir=./
numjobs=8
fdatasync=1
runtime=60
iodepth=64
group_reporting=1
[fio-run]
2. Also our internal performance team reported that this patch improves
their database workload performance by around ~83% (with XFS on Power)
Reported-by: Aravinda Herle <araherle@in.ibm.com>
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Use the size of the write as a hint for the size of the folio to create.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
IOMAP_DIO_NOSYNC earlier was added for use in btrfs. But it seems for
aio dsync writes this is not useful anyway. For aio dsync case, we
we queue the request and return -EIOCBQUEUED. Now, since IOMAP_DIO_NOSYNC
doesn't let iomap_dio_complete() to call generic_write_sync(),
hence we may lose the sync write.
Hence kill this flag as it is not in use by any FS now.
Tested-by: Disha Goel <disgoel@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Pull iomap updates from Darrick Wong:
"This is mostly rearranging things to make life easier for gfs2,
nothing all that mindblowing for this release.
- Change when the iomap page_done function is called so that we still
have a locked folio in the success case. This fixes a writeback
race in gfs2
- Change when the iomap page_prepare function is called so that gfs2
can recover from OOM scenarios more gracefully
- Rename the iomap page_ops to folio_ops, since they operate on
folios now"
* tag 'iomap-6.3-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
iomap: Rename page_ops to folio_ops
iomap: Rename page_prepare handler to get_folio
iomap: Add __iomap_get_folio helper
iomap/gfs2: Get page in page_prepare handler
iomap: Add iomap_get_folio helper
iomap: Rename page_done handler to put_folio
iomap/gfs2: Unlock and put folio in page_done handler
iomap: Add __iomap_put_folio helper
|
|
No users left now that btrfs takes REQ_OP_WRITE bios from iomap and
splits and converts them to REQ_OP_ZONE_APPEND internally.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The operations in struct page_ops all operate on folios, so rename
struct page_ops to struct folio_ops.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: port around not removing iomap_valid]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The ->page_prepare() handler in struct iomap_page_ops is now somewhat
misnamed, so rename it to ->get_folio().
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Change the iomap ->page_prepare() handler to get and return a locked
folio instead of doing that in iomap_write_begin(). This allows to
recover from out-of-memory situations in ->page_prepare(), which
eliminates the corresponding error handling code in iomap_write_begin().
The ->put_folio() handler now also isn't called with NULL as the folio
value anymore.
Filesystems are expected to use the iomap_get_folio() helper for getting
locked folios in their ->page_prepare() handlers.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Add an iomap_get_folio() helper that gets a folio reference based on
an iomap iterator and an offset into the address space. Use it in
iomap_write_begin().
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The ->page_done() handler in struct iomap_page_ops is now somewhat
misnamed in that it mainly deals with unlocking and putting a folio, so
rename it to ->put_folio().
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
When an iomap defines a ->page_done() handler in its page_ops, delegate
unlocking the folio and putting the folio reference to that handler.
This allows to fix a race between journaled data writes and folio
writeback in gfs2: before this change, gfs2_iomap_page_done() was called
after unlocking the folio, so writeback could start writing back the
folio's buffers before they could be marked for writing to the journal.
Also, try_to_free_buffers() could free the buffers before
gfs2_iomap_page_done() was done adding the buffers to the current
current transaction. With this change, gfs2_iomap_page_done() adds the
buffers to the current transaction while the folio is still locked, so
the problems described above can no longer occur.
The only current user of ->page_done() is gfs2, so other filesystems are
not affected. To catch out any out-of-tree users, switch from a page to
a folio in ->page_done().
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
A recent multithreaded write data corruption has been uncovered in
the iomap write code. The core of the problem is partial folio
writes can be flushed to disk while a new racing write can map it
and fill the rest of the page:
writeback new write
allocate blocks
blocks are unwritten
submit IO
.....
map blocks
iomap indicates UNWRITTEN range
loop {
lock folio
copyin data
.....
IO completes
runs unwritten extent conv
blocks are marked written
<iomap now stale>
get next folio
}
Now add memory pressure such that memory reclaim evicts the
partially written folio that has already been written to disk.
When the new write finally gets to the last partial page of the new
write, it does not find it in cache, so it instantiates a new page,
sees the iomap is unwritten, and zeros the part of the page that
it does not have data from. This overwrites the data on disk that
was originally written.
The full description of the corruption mechanism can be found here:
https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
To solve this problem, we need to check whether the iomap is still
valid after we lock each folio during the write. We have to do it
after we lock the page so that we don't end up with state changes
occurring while we wait for the folio to be locked.
Hence we need a mechanism to be able to check that the cached iomap
is still valid (similar to what we already do in buffered
writeback), and we need a way for ->begin_write to back out and
tell the high level iomap iterator that we need to remap the
remaining write range.
The iomap needs to grow some storage for the validity cookie that
the filesystem provides to travel with the iomap. XFS, in
particular, also needs to know some more information about what the
iomap maps (attribute extents rather than file data extents) to for
the validity cookie to cover all the types of iomaps we might need
to validate.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Because that's what Christoph wants for this error handling path
only XFS uses.
It requires a new iomap export for handling errors over delalloc
ranges. This is basically the XFS code as is stands, but even though
Christoph wants this as iomap funcitonality, we still have
to call it from the filesystem specific ->iomap_end callback, and
call into the iomap code with yet another filesystem specific
callback to punch the delalloc extent within the defined ranges.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Pull more iomap updates from Darrick Wong:
"In the past 10 days or so I've not heard any ZOMG STOP style
complaints about removing ->writepage support from gfs2 or zonefs, so
here's the pull request removing them (and the underlying fs iomap
support) from the kernel:
- Remove iomap_writepage and all callers, since the mm apparently
never called the zonefs or gfs2 writepage functions"
* tag 'iomap-6.0-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
iomap: remove iomap_writepage
zonefs: remove ->writepage
gfs2: remove ->writepage
gfs2: stop using generic_writepages in gfs2_ail1_start_one
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs iov_iter updates from Al Viro:
"Part 1 - isolated cleanups and optimizations.
One of the goals is to reduce the overhead of using ->read_iter() and
->write_iter() instead of ->read()/->write().
new_sync_{read,write}() has a surprising amount of overhead, in
particular inside iocb_flags(). That's the explanation for the
beginning of the series is in this pile; it's not directly
iov_iter-related, but it's a part of the same work..."
* tag 'pull-work.iov_iter-base' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
first_iovec_segment(): just return address
iov_iter: massage calling conventions for first_{iovec,bvec}_segment()
iov_iter: first_{iovec,bvec}_segment() - simplify a bit
iov_iter: lift dealing with maxpages out of first_{iovec,bvec}_segment()
iov_iter_get_pages{,_alloc}(): cap the maxsize with MAX_RW_COUNT
iov_iter_bvec_advance(): don't bother with bvec_iter
copy_page_{to,from}_iter(): switch iovec variants to generic
keep iocb_flags() result cached in struct file
iocb: delay evaluation of IS_SYNC(...) until we want to check IOCB_DSYNC
struct file: use anonymous union member for rcuhead and llist
btrfs: use IOMAP_DIO_NOSYNC
teach iomap_dio_rw() to suppress dsync
No need of likely/unlikely on calls of check_copy_size()
|
|
There is nothing iomap-specific about iomap_migratepage(), and it fits
a pattern used by several other filesystems, so move it to mm/migrate.c,
convert it to be filemap_migrate_folio() and convert the iomap filesystems
to use it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Unused now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
New flag, equivalent to removal of IOCB_DSYNC from iocb flags.
This mimics what btrfs is doing (and that's what btrfs will
switch to). However, I'm not at all sure that we want to
suppress REQ_FUA for those - all btrfs hack really cares about
is suppression of generic_write_sync(). For now let's keep
the existing behaviour, but I really want to hear more detailed
arguments pro or contra.
[folded brain fix from willy]
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Pull page cache updates from Matthew Wilcox:
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first
argument like ->read_folio
* tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits)
nilfs2: Fix some kernel-doc comments
Appoint myself page cache maintainer
fs: Remove aops->freepage
secretmem: Convert to free_folio
nfs: Convert to free_folio
orangefs: Convert to free_folio
fs: Add free_folio address space operation
fs: Convert drop_buffers() to use a folio
fs: Change try_to_free_buffers() to take a folio
jbd2: Convert release_buffer_page() to use a folio
jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio
reiserfs: Convert release_buffer_page() to use a folio
fs: Remove last vestiges of releasepage
ubifs: Convert to release_folio
reiserfs: Convert to release_folio
orangefs: Convert to release_folio
ocfs2: Convert to release_folio
nilfs2: Remove comment about releasepage
nfs: Convert to release_folio
jfs: Convert to release_folio
...
|
|
Allow the file system to keep state for all iterations. For now only
wire it up for direct I/O as there is an immediate need for it there.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Allow the file system to provide a specific bio_set for allocating
direct I/O bios. This will allow file systems that use the
->submit_io hook to stash away additional information for file system
use.
To make use of this additional space for information in the completion
path, the file system needs to override the ->bi_end_io callback and
then call back into iomap, so export iomap_dio_bio_end_io for that.
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Change all the filesystems which used iomap_releasepage to use the
new function.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
|
|
A straightforward conversion as iomap_readpage already worked in folios.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Use iomap_invalidate_folio() in all the iomap-based filesystems
and rename the iomap_invalidatepage tracepoint.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
|
|
Since the uptodate property is maintained on a per-folio basis, the
is_partially_uptodate method should also take a folio. Fix the types
at the same time so it's clear that it returns true/false and takes
the count in bytes, not blocks.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
|
|
Trond Myklebust reported soft lockups in XFS IO completion such as
this:
watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [kworker/12:1:3106]
CPU: 12 PID: 3106 Comm: kworker/12:1 Not tainted 4.18.0-305.10.2.el8_4.x86_64 #1
Workqueue: xfs-conv/md127 xfs_end_io [xfs]
RIP: 0010:_raw_spin_unlock_irqrestore+0x11/0x20
Call Trace:
wake_up_page_bit+0x8a/0x110
iomap_finish_ioend+0xd7/0x1c0
iomap_finish_ioends+0x7f/0xb0
xfs_end_ioend+0x6b/0x100 [xfs]
xfs_end_io+0xb9/0xe0 [xfs]
process_one_work+0x1a7/0x360
worker_thread+0x1fa/0x390
kthread+0x116/0x130
ret_from_fork+0x35/0x40
Ioends are processed as an atomic completion unit when all the
chained bios in the ioend have completed their IO. Logically
contiguous ioends can also be merged and completed as a single,
larger unit. Both of these things can be problematic as both the
bio chains per ioend and the size of the merged ioends processed as
a single completion are both unbound.
If we have a large sequential dirty region in the page cache,
write_cache_pages() will keep feeding us sequential pages and we
will keep mapping them into ioends and bios until we get a dirty
page at a non-sequential file offset. These large sequential runs
can will result in bio and ioend chaining to optimise the io
patterns. The pages iunder writeback are pinned within these chains
until the submission chaining is broken, allowing the entire chain
to be completed. This can result in huge chains being processed
in IO completion context.
We get deep bio chaining if we have large contiguous physical
extents. We will keep adding pages to the current bio until it is
full, then we'll chain a new bio to keep adding pages for writeback.
Hence we can build bio chains that map millions of pages and tens of
gigabytes of RAM if the page cache contains big enough contiguous
dirty file regions. This long bio chain pins those pages until the
final bio in the chain completes and the ioend can iterate all the
chained bios and complete them.
OTOH, if we have a physically fragmented file, we end up submitting
one ioend per physical fragment that each have a small bio or bio
chain attached to them. We do not chain these at IO submission time,
but instead we chain them at completion time based on file
offset via iomap_ioend_try_merge(). Hence we can end up with unbound
ioend chains being built via completion merging.
XFS can then do COW remapping or unwritten extent conversion on that
merged chain, which involves walking an extent fragment at a time
and running a transaction to modify the physical extent information.
IOWs, we merge all the discontiguous ioends together into a
contiguous file range, only to then process them individually as
discontiguous extents.
This extent manipulation is computationally expensive and can run in
a tight loop, so merging logically contiguous but physically
discontigous ioends gains us nothing except for hiding the fact the
fact we broke the ioends up into individual physical extents at
submission and then need to loop over those individual physical
extents at completion.
Hence we need to have mechanisms to limit ioend sizes and
to break up completion processing of large merged ioend chains:
1. bio chains per ioend need to be bound in length. Pure overwrites
go straight to iomap_finish_ioend() in softirq context with the
exact bio chain attached to the ioend by submission. Hence the only
way to prevent long holdoffs here is to bound ioend submission
sizes because we can't reschedule in softirq context.
2. iomap_finish_ioends() has to handle unbound merged ioend chains
correctly. This relies on any one call to iomap_finish_ioend() being
bound in runtime so that cond_resched() can be issued regularly as
the long ioend chain is processed. i.e. this relies on mechanism #1
to limit individual ioend sizes to work correctly.
3. filesystems have to loop over the merged ioends to process
physical extent manipulations. This means they can loop internally,
and so we break merging at physical extent boundaries so the
filesystem can easily insert reschedule points between individual
extent manipulations.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reported-and-tested-by: Trond Myklebust <trondmy@hammerspace.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull dax and libnvdimm updates from Dan Williams:
"The bulk of this is a rework of the dax_operations API after
discovering the obstacles it posed to the work-in-progress DAX+reflink
support for XFS and other copy-on-write filesystem mechanics.
Primarily the need to plumb a block_device through the API to handle
partition offsets was a sticking point and Christoph untangled that
dependency in addition to other cleanups to make landing the
DAX+reflink support easier.
The DAX_PMEM_COMPAT option has been around for 4 years and not only
are distributions shipping userspace that understand the current
configuration API, but some are not even bothering to turn this option
on anymore, so it seems a good time to remove it per the deprecation
schedule. Recall that this was added after the device-dax subsystem
moved from /sys/class/dax to /sys/bus/dax for its sysfs organization.
All recent functionality depends on /sys/bus/dax.
Some other miscellaneous cleanups and reflink prep patches are
included as well.
Summary:
- Simplify the dax_operations API:
- Eliminate bdev_dax_pgoff() in favor of the filesystem
maintaining and applying a partition offset to all its DAX iomap
operations.
- Remove wrappers and device-mapper stacked callbacks for
->copy_from_iter() and ->copy_to_iter() in favor of moving
block_device relative offset responsibility to the
dax_direct_access() caller.
- Remove the need for an @bdev in filesystem-DAX infrastructure
- Remove unused uio helpers copy_from_iter_flushcache() and
copy_mc_to_iter() as only the non-check_copy_size() versions are
used for DAX.
- Prepare XFS for the pending (next merge window) DAX+reflink support
- Remove deprecated DEV_DAX_PMEM_COMPAT support
- Cleanup a straggling misuse of the GUID api"
* tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (38 commits)
iomap: Fix error handling in iomap_zero_iter()
ACPI: NFIT: Import GUID before use
dax: remove the copy_from_iter and copy_to_iter methods
dax: remove the DAXDEV_F_SYNC flag
dax: simplify dax_synchronous and set_dax_synchronous
uio: remove copy_from_iter_flushcache() and copy_mc_to_iter()
iomap: turn the byte variable in iomap_zero_iter into a ssize_t
memremap: remove support for external pgmap refcounts
fsdax: don't require CONFIG_BLOCK
iomap: build the block based code conditionally
dax: fix up some of the block device related ifdefs
fsdax: shift partition offset handling into the file systems
dax: return the partition offset from fs_dax_get_by_bdev
iomap: add a IOMAP_DAX flag
xfs: pass the mapping flags to xfs_bmbt_to_iomap
xfs: use xfs_direct_write_iomap_ops for DAX zeroing
xfs: move dax device handling into xfs_{alloc,free}_buftarg
ext4: cleanup the dax handling in ext4_fill_super
ext2: cleanup the dax handling in ext2_fill_super
fsdax: decouple zeroing from the iomap buffered I/O code
...
|
|
XFS has the only implementation of ->discard_page today, so convert it
to use folios in the same patch as converting the API.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Keep iomap_invalidatepage around as a wrapper for use in address_space
operations.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Add a flag so that the file system can easily detect DAX operations
based just on the iomap operation requested instead of looking at
inode state using IS_DAX. This will be needed to apply the to be
added partition offset only for operations that actually use DAX,
but not things like fiemap that are based on the block device.
In the long run it should also allow turning the bdev, dax_dev
and inline_data into a union.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-25-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
|
|
Add a done_before argument to iomap_dio_rw that indicates how much of
the request has already been transferred. When the request succeeds, we
report that done_before additional bytes were tranferred. This is
useful for finishing a request asynchronously when part of the request
has already been completed synchronously.
We'll use that to allow iomap_dio_rw to be used with page faults
disabled: when a page fault occurs while submitting a request, we
synchronously complete the part of the request that has already been
submitted. The caller can then take care of the page fault and call
iomap_dio_rw again for the rest of the request, passing in the number of
bytes already tranferred.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
In iomap_dio_rw, when iomap_apply returns an -EFAULT error and the
IOMAP_DIO_PARTIAL flag is set, complete the request synchronously and
return a partial result. This allows the caller to deal with the page
fault and retry the remainder of the request.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Replace the blk_poll interface that requires the caller to keep a queue
and cookie from the submissions with polling based on the bio.
Polling for the bio itself leads to a few advantages:
- the cookie construction can made entirely private in blk-mq.c
- the caller does not need to remember the request_queue and cookie
separately and thus sidesteps their lifetime issues
- keeping the device and the cookie inside the bio allows to trivially
support polling BIOs remapping by stacking drivers
- a lot of code to propagate the cookie back up the submission path can
be removed entirely.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mark Wunderlich <mark.wunderlich@intel.com>
Link: https://lore.kernel.org/r/20211012111226.760968-15-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Switch the boolean spin argument to blk_poll to passing a set of flags
instead. This will allow to control polling behavior in a more fine
grained way.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mark Wunderlich <mark.wunderlich@intel.com>
Link: https://lore.kernel.org/r/20211012111226.760968-10-hch@lst.de
[axboe: adapt to changed io_uring iopoll]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The srcmap returned from iomap_iter_srcmap is never modified, so mark
the iomap returned from it const and constify a lot of code that never
modifies the iomap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Instead of another internal flags namespace inside of buffered-io.c,
just pass a UNSHARE hint in the main iomap flags field.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
iomap_apply is unused now, so remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[djwong: rebase this patch to preserve git history of iomap loop control]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Switch __iomap_dio_rw to use iomap_iter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The iomap_iter struct provides a convenient way to package up and
maintain all the arguments to the various mapping and operation
functions. It is operated on using the iomap_iter() function that
is called in loop until the whole range has been processed. Compared
to the existing iomap_apply() function this avoid an indirect call
for each iteration.
For now iomap_iter() calls back into the existing ->iomap_begin and
->iomap_end methods, but in the future this could be further optimized
to avoid indirect calls entirely.
Based on an earlier patch from Matthew Wilcox <willy@infradead.org>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[djwong: add to apply.c to preserve git history of iomap loop control]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
These aren't actually used by the only instance implementing the methods.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|