Age | Commit message (Collapse) | Author | Files | Lines |
|
In recent discussions around some performance improvements in the file
handling area we discussed switching the file cache to rely on
SLAB_TYPESAFE_BY_RCU which allows us to get rid of call_rcu() based
freeing for files completely. This is a pretty sensitive change overall
but it might actually be worth doing.
The main downside is the subtlety. The other one is that we should
really wait for Jann's patch to land that enables KASAN to handle
SLAB_TYPESAFE_BY_RCU UAFs. Currently it doesn't but a patch for this
exists.
With SLAB_TYPESAFE_BY_RCU objects may be freed and reused multiple times
which requires a few changes. So it isn't sufficient anymore to just
acquire a reference to the file in question under rcu using
atomic_long_inc_not_zero() since the file might have already been
recycled and someone else might have bumped the reference.
In other words, callers might see reference count bumps from newer
users. For this reason it is necessary to verify that the pointer is the
same before and after the reference count increment. This pattern can be
seen in get_file_rcu() and __files_get_rcu().
In addition, it isn't possible to access or check fields in struct file
without first aqcuiring a reference on it. Not doing that was always
very dodgy and it was only usable for non-pointer data in struct file.
With SLAB_TYPESAFE_BY_RCU it is necessary that callers first acquire a
reference under rcu or they must hold the files_lock of the fdtable.
Failing to do either one of this is a bug.
Thanks to Jann for pointing out that we need to ensure memory ordering
between reallocations and pointer check by ensuring that all subsequent
loads have a dependency on the second load in get_file_rcu() and
providing a fixup that was folded into this patch.
Cc: Jann Horn <jannh@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Currently we have 3 primitives for removing an opened file from descriptor
table - pick_file(), __close_fd_get_file() and close_fd_get_file(). Their
calling conventions are rather odd and there's a code duplication for no
good reason. They can be unified -
1) have __range_close() cap max_fd in the very beginning; that way
we don't need separate way for pick_file() to report being past the end
of descriptor table.
2) make {__,}close_fd_get_file() return file (or NULL) directly, rather
than returning it via struct file ** argument. Don't bother with
(bogus) return value - nobody wants that -ENOENT.
3) make pick_file() return NULL on unopened descriptor - the only caller
that used to care about the distinction between descriptor past the end
of descriptor table and finding NULL in descriptor table doesn't give
a damn after (1).
4) lift ->files_lock out of pick_file()
That actually simplifies the callers, as well as the primitives themselves.
Code duplication is also gone...
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When discussing[1] exec and posix file locks it was realized that none
of the callers of get_files_struct fundamentally needed to call
get_files_struct, and that by switching them to helper functions
instead it will both simplify their code and remove unnecessary
increments of files_struct.count. Those unnecessary increments can
result in exec unnecessarily unsharing files_struct which breaking
posix locks, and it can result in fget_light having to fallback to
fget reducing system performance.
Now that get_files_struct has no more users and can not cause the
problems for posix file locking and fget_light remove get_files_struct
so that it does not gain any new users.
[1] https://lkml.kernel.org/r/20180915160423.GA31461@redhat.com
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-13-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-24-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function close_fd_get_file is explicitly a variant of
__close_fd[1]. Now that __close_fd has been renamed close_fd, rename
close_fd_get_file to be consistent with close_fd.
When __alloc_fd, __close_fd and __fd_install were introduced the
double underscore indicated that the function took a struct
files_struct parameter. The function __close_fd_get_file never has so
the naming has always been inconsistent. This just cleans things up
so there are not any lingering mentions or references __close_fd left
in the code.
[1] 80cd795630d6 ("binder: fix use-after-free due to ksys_close() during fdget()")
Link: https://lkml.kernel.org/r/20201120231441.29911-23-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function __close_fd was added to support binder[1]. Now that
binder has been fixed to no longer need __close_fd[2] all calls
to __close_fd pass current->files.
Therefore transform the files parameter into a local variable
initialized to current->files, and rename __close_fd to close_fd to
reflect this change, and keep it in sync with the similar changes to
__alloc_fd, and __fd_install.
This removes the need for callers to care about the extra care that
needs to be take if anything except current->files is passed, by
limiting the callers to only operation on current->files.
[1] 483ce1d4b8c3 ("take descriptor-related part of close() to file.c")
[2] 44d8047f1d87 ("binder: use standard functions to allocate fds")
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-17-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-21-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function __alloc_fd was added to support binder[1]. With binder
fixed[2] there are no more users.
As alloc_fd just calls __alloc_fd with "files=current->files",
merge them together by transforming the files parameter into a
local variable initialized to current->files.
[1] dcfadfa4ec5a ("new helper: __alloc_fd()")
[2] 44d8047f1d87 ("binder: use standard functions to allocate fds")
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-16-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-20-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function __fd_install was added to support binder[1]. With binder
fixed[2] there are no more users.
As fd_install just calls __fd_install with "files=current->files",
merge them together by transforming the files parameter into a
local variable initialized to current->files.
[1] f869e8a7f753 ("expose a low-level variant of fd_install() for binder")
[2] 44d8047f1d87 ("binder: use standard functions to allocate fds")
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1:https://lkml.kernel.org/r/20200817220425.9389-14-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-18-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
As a companion to fget_task and task_lookup_fd_rcu implement
task_lookup_next_fd_rcu that will return the struct file for the first
file descriptor number that is equal or greater than the fd argument
value, or NULL if there is no such struct file.
This allows file descriptors of foreign processes to be iterated
through safely, without needed to increment the count on files_struct.
Some concern[1] has been expressed that this function takes the task_lock
for each iteration and thus for each file descriptor. This place
where this function will be called in a commonly used code path is for
listing /proc/<pid>/fd. I did some small benchmarks and did not see
any measurable performance differences. For ordinary users ls is
likely to stat each of the directory entries and tid_fd_mode called
from tid_fd_revalidae has always taken the task lock for each file
descriptor. So this does not look like it will be a big change in
practice.
At some point is will probably be worth changing put_files_struct to
free files_struct after an rcu grace period so that task_lock won't be
needed at all.
[1] https://lkml.kernel.org/r/20200817220425.9389-10-ebiederm@xmission.com
v1: https://lkml.kernel.org/r/20200817220425.9389-9-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-14-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
As a companion to lookup_fd_rcu implement task_lookup_fd_rcu for
querying an arbitrary process about a specific file.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200818103713.aw46m7vprsy4vlve@wittgenstein
Link: https://lkml.kernel.org/r/20201120231441.29911-11-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Also remove the confusing comment about checking if a fd exists. I
could not find one instance in the entire kernel that still matches
the description or the reason for the name fcheck.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-10-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
This change renames fcheck_files to files_lookup_fd_rcu. All of the
remaining callers take the rcu_read_lock before calling this function
so the _rcu suffix is appropriate. This change also tightens up the
debug check to verify that all callers hold the rcu_read_lock.
All callers that used to call files_check with the files->file_lock
held have now been changed to call files_lookup_fd_locked.
This change of name has helped remind me of which locks and which
guarantees are in place helping me to catch bugs later in the
patchset.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-9-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
To make it easy to tell where files->file_lock protection is being
used when looking up a file create files_lookup_fd_locked. Only allow
this function to be called with the file_lock held.
Update the callers of fcheck and fcheck_files that are called with the
files->file_lock held to call files_lookup_fd_locked instead.
Hopefully this makes it easier to quickly understand what is going on.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-8-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
The function fcheck despite it's comment is poorly named
as it has no callers that only check it's return value.
All of fcheck's callers use the returned file descriptor.
The same is true for fcheck_files and __fcheck_files.
A new less confusing name is needed. In addition the names
of these functions are confusing as they do not report
the kind of locks that are needed to be held when these
functions are called making error prone to use them.
To remedy this I am making the base functio name lookup_fd
and will and prefixes and sufficies to indicate the rest
of the context.
Name the function (previously called __fcheck_files) that proceeds
from a struct files_struct, looks up the struct file of a file
descriptor, and requires it's callers to verify all of the appropriate
locks are held files_lookup_fd_raw.
The need for better names became apparent in the last round of
discussion of this set of changes[1].
[1] https://lkml.kernel.org/r/CAHk-=wj8BQbgJFLa+J0e=iT-1qpmCRTbPAJ8gd6MJQ=kbRPqyQ@mail.gmail.com
Link: https://lkml.kernel.org/r/20201120231441.29911-7-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Now that exec no longer needs to restore the previous value of current->files
on error there are no more callers of reset_files_struct so remove it.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-3-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-3-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Now that exec no longer needs to return the unshared files to their
previous value there is no reason to return displaced.
Instead when unshare_fd creates a copy of the file table, call
put_files_struct before returning from unshare_files.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
v1: https://lkml.kernel.org/r/20200817220425.9389-2-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20201120231441.29911-2-ebiederm@xmission.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
One of the use-cases of close_range() is to drop file descriptors just before
execve(). This would usually be expressed in the sequence:
unshare(CLONE_FILES);
close_range(3, ~0U);
as pointed out by Linus it might be desirable to have this be a part of
close_range() itself under a new flag CLOSE_RANGE_UNSHARE.
This expands {dup,unshare)_fd() to take a max_fds argument that indicates the
maximum number of file descriptors to copy from the old struct files. When the
user requests that all file descriptors are supposed to be closed via
close_range(min, max) then we can cap via unshare_fd(min) and hence don't need
to do any of the heavy fput() work for everything above min.
The patch makes it so that if CLOSE_RANGE_UNSHARE is requested and we do in
fact currently share our file descriptor table we create a new private copy.
We then close all fds in the requested range and finally after we're done we
install the new fd table.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
|
|
This adds the close_range() syscall. It allows to efficiently close a range
of file descriptors up to all file descriptors of a calling task.
I was contacted by FreeBSD as they wanted to have the same close_range()
syscall as we proposed here. We've coordinated this and in the meantime, Kyle
was fast enough to merge close_range() into FreeBSD already in April:
https://reviews.freebsd.org/D21627
https://svnweb.freebsd.org/base?view=revision&revision=359836
and the current plan is to backport close_range() to FreeBSD 12.2 (cf. [2])
once its merged in Linux too. Python is in the process of switching to
close_range() on FreeBSD and they are waiting on us to merge this to switch on
Linux as well: https://bugs.python.org/issue38061
The syscall came up in a recent discussion around the new mount API and
making new file descriptor types cloexec by default. During this
discussion, Al suggested the close_range() syscall (cf. [1]). Note, a
syscall in this manner has been requested by various people over time.
First, it helps to close all file descriptors of an exec()ing task. This
can be done safely via (quoting Al's example from [1] verbatim):
/* that exec is sensitive */
unshare(CLONE_FILES);
/* we don't want anything past stderr here */
close_range(3, ~0U);
execve(....);
The code snippet above is one way of working around the problem that file
descriptors are not cloexec by default. This is aggravated by the fact that
we can't just switch them over without massively regressing userspace. For
a whole class of programs having an in-kernel method of closing all file
descriptors is very helpful (e.g. demons, service managers, programming
language standard libraries, container managers etc.).
(Please note, unshare(CLONE_FILES) should only be needed if the calling
task is multi-threaded and shares the file descriptor table with another
thread in which case two threads could race with one thread allocating file
descriptors and the other one closing them via close_range(). For the
general case close_range() before the execve() is sufficient.)
Second, it allows userspace to avoid implementing closing all file
descriptors by parsing through /proc/<pid>/fd/* and calling close() on each
file descriptor. From looking at various large(ish) userspace code bases
this or similar patterns are very common in:
- service managers (cf. [4])
- libcs (cf. [6])
- container runtimes (cf. [5])
- programming language runtimes/standard libraries
- Python (cf. [2])
- Rust (cf. [7], [8])
As Dmitry pointed out there's even a long-standing glibc bug about missing
kernel support for this task (cf. [3]).
In addition, the syscall will also work for tasks that do not have procfs
mounted and on kernels that do not have procfs support compiled in. In such
situations the only way to make sure that all file descriptors are closed
is to call close() on each file descriptor up to UINT_MAX or RLIMIT_NOFILE,
OPEN_MAX trickery (cf. comment [8] on Rust).
The performance is striking. For good measure, comparing the following
simple close_all_fds() userspace implementation that is essentially just
glibc's version in [6]:
static int close_all_fds(void)
{
int dir_fd;
DIR *dir;
struct dirent *direntp;
dir = opendir("/proc/self/fd");
if (!dir)
return -1;
dir_fd = dirfd(dir);
while ((direntp = readdir(dir))) {
int fd;
if (strcmp(direntp->d_name, ".") == 0)
continue;
if (strcmp(direntp->d_name, "..") == 0)
continue;
fd = atoi(direntp->d_name);
if (fd == dir_fd || fd == 0 || fd == 1 || fd == 2)
continue;
close(fd);
}
closedir(dir);
return 0;
}
to close_range() yields:
1. closing 4 open files:
- close_all_fds(): ~280 us
- close_range(): ~24 us
2. closing 1000 open files:
- close_all_fds(): ~5000 us
- close_range(): ~800 us
close_range() is designed to allow for some flexibility. Specifically, it
does not simply always close all open file descriptors of a task. Instead,
callers can specify an upper bound.
This is e.g. useful for scenarios where specific file descriptors are
created with well-known numbers that are supposed to be excluded from
getting closed.
For extra paranoia close_range() comes with a flags argument. This can e.g.
be used to implement extension. Once can imagine userspace wanting to stop
at the first error instead of ignoring errors under certain circumstances.
There might be other valid ideas in the future. In any case, a flag
argument doesn't hurt and keeps us on the safe side.
From an implementation side this is kept rather dumb. It saw some input
from David and Jann but all nonsense is obviously my own!
- Errors to close file descriptors are currently ignored. (Could be changed
by setting a flag in the future if needed.)
- __close_range() is a rather simplistic wrapper around __close_fd().
My reasoning behind this is based on the nature of how __close_fd() needs
to release an fd. But maybe I misunderstood specifics:
We take the files_lock and rcu-dereference the fdtable of the calling
task, we find the entry in the fdtable, get the file and need to release
files_lock before calling filp_close().
In the meantime the fdtable might have been altered so we can't just
retake the spinlock and keep the old rcu-reference of the fdtable
around. Instead we need to grab a fresh reference to the fdtable.
If my reasoning is correct then there's really no point in fancyfying
__close_range(): We just need to rcu-dereference the fdtable of the
calling task once to cap the max_fd value correctly and then go on
calling __close_fd() in a loop.
/* References */
[1]: https://lore.kernel.org/lkml/20190516165021.GD17978@ZenIV.linux.org.uk/
[2]: https://github.com/python/cpython/blob/9e4f2f3a6b8ee995c365e86d976937c141d867f8/Modules/_posixsubprocess.c#L220
[3]: https://sourceware.org/bugzilla/show_bug.cgi?id=10353#c7
[4]: https://github.com/systemd/systemd/blob/5238e9575906297608ff802a27e2ff9effa3b338/src/basic/fd-util.c#L217
[5]: https://github.com/lxc/lxc/blob/ddf4b77e11a4d08f09b7b9cd13e593f8c047edc5/src/lxc/start.c#L236
[6]: https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/grantpt.c;h=2030e07fa6e652aac32c775b8c6e005844c3c4eb;hb=HEAD#l17
Note that this is an internal implementation that is not exported.
Currently, libc seems to not provide an exported version of this
because of missing kernel support to do this.
Note, in a recent patch series Florian made grantpt() a nop thereby
removing the code referenced here.
[7]: https://github.com/rust-lang/rust/issues/12148
[8]: https://github.com/rust-lang/rust/blob/5f47c0613ed4eb46fca3633c1297364c09e5e451/src/libstd/sys/unix/process2.rs#L303-L308
Rust's solution is slightly different but is equally unperformant.
Rust calls getdtablesize() which is a glibc library function that
simply returns the current RLIMIT_NOFILE or OPEN_MAX values. Rust then
goes on to call close() on each fd. That's obviously overkill for most
tasks. Rarely, tasks - especially non-demons - hit RLIMIT_NOFILE or
OPEN_MAX.
Let's be nice and assume an unprivileged user with RLIMIT_NOFILE set
to 1024. Even in this case, there's a very high chance that in the
common case Rust is calling the close() syscall 1021 times pointlessly
if the task just has 0, 1, and 2 open.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Kyle Evans <self@kyle-evans.net>
Cc: Jann Horn <jannh@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Dmitry V. Levin <ldv@altlinux.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: linux-api@vger.kernel.org
|
|
44d8047f1d8 ("binder: use standard functions to allocate fds")
exposed a pre-existing issue in the binder driver.
fdget() is used in ksys_ioctl() as a performance optimization.
One of the rules associated with fdget() is that ksys_close() must
not be called between the fdget() and the fdput(). There is a case
where this requirement is not met in the binder driver which results
in the reference count dropping to 0 when the device is still in
use. This can result in use-after-free or other issues.
If userpace has passed a file-descriptor for the binder driver using
a BINDER_TYPE_FDA object, then kys_close() is called on it when
handling a binder_ioctl(BC_FREE_BUFFER) command. This violates
the assumptions for using fdget().
The problem is fixed by deferring the close using task_work_add(). A
new variant of __close_fd() was created that returns a struct file
with a reference. The fput() is deferred instead of using ksys_close().
Fixes: 44d8047f1d87a ("binder: use standard functions to allocate fds")
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Todd Kjos <tkjos@google.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
'fd' is a user controlled value that is used as a data dependency to
read from the 'fdt->fd' array. In order to avoid potential leaks of
kernel memory values, block speculative execution of the instruction
stream that could issue reads based on an invalid 'file *' returned from
__fcheck_files.
Co-developed-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: torvalds@linux-foundation.org
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727418500.33451.17392199002892248656.stgit@dwillia2-desk3.amr.corp.intel.com
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull gcc plugins update from Kees Cook:
"This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot
time as possible, hoping to capitalize on any possible variation in
CPU operation (due to runtime data differences, hardware differences,
SMP ordering, thermal timing variation, cache behavior, etc).
At the very least, this plugin is a much more comprehensive example
for how to manipulate kernel code using the gcc plugin internals"
* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
latent_entropy: Mark functions with __latent_entropy
gcc-plugins: Add latent_entropy plugin
|
|
The __latent_entropy gcc attribute can be used only on functions and
variables. If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents. The variable must
be an integer, an integer array type or a structure with integer fields.
These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.
Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Propagate unsignedness for grand total of 149 bytes:
$ ./scripts/bloat-o-meter ../vmlinux-000 ../obj/vmlinux
add/remove: 0/0 grow/shrink: 0/10 up/down: 0/-149 (-149)
function old new delta
set_close_on_exec 99 98 -1
put_files_struct 201 200 -1
get_close_on_exec 59 58 -1
do_prlimit 498 497 -1
do_execveat_common.isra 1662 1661 -1
__close_fd 178 173 -5
do_dup2 219 204 -15
seq_show 685 660 -25
__alloc_fd 384 357 -27
dup_fd 718 646 -72
It mostly comes from converting "unsigned int" to "long" for bit operations.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Al Viro points out that:
> > * [Linux-specific aside] our __alloc_fd() can degrade quite badly
> > with some use patterns. The cacheline pingpong in the bitmap is probably
> > inevitable, unless we accept considerably heavier memory footprint,
> > but we also have a case when alloc_fd() takes O(n) and it's _not_ hard
> > to trigger - close(3);open(...); will have the next open() after that
> > scanning the entire in-use bitmap.
And Eric Dumazet has a somewhat realistic multithreaded microbenchmark
that opens and closes a lot of sockets with minimal work per socket.
This patch largely fixes it. We keep a 2nd-level bitmap of the open
file bitmaps, showing which words are already full. So then we can
traverse that second-level bitmap to efficiently skip already allocated
file descriptors.
On his benchmark, this improves performance by up to an order of
magnitude, by avoiding the excessive open file bitmap scanning.
Tested-and-acked-by: Eric Dumazet <edumazet@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This commit renames rcu_lockdep_assert() to RCU_LOCKDEP_WARN() for
consistency with the WARN() series of macros. This also requires
inverting the sense of the conditional, which this commit also does.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
|
|
Mateusz Guzik reported :
Currently obtaining a new file descriptor results in locking fdtable
twice - once in order to reserve a slot and second time to fill it.
Holding the spinlock in __fd_install() is needed in case a resize is
done, or to prevent a resize.
Mateusz provided an RFC patch and a micro benchmark :
http://people.redhat.com/~mguzik/pipebench.c
A resize is an unlikely operation in a process lifetime,
as table size is at least doubled at every resize.
We can use RCU instead of the spinlock.
__fd_install() must wait if a resize is in progress.
The resize must block new __fd_install() callers from starting,
and wait that ongoing install are finished (synchronize_sched())
resize should be attempted by a single thread to not waste resources.
rcu_sched variant is used, as __fd_install() and expand_fdtable() run
from process context.
It gives us a ~30% speedup using pipebench on a dual Intel(R) Xeon(R)
CPU E5-2696 v2 @ 2.50GHz
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Mateusz Guzik <mguzik@redhat.com>
Acked-by: Mateusz Guzik <mguzik@redhat.com>
Tested-by: Mateusz Guzik <mguzik@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
the only thing it's doing these days is calculation of
upper limit for fs.nr_open sysctl and that can be done
statically
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
rcu_my_thread_group_empty()
rcu_dereference_check_fdtable() looks very wrong,
1. rcu_my_thread_group_empty() was added by 844b9a8707f1 "vfs: fix
RCU-lockdep false positive due to /proc" but it doesn't really
fix the problem. A CLONE_THREAD (without CLONE_FILES) task can
hit the same race with get_files_struct().
And otoh rcu_my_thread_group_empty() can suppress the correct
warning if the caller is the CLONE_FILES (without CLONE_THREAD)
task.
2. files->count == 1 check is not really right too. Even if this
files_struct is not shared it is not safe to access it lockless
unless the caller is the owner.
Otoh, this check is sub-optimal. files->count == 0 always means
it is safe to use it lockless even if files != current->files,
but put_files_struct() has to take rcu_read_lock(). See the next
patch.
This patch removes the buggy checks and turns fcheck_files() into
__fcheck_files() which uses rcu_dereference_raw(), the "unshared"
callers, fget_light() and fget_raw_light(), can use it to avoid
the warning from RCU-lockdep.
fcheck_files() is trivially reimplemented as rcu_lockdep_assert()
plus __fcheck_files().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
descriptor-related parts of daemonize, done right. As the
result we simplify the locking rules for ->files - we
hold task_lock in *all* cases when we modify ->files.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
iterates through the opened files in given descriptor table,
calling a supplied function; we stop once non-zero is returned.
Callback gets struct file *, descriptor number and const void *
argument passed to iterator. It is called with files->file_lock
held, so it is not allowed to block.
tty_io, netprio_cgroup and selinux flush_unauthorized_files()
converted to its use.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
no callers outside of fs/file.c left
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
nobody uses those outside anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... and add cond_resched() there, while we are at it. We can
get large latencies as is...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Similar situation to that of __alloc_fd(); do not use unless you
really have to. You should not touch any descriptor table other
than your own; it's a sure sign of a really bad API design.
As with __alloc_fd(), you *must* use a first-class reference to
struct files_struct; something obtained by get_files_struct(some task)
(let alone direct task->files) will not do. It must be either
current->files, or obtained by get_files_struct(current) by the
owner of that sucker and given to you.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Essentially, alloc_fd() in a files_struct we own a reference to.
Most of the time wanting to use it is a sign of lousy API
design (such as android/binder). It's *not* a general-purpose
interface; better that than open-coding its guts, but again,
playing with other process' descriptor table is a sign of bad
design.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Replace the fd_sets in struct fdtable with an array of unsigned longs and then
use the standard non-atomic bit operations rather than the FD_* macros.
This:
(1) Removes the abuses of struct fd_set:
(a) Since we don't want to allocate a full fd_set the vast majority of the
time, we actually, in effect, just allocate a just-big-enough array of
unsigned longs and cast it to an fd_set type - so why bother with the
fd_set at all?
(b) Some places outside of the core fdtable handling code (such as
SELinux) want to look inside the array of unsigned longs hidden inside
the fd_set struct for more efficient iteration over the entire set.
(2) Eliminates the use of FD_*() macros in the kernel completely.
(3) Permits the __FD_*() macros to be deleted entirely where not exposed to
userspace.
Signed-off-by: David Howells <dhowells@redhat.com>
Link: http://lkml.kernel.org/r/20120216174954.23314.48147.stgit@warthog.procyon.org.uk
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
|
|
Wrap accesses to the fd_sets in struct fdtable (for recording open files and
close-on-exec flags) so that we can move away from using fd_sets since we
abuse the fd_set structs by not allocating the full-sized structure under
normal circumstances and by non-core code looking at the internals of the
fd_sets.
The first abuse means that use of FD_ZERO() on these fd_sets is not permitted,
since that cannot be told about their abnormal lengths.
This introduces six wrapper functions for setting, clearing and testing
close-on-exec flags and fd-is-open flags:
void __set_close_on_exec(int fd, struct fdtable *fdt);
void __clear_close_on_exec(int fd, struct fdtable *fdt);
bool close_on_exec(int fd, const struct fdtable *fdt);
void __set_open_fd(int fd, struct fdtable *fdt);
void __clear_open_fd(int fd, struct fdtable *fdt);
bool fd_is_open(int fd, const struct fdtable *fdt);
Note that I've prepended '__' to the names of the set/clear functions because
they require the caller to hold a lock to use them.
Note also that I haven't added wrappers for looking behind the scenes at the
the array. Possibly that should exist too.
Signed-off-by: David Howells <dhowells@redhat.com>
Link: http://lkml.kernel.org/r/20120216174942.23314.1364.stgit@warthog.procyon.org.uk
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
|
|
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since ca5ecddf (rcu: define __rcu address space modifier for sparse)
rcu_dereference_check use rcu_read_lock_held as a part of condition
automatically so callers do not have to do that as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
This adds annotations for RCU operations in core kernel components
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
Revert "net: Make accesses to ->br_port safe for sparse RCU"
mce: convert to rcu_dereference_index_check()
net: Make accesses to ->br_port safe for sparse RCU
vfs: add fs.h to define struct file
lockdep: Add an in_workqueue_context() lockdep-based test function
rcu: add __rcu API for later sparse checking
rcu: add an rcu_dereference_index_check()
tree/tiny rcu: Add debug RCU head objects
mm: remove all rcu head initializations
fs: remove all rcu head initializations, except on_stack initializations
powerpc: remove all rcu head initializations
|
|
If a single-threaded process does a file-descriptor operation, and some
other process accesses that same file descriptor via /proc, the current
rcu_dereference_check_fdtable() can give a false-positive RCU-lockdep
splat due to the reference count being increased by the /proc access after
the reference-count check in fget_light() but before the check in
rcu_dereference_check_fdtable().
This commit prevents this false positive by checking for a single-threaded
process. To avoid #include hell, this commit uses the wrapper for
thread_group_empty(current) defined by rcu_my_thread_group_empty()
provided in a separate commit.
Located-by: Miles Lane <miles.lane@gmail.com>
Located-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The sparse RCU-pointer annotations require definition of the
underlying type of any pointer passed to rcu_dereference() and friends.
So fcheck_files() needs "struct file" to be defined, so include fs.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
|
|
Create an rcu_dereference_check_fdtable() that encapsulates the
rcu_dereference_check() condition for fcheck_files() use. This
has the beneficial side-effect of getting rid of a very long
line.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-9-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Add lockdep-ified RCU primitives to alloc_fd(), files_fdtable()
and fcheck_files().
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
LKML-Reference: <1266887105-1528-8-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Impact: cleanup
We want to remove percpu.h from rcupdate.h (for upcoming kmemtrace
changes), but this is not possible currently without breaking the
build because fdtable.h has an implicit include file dependency: it
uses __init does not include init.h.
This can cause build failures on non-x86 architectures:
/home/mingo/tip/include/linux/fdtable.h:66: error: expected '=', ',',
';', 'asm' or '__attribute__' before 'files_defer_init'
make[2]: *** [fs/locks.o] Error 1
We got this header included indirectly via rcupdate.h's percpu.h
inclusion - but if that is not there the build will break.
Fix it.
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Eduard - Gabriel Munteanu <eduard.munteanu@linux360.ro>
Cc: paulmck@linux.vnet.ibm.com
LKML-Reference: <1237898630.25315.83.camel@penberg-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|