Age | Commit message (Collapse) | Author | Files | Lines |
|
Change the process wide cpu timers/clocks so that we:
1) don't mess up the kernel with too many threads,
2) don't have a per-cpu allocation for each process,
3) have no impact when not used.
In order to accomplish this we're going to split it into two parts:
- clocks; which can take all the time they want since they run
from user context -- ie. sys_clock_gettime(CLOCK_PROCESS_CPUTIME_ID)
- timers; which need constant time sampling but since they're
explicity used, the user can pay the overhead.
The clock readout will go back to a full sum of the thread group, while the
timers will run of a global 'clock' that only runs when needed, so only
programs that make use of the facility pay the price.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Either we bounce once cacheline per cpu per tick, yielding n^2 bounces
or we just bounce a single..
Also, using per-cpu allocations for the thread-groups complicates the
per-cpu allocator in that its currently aimed to be a fixed sized
allocator and the only possible extention to that would be vmap based,
which is seriously constrained on 32 bit archs.
So making the per-cpu memory requirement depend on the number of
processes is an issue.
Lastly, it didn't deal with cpu-hotplug, although admittedly that might
be fixable.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be). Corresponding ecryptfs fixes (by David Howells) are
here as well.
Fix refcounting. The following rules now apply:
1. The task pins the user struct.
2. The user struct pins its user namespace.
3. The user namespace pins the struct user which created it.
User namespaces are cloned during copy_creds(). Unsharing a new user_ns
is no longer possible. (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).
When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.
This incorporates a previous patch by David Howells. Here
is his original patch description:
>I suggest adding the attached incremental patch. It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
> namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
> with the other associated functions and because the 'new' in the name is
> superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
> beginning of do_fork() so that they're done prior to making any attempts
> at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
> to fill in rather than have it return the new root user. I don't imagine
> the new root user being used for anything other than filling in a cred
> struct.
>
> This also permits me to get rid of a get_uid() and a free_uid(), as the
> reference the creds were holding on the old user_struct can just be
> transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
> preparation rather than doing it in copy_creds().
>
>David
>Signed-off-by: David Howells <dhowells@redhat.com>
Changelog:
Oct 20: integrate dhowells comments
1. leave thread_keyring alone
2. use current_user_ns() in set_user()
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
|
|
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.
task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.
task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running. These are not visible
to the other tasks in the system.
__task_cred(task) then refers to the objective/real credentials of the task in
question.
current_cred() refers to the effective subjective credentials of the current
task.
prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).
override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds. These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.
In SELinux, current_has_perm() is provided as an alternative to
task_has_perm(). This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
We want to be able to control the default "rounding" that is used by
select() and poll() and friends. This is a per process property
(so that we can have a "nice" like program to start certain programs with
a looser or stricter rounding) that can be set/get via a prctl().
For this purpose, a field called "timer_slack_ns" is added to the task
struct. In addition, a field called "default_timer_slack"ns" is added
so that tasks easily can temporarily to a more/less accurate slack and then
back to the default.
The default value of the slack is set to 50 usec; this is significantly less
than 2.6.27's average select() and poll() timing error but still allows
the kernel to group timers somewhat to preserve power behavior. Applications
and admins can override this via the prctl()
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
|
|
Introduce the new PF_KTHREAD flag to mark the kernel threads. It is set
by INIT_TASK() and copied to the forked childs (we could set it in
kthreadd() along with PF_NOFREEZE instead).
daemonize() was changed as well. In that case testing of PF_KTHREAD is
racy, but daemonize() is hopeless anyway.
This flag is cleared in do_execve(), before search_binary_handler().
Probably not the best place, we can do this in exec_mmap() or in
start_thread(), or clear it along with PF_FORKNOEXEC. But I think this
doesn't matter in practice, and if do_execve() fails kthread should die
soon.
Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ptrace no longer fiddles with the children/sibling links, and the
old ptrace_children list is gone. Now ptrace, whether of one's own
children or another's via PTRACE_ATTACH, just uses the new ptraced
list instead.
There should be no user-visible difference that matters. The only
change is the order in which do_wait() sees multiple stopped
children and stopped ptrace attachees. Since wait_task_stopped()
was changed earlier so it no longer reorders the children list, we
already know this won't cause any new problems.
Signed-off-by: Roland McGrath <roland@redhat.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Initial splitoff of the low-level stuff; taken to fdtable.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Filesystem capability support makes it possible to do away with (set)uid-0
based privilege and use capabilities instead. That is, with filesystem
support for capabilities but without this present patch, it is (conceptually)
possible to manage a system with capabilities alone and never need to obtain
privilege via (set)uid-0.
Of course, conceptually isn't quite the same as currently possible since few
user applications, certainly not enough to run a viable system, are currently
prepared to leverage capabilities to exercise privilege. Further, many
applications exist that may never get upgraded in this way, and the kernel
will continue to want to support their setuid-0 base privilege needs.
Where pure-capability applications evolve and replace setuid-0 binaries, it is
desirable that there be a mechanisms by which they can contain their
privilege. In addition to leveraging the per-process bounding and inheritable
sets, this should include suppressing the privilege of the uid-0 superuser
from the process' tree of children.
The feature added by this patch can be leveraged to suppress the privilege
associated with (set)uid-0. This suppression requires CAP_SETPCAP to
initiate, and only immediately affects the 'current' process (it is inherited
through fork()/exec()). This reimplementation differs significantly from the
historical support for securebits which was system-wide, unwieldy and which
has ultimately withered to a dead relic in the source of the modern kernel.
With this patch applied a process, that is capable(CAP_SETPCAP), can now drop
all legacy privilege (through uid=0) for itself and all subsequently
fork()'d/exec()'d children with:
prctl(PR_SET_SECUREBITS, 0x2f);
This patch represents a no-op unless CONFIG_SECURITY_FILE_CAPABILITIES is
enabled at configure time.
[akpm@linux-foundation.org: fix uninitialised var warning]
[serue@us.ibm.com: capabilities: use cap_task_prctl when !CONFIG_SECURITY]
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Reviewed-by: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
De-couple load-balancing from the rb-trees, so that I can change their
organization.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The capability bounding set is a set beyond which capabilities cannot grow.
Currently cap_bset is per-system. It can be manipulated through sysctl,
but only init can add capabilities. Root can remove capabilities. By
default it includes all caps except CAP_SETPCAP.
This patch makes the bounding set per-process when file capabilities are
enabled. It is inherited at fork from parent. Noone can add elements,
CAP_SETPCAP is required to remove them.
One example use of this is to start a safer container. For instance, until
device namespaces or per-container device whitelists are introduced, it is
best to take CAP_MKNOD away from a container.
The bounding set will not affect pP and pE immediately. It will only
affect pP' and pE' after subsequent exec()s. It also does not affect pI,
and exec() does not constrain pI'. So to really start a shell with no way
of regain CAP_MKNOD, you would do
prctl(PR_CAPBSET_DROP, CAP_MKNOD);
cap_t cap = cap_get_proc();
cap_value_t caparray[1];
caparray[0] = CAP_MKNOD;
cap_set_flag(cap, CAP_INHERITABLE, 1, caparray, CAP_DROP);
cap_set_proc(cap);
cap_free(cap);
The following test program will get and set the bounding
set (but not pI). For instance
./bset get
(lists capabilities in bset)
./bset drop cap_net_raw
(starts shell with new bset)
(use capset, setuid binary, or binary with
file capabilities to try to increase caps)
************************************************************
cap_bound.c
************************************************************
#include <sys/prctl.h>
#include <linux/capability.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef PR_CAPBSET_READ
#define PR_CAPBSET_READ 23
#endif
#ifndef PR_CAPBSET_DROP
#define PR_CAPBSET_DROP 24
#endif
int usage(char *me)
{
printf("Usage: %s get\n", me);
printf(" %s drop <capability>\n", me);
return 1;
}
#define numcaps 32
char *captable[numcaps] = {
"cap_chown",
"cap_dac_override",
"cap_dac_read_search",
"cap_fowner",
"cap_fsetid",
"cap_kill",
"cap_setgid",
"cap_setuid",
"cap_setpcap",
"cap_linux_immutable",
"cap_net_bind_service",
"cap_net_broadcast",
"cap_net_admin",
"cap_net_raw",
"cap_ipc_lock",
"cap_ipc_owner",
"cap_sys_module",
"cap_sys_rawio",
"cap_sys_chroot",
"cap_sys_ptrace",
"cap_sys_pacct",
"cap_sys_admin",
"cap_sys_boot",
"cap_sys_nice",
"cap_sys_resource",
"cap_sys_time",
"cap_sys_tty_config",
"cap_mknod",
"cap_lease",
"cap_audit_write",
"cap_audit_control",
"cap_setfcap"
};
int getbcap(void)
{
int comma=0;
unsigned long i;
int ret;
printf("i know of %d capabilities\n", numcaps);
printf("capability bounding set:");
for (i=0; i<numcaps; i++) {
ret = prctl(PR_CAPBSET_READ, i);
if (ret < 0)
perror("prctl");
else if (ret==1)
printf("%s%s", (comma++) ? ", " : " ", captable[i]);
}
printf("\n");
return 0;
}
int capdrop(char *str)
{
unsigned long i;
int found=0;
for (i=0; i<numcaps; i++) {
if (strcmp(captable[i], str) == 0) {
found=1;
break;
}
}
if (!found)
return 1;
if (prctl(PR_CAPBSET_DROP, i)) {
perror("prctl");
return 1;
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc<2)
return usage(argv[0]);
if (strcmp(argv[1], "get")==0)
return getbcap();
if (strcmp(argv[1], "drop")!=0 || argc<3)
return usage(argv[0]);
if (capdrop(argv[2])) {
printf("unknown capability\n");
return 1;
}
return execl("/bin/bash", "/bin/bash", NULL);
}
************************************************************
[serue@us.ibm.com: fix typo]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew G. Morgan <morgan@kernel.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Casey Schaufler <casey@schaufler-ca.com>a
Signed-off-by: "Serge E. Hallyn" <serue@us.ibm.com>
Tested-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In order to correlate audit records to an individual login add a session
id. This is incremented every time a user logs in and is included in
almost all messages which currently output the auid. The field is
labeled ses= or oses=
Signed-off-by: Eric Paris <eparis@redhat.com>
|
|
Keeping loginuid in audit_context is racy and results in messier
code. Taken to task_struct, out of the way of ->audit_context
changes.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This is where it belongs and then it doesn't take up space for a
process that doesn't do IO.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
|
|
Extend group scheduling to also cover the realtime classes. It uses the time
limiting introduced by the previous patch to allow multiple realtime groups.
The hard time limit is required to keep behaviour deterministic.
The algorithms used make the realtime scheduler O(tg), linear scaling wrt the
number of task groups. This is the worst case behaviour I can't seem to get out
of, the avg. case of the algorithms can be improved, I focused on correctness
and worst case.
[ akpm@linux-foundation.org: move side-effects out of BUG_ON(). ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Move the task_struct members specific to rt scheduling together.
A future optimization could be to put sched_entity and sched_rt_entity
into a union.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Some RT tasks (particularly kthreads) are bound to one specific CPU.
It is fairly common for two or more bound tasks to get queued up at the
same time. Consider, for instance, softirq_timer and softirq_sched. A
timer goes off in an ISR which schedules softirq_thread to run at RT50.
Then the timer handler determines that it's time to smp-rebalance the
system so it schedules softirq_sched to run. So we are in a situation
where we have two RT50 tasks queued, and the system will go into
rt-overload condition to request other CPUs for help.
This causes two problems in the current code:
1) If a high-priority bound task and a low-priority unbounded task queue
up behind the running task, we will fail to ever relocate the unbounded
task because we terminate the search on the first unmovable task.
2) We spend precious futile cycles in the fast-path trying to pull
overloaded tasks over. It is therefore optimial to strive to avoid the
overhead all together if we can cheaply detect the condition before
overload even occurs.
This patch tries to achieve this optimization by utilizing the hamming
weight of the task->cpus_allowed mask. A weight of 1 indicates that
the task cannot be migrated. We will then utilize this information to
skip non-migratable tasks and to eliminate uncessary rebalance attempts.
We introduce a per-rq variable to count the number of migratable tasks
that are currently running. We only go into overload if we have more
than one rt task, AND at least one of them is migratable.
In addition, we introduce a per-task variable to cache the cpus_allowed
weight, since the hamming calculation is probably relatively expensive.
We only update the cached value when the mask is updated which should be
relatively infrequent, especially compared to scheduling frequency
in the fast path.
Signed-off-by: Gregory Haskins <ghaskins@novell.com>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The pgrp field is not used widely around the kernel so it is now marked as
deprecated with appropriate comment.
The initialization of INIT_SIGNALS is trimmed because
a) they are set to 0 automatically;
b) gcc cannot properly initialize two anonymous (the second one
is the one with the session) unions. In this particular case
to make it compile we'd have to add some field initialized
right before the .pgrp.
This is the same patch as the 1ec320afdc9552c92191d5f89fcd1ebe588334ca one
(from Cedric), but for the pgrp field.
Some progress report:
We have to deprecate the pid, tgid, session and pgrp fields on struct
task_struct and struct signal_struct. The session and pgrp are already
deprecated. The tgid value is close to being such - the worst known usage
in in fs/locks.c and audit code. The pid field deprecation is mainly
blocked by numerous printk-s around the kernel that print the tsk->pid to
log.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since we've switched from using pid->nr to pid->upids->nr some
fields on struct pid are no longer needed
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since task will be visible from different pid namespaces each of them have to
be addressed by multiple pids. struct upid is to store the information about
which id refers to which namespace.
The constuciton looks like this. Each struct pid carried the reference
counter and the list of tasks attached to this pid. At its end it has a
variable length array of struct upid-s. Each struct upid has a numerical id
(pid itself), pointer to the namespace, this ID is valid in and is hashed into
a pid_hash for searching the pids.
The nr and pid_chain fields are kept in struct pid for a while to make kernel
still work (no patch initialize the upids yet), but it will be removed at the
end of this series when we switch to upids completely.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Paul Menage <menage@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The nslock spinlock is not used in the kernel at all. Remove it.
Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Based on ideas of Andrew:
http://marc.info/?l=linux-kernel&m=102912915020543&w=2
Scale the bdi dirty limit inversly with the tasks dirty rate.
This makes heavy writers have a lower dirty limit than the occasional writer.
Andrea proposed something similar:
http://lwn.net/Articles/152277/
The main disadvantage to his patch is that he uses an unrelated quantity to
measure time, which leaves him with a workload dependant tunable. Other than
that the two approaches appear quite similar.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When CONFIG_NET=no, init_net is unresolved because net_namespace.c
is not compiled and the include pull init_net definition.
This problem was very similar with the ipc namespace where the kernel
can be compiled with SYSV ipc out.
This patch fix that defining a macro which simply remove init_net
initialization from nsproxy namespace aggregator.
Compiled and booted on qemu-i386 with CONFIG_NET=no and CONFIG_NET=yes.
Signed-off-by: Daniel Lezcano <dlezcano@fr.ibm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is the network namespace from which all which all sockets
and anything else under user control ultimately get their network
namespace parameters.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This simplifies signalfd code, by avoiding it to remain attached to the
sighand during its lifetime.
In this way, the signalfd remain attached to the sighand only during
poll(2) (and select and epoll) and read(2). This also allows to remove
all the custom "tsk == current" checks in kernel/signal.c, since
dequeue_signal() will only be called by "current".
I think this is also what Ben was suggesting time ago.
The external effect of this, is that a thread can extract only its own
private signals and the group ones. I think this is an acceptable
behaviour, in that those are the signals the thread would be able to
fetch w/out signalfd.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Basically, it will allow a process to unshare its user_struct table,
resetting at the same time its own user_struct and all the associated
accounting.
A new root user (uid == 0) is added to the user namespace upon creation.
Such root users have full privileges and it seems that theses privileges
should be controlled through some means (process capabilities ?)
The unshare is not included in this patch.
Changes since [try #4]:
- Updated get_user_ns and put_user_ns to accept NULL, and
get_user_ns to return the namespace.
Changes since [try #3]:
- moved struct user_namespace to files user_namespace.{c,h}
Changes since [try #2]:
- removed struct user_namespace* argument from find_user()
Changes since [try #1]:
- removed struct user_namespace* argument from find_user()
- added a root_user per user namespace
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: Pavel Emelianov <xemul@openvz.org>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Kirill Korotaev <dev@sw.ru>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Andrew Morgan <agm@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch series implements the new signalfd() system call.
I took part of the original Linus code (and you know how badly it can be
broken :), and I added even more breakage ;) Signals are fetched from the same
signal queue used by the process, so signalfd will compete with standard
kernel delivery in dequeue_signal(). If you want to reliably fetch signals on
the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This
seems to be working fine on my Dual Opteron machine. I made a quick test
program for it:
http://www.xmailserver.org/signafd-test.c
The signalfd() system call implements signal delivery into a file descriptor
receiver. The signalfd file descriptor if created with the following API:
int signalfd(int ufd, const sigset_t *mask, size_t masksize);
The "ufd" parameter allows to change an existing signalfd sigmask, w/out going
to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new
signalfd file.
The "mask" allows to specify the signal mask of signals that we are interested
in. The "masksize" parameter is the size of "mask".
The signalfd fd supports the poll(2) and read(2) system calls. The poll(2)
will return POLLIN when signals are available to be dequeued. As a direct
consequence of supporting the Linux poll subsystem, the signalfd fd can use
used together with epoll(2) too.
The read(2) system call will return a "struct signalfd_siginfo" structure in
the userspace supplied buffer. The return value is the number of bytes copied
in the supplied buffer, or -1 in case of error. The read(2) call can also
return 0, in case the sighand structure to which the signalfd was attached,
has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will
return -EAGAIN in case no signal is available.
If the size of the buffer passed to read(2) is lower than sizeof(struct
signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also
return -ERESTARTSYS in case a signal hits the process. The format of the
struct signalfd_siginfo is, and the valid fields depends of the (->code &
__SI_MASK) value, in the same way a struct siginfo would:
struct signalfd_siginfo {
__u32 signo; /* si_signo */
__s32 err; /* si_errno */
__s32 code; /* si_code */
__u32 pid; /* si_pid */
__u32 uid; /* si_uid */
__s32 fd; /* si_fd */
__u32 tid; /* si_fd */
__u32 band; /* si_band */
__u32 overrun; /* si_overrun */
__u32 trapno; /* si_trapno */
__s32 status; /* si_status */
__s32 svint; /* si_int */
__u64 svptr; /* si_ptr */
__u64 utime; /* si_utime */
__u64 stime; /* si_stime */
__u64 addr; /* si_addr */
};
[akpm@linux-foundation.org: fix signalfd_copyinfo() on i386]
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove initialization of pgrp and __session in INIT_SIGNALS, as these are
later set by the call to __set_special_pids() in init/main.c by the patch:
explicitly-set-pgid-and-sid-of-init-process.patch
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Statically initialize a struct pid for the swapper process (pid_t == 0) and
attach it to init_task. This is needed so task_pid(), task_pgrp() and
task_session() interfaces work on the swapper process also.
Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Cc: Serge Hallyn <serue@us.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: <containers@lists.osdl.org>
Acked-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This finally renames the thread_info field in task structure to stack, so that
the assumptions about this field are gone and archs have more freedom about
placing the thread_info structure.
Nonbroken archs which have a proper thread pointer can do the access to both
current thread and task structure via a single pointer.
It'll allow for a few more cleanups of the fork code, from which e.g. ia64
could benefit.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
[akpm@linux-foundation.org: build fix]
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Andi Kleen <ak@muc.de>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
SPIN_LOCK_UNLOCKED cleanup,use __SPIN_LOCK_UNLOCKED instead
Signed-off-by: Milind Arun Choudhary <milindchoudhary@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Of kernel subsystems that work with pids the tty layer is probably the largest
consumer. But it has the nice virtue that the assiation with a session only
lasts until the session leader exits. Which means that no reference counting
is required. So using struct pid winds up being a simple optimization to
avoid hash table lookups.
In the long term the use of pid_nr also ensures that when we have multiple pid
spaces mixed everything will work correctly.
Signed-off-by: Eric W. Biederman <eric@maxwell.lnxi.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This reverts commit 373beb35cd6b625e0ba4ad98baace12310a26aa8.
No one is using this identifier yet. The purpose of this identifier is to
export nsproxy to user space which is wrong. nsproxy is an internal
implementation optimization, which should keep our fork times from getting
slower as we increase the number of global namespaces you don't have to
share.
Adding a global identifier like this is inappropriate because it makes
namespaces inherently non-recursive, greatly limiting what we can do with
them in the future.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
An fdtable can either be embedded inside a files_struct or standalone (after
being expanded). When an fdtable is being discarded after all RCU references
to it have expired, we must either free it directly, in the standalone case,
or free the files_struct it is contained within, in the embedded case.
Currently the free_files field controls this behavior, but we can get rid of
it entirely, as all the necessary information is already recorded. We can
distinguish embedded and standalone fdtables using max_fds, and if it is
embedded we can divine the relevant files_struct using container_of().
Signed-off-by: Vadim Lobanov <vlobanov@speakeasy.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Currently, each fdtable supports three dynamically-sized arrays of data: the
fdarray and two fdsets. The code allows the number of fds supported by the
fdarray (fdtable->max_fds) to differ from the number of fds supported by each
of the fdsets (fdtable->max_fdset).
In practice, it is wasteful for these two sizes to differ: whenever we hit a
limit on the smaller-capacity structure, we will reallocate the entire fdtable
and all the dynamic arrays within it, so any delta in the memory used by the
larger-capacity structure will never be touched at all.
Rather than hogging this excess, we shouldn't even allocate it in the first
place, and keep the capacities of the fdarray and the fdsets equal. This
patch removes fdtable->max_fdset. As an added bonus, most of the supporting
code becomes simpler.
Signed-off-by: Vadim Lobanov <vlobanov@speakeasy.net>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add the pid namespace framework to the nsproxy object. The copy of the pid
namespace only increases the refcount on the global pid namespace,
init_pid_ns, and unshare is not implemented.
There is no configuration option to activate or deactivate this feature
because this not relevant for the moment.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add an identifier to nsproxy. The default init_ns_proxy has identifier 0 and
allocated nsproxies are given -1.
This identifier will be used by a new syscall sys_bind_ns.
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Rename 'struct namespace' to 'struct mnt_namespace' to avoid confusion with
other namespaces being developped for the containers : pid, uts, ipc, etc.
'namespace' variables and attributes are also renamed to 'mnt_ns'
Signed-off-by: Kirill Korotaev <dev@sw.ru>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add an anonymous union and ((deprecated)) to catch direct usage of the
session field.
[akpm@osdl.org: fix various missed conversions]
[jdike@addtoit.com: fix UML bug]
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Name some of the remaning 'old_style_spin_init' locks
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds basic IPC namespace functionality to
IPC utils:
- init_ipc_ns
- copy/clone/unshare/free IPC ns
- /proc preparations
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Cedric Le Goater <clg@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch set allows to unshare IPCs and have a private set of IPC objects
(sem, shm, msg) inside namespace. Basically, it is another building block of
containers functionality.
This patch implements core IPC namespace changes:
- ipc_namespace structure
- new config option CONFIG_IPC_NS
- adds CLONE_NEWIPC flag
- unshare support
[clg@fr.ibm.com: small fix for unshare of ipc namespace]
[akpm@osdl.org: build fix]
Signed-off-by: Pavel Emelianov <xemul@openvz.org>
Signed-off-by: Kirill Korotaev <dev@openvz.org>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch defines the uts namespace and some manipulators.
Adds the uts namespace to task_struct, and initializes a
system-wide init namespace.
It leaves a #define for system_utsname so sysctl will compile.
This define will be removed in a separate patch.
[akpm@osdl.org: build fix, cleanup]
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andrey Savochkin <saw@sw.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This moves the mount namespace into the nsproxy. The mount namespace count
now refers to the number of nsproxies point to it, rather than the number of
tasks. As a result, the unshare_namespace() function in kernel/fork.c no
longer checks whether it is being shared.
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andrey Savochkin <saw@sw.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds a nsproxy structure to the task struct. Later patches will
move the fs namespace pointer into this structure, and introduce a new utsname
namespace into the nsproxy.
The vserver and openvz functionality, then, would be implemented in large part
by virtualizing/isolating more and more resources into namespaces, each
contained in the nsproxy.
[akpm@osdl.org: build fix]
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andrey Savochkin <saw@sw.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|