summaryrefslogtreecommitdiff
path: root/include/linux/cpuset.h
AgeCommit message (Collapse)AuthorFilesLines
2017-04-11cpuset: Remove cpuset_update_active_cpus()'s parameter.Rakib Mullick1-2/+2
In cpuset_update_active_cpus(), cpu_online isn't used anymore. Remove it. Signed-off-by: Rakib Mullick<rakib.mullick@gmail.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2017-03-02sched/headers: Prepare to move the task_lock()/unlock() APIs to ↵Ingo Molnar1-0/+1
<linux/sched/task.h> But first update the code that uses these facilities with the new header. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/topology.h> We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/topology.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-20cpuset: use static key better and convert to new APIVlastimil Babka1-14/+28
An important function for cpusets is cpuset_node_allowed(), which optimizes on the fact if there's a single root CPU set, it must be trivially allowed. But the check "nr_cpusets() <= 1" doesn't use the cpusets_enabled_key static key the right way where static keys eliminate branching overhead with jump labels. This patch converts it so that static key is used properly. It's also switched to the new static key API and the checking functions are converted to return bool instead of int. We also provide a new variant __cpuset_zone_allowed() which expects that the static key check was already done and they key was enabled. This is needed for get_page_from_freelist() where we want to also avoid the relatively slower check when ALLOC_CPUSET is not set in alloc_flags. The impact on the page allocator microbenchmark is less than expected but the cleanup in itself is worthwhile. 4.6.0-rc2 4.6.0-rc2 multcheck-v1r20 cpuset-v1r20 Min alloc-odr0-1 348.00 ( 0.00%) 348.00 ( 0.00%) Min alloc-odr0-2 254.00 ( 0.00%) 254.00 ( 0.00%) Min alloc-odr0-4 213.00 ( 0.00%) 213.00 ( 0.00%) Min alloc-odr0-8 186.00 ( 0.00%) 183.00 ( 1.61%) Min alloc-odr0-16 173.00 ( 0.00%) 171.00 ( 1.16%) Min alloc-odr0-32 166.00 ( 0.00%) 163.00 ( 1.81%) Min alloc-odr0-64 162.00 ( 0.00%) 159.00 ( 1.85%) Min alloc-odr0-128 160.00 ( 0.00%) 157.00 ( 1.88%) Min alloc-odr0-256 169.00 ( 0.00%) 166.00 ( 1.78%) Min alloc-odr0-512 180.00 ( 0.00%) 180.00 ( 0.00%) Min alloc-odr0-1024 188.00 ( 0.00%) 187.00 ( 0.53%) Min alloc-odr0-2048 194.00 ( 0.00%) 193.00 ( 0.52%) Min alloc-odr0-4096 199.00 ( 0.00%) 198.00 ( 0.50%) Min alloc-odr0-8192 202.00 ( 0.00%) 201.00 ( 0.50%) Min alloc-odr0-16384 203.00 ( 0.00%) 202.00 ( 0.49%) Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Zefan Li <lizefan@huawei.com> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-25cgroup, cpuset: replace cpuset_post_attach_flush() with ↵Tejun Heo1-6/+0
cgroup_subsys->post_attach callback Since e93ad19d0564 ("cpuset: make mm migration asynchronous"), cpuset kicks off asynchronous NUMA node migration if necessary during task migration and flushes it from cpuset_post_attach_flush() which is called at the end of __cgroup_procs_write(). This is to avoid performing migration with cgroup_threadgroup_rwsem write-locked which can lead to deadlock through dependency on kworker creation. memcg has a similar issue with charge moving, so let's convert it to an official callback rather than the current one-off cpuset specific function. This patch adds cgroup_subsys->post_attach callback and makes cpuset register cpuset_post_attach_flush() as its ->post_attach. The conversion is mostly one-to-one except that the new callback is called under cgroup_mutex. This is to guarantee that no other migration operations are started before ->post_attach callbacks are finished. cgroup_mutex is one of the outermost mutex in the system and has never been and shouldn't be a problem. We can add specialized synchronization around __cgroup_procs_write() but I don't think there's any noticeable benefit. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> # 4.4+ prerequisite for the next patch
2016-01-22cpuset: make mm migration asynchronousTejun Heo1-0/+6
If "cpuset.memory_migrate" is set, when a process is moved from one cpuset to another with a different memory node mask, pages in used by the process are migrated to the new set of nodes. This was performed synchronously in the ->attach() callback, which is synchronized against process management. Recently, the synchronization was changed from per-process rwsem to global percpu rwsem for simplicity and optimization. Combined with the synchronous mm migration, this led to deadlocks because mm migration could schedule a work item which may in turn try to create a new worker blocking on the process management lock held from cgroup process migration path. This heavy an operation shouldn't be performed synchronously from that deep inside cgroup migration in the first place. This patch punts the actual migration to an ordered workqueue and updates cgroup process migration and cpuset config update paths to flush the workqueue after all locks are released. This way, the operations still seem synchronous to userland without entangling mm migration with process management synchronization. CPU hotplug can also invoke mm migration but there's no reason for it to wait for mm migrations and thus doesn't synchronize against their completions. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Christian Borntraeger <borntraeger@de.ibm.com> Cc: stable@vger.kernel.org # v4.4+
2015-11-07mm, page_alloc: remove unnecessary taking of a seqlock when cpusets are disabledMel Gorman1-0/+6
There is a seqcounter that protects against spurious allocation failures when a task is changing the allowed nodes in a cpuset. There is no need to check the seqcounter until a cpuset exists. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, oom: remove task_lock protecting comm printingDavid Rientjes1-2/+2
The oom killer takes task_lock() in a couple of places solely to protect printing the task's comm. A process's comm, including current's comm, may change due to /proc/pid/comm or PR_SET_NAME. The comm will always be NULL-terminated, so the worst race scenario would only be during update. We can tolerate a comm being printed that is in the middle of an update to avoid taking the lock. Other locations in the kernel have already dropped task_lock() when printing comm, so this is consistent. Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Oleg Nesterov <oleg@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-27cpuset: simplify cpuset_node_allowed APIVladimir Davydov1-30/+7
Current cpuset API for checking if a zone/node is allowed to allocate from looks rather awkward. We have hardwall and softwall versions of cpuset_node_allowed with the softwall version doing literally the same as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags. If it isn't, the softwall version may check the given node against the enclosing hardwall cpuset, which it needs to take the callback lock to do. Such a distinction was introduced by commit 02a0e53d8227 ("cpuset: rework cpuset_zone_allowed api"). Before, we had the only version with the __GFP_HARDWALL flag determining its behavior. The purpose of the commit was to avoid sleep-in-atomic bugs when someone would mistakenly call the function without the __GFP_HARDWALL flag for an atomic allocation. The suffixes introduced were intended to make the callers think before using the function. However, since the callback lock was converted from mutex to spinlock by the previous patch, the softwall check function cannot sleep, and these precautions are no longer necessary. So let's simplify the API back to the single check. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-10-10Merge branch 'for-3.18' of ↵Linus Torvalds1-1/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Nothing too interesting. Just a handful of cleanup patches" * 'for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: Revert "cgroup: remove redundant variable in cgroup_mount()" cgroup: remove redundant variable in cgroup_mount() cgroup: fix missing unlock in cgroup_release_agent() cgroup: remove CGRP_RELEASABLE flag perf/cgroup: Remove perf_put_cgroup() cgroup: remove redundant check in cgroup_ino() cpuset: simplify proc_cpuset_show() cgroup: simplify proc_cgroup_show() cgroup: use a per-cgroup work for release agent cgroup: remove bogus comments cgroup: remove redundant code in cgroup_rmdir() cgroup: remove some useless forward declarations cgroup: fix a typo in comment.
2014-09-25cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flagsZefan Li1-2/+2
When we change cpuset.memory_spread_{page,slab}, cpuset will flip PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset. This should be done using atomic bitops, but currently we don't, which is broken. Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened when one thread tried to clear PF_USED_MATH while at the same time another thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on the same task. Here's the full report: https://lkml.org/lkml/2014/9/19/230 To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags. v4: - updated mm/slab.c. (Fengguang Wu) - updated Documentation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Kees Cook <keescook@chromium.org> Fixes: 950592f7b991 ("cpusets: update tasks' page/slab spread flags in time") Cc: <stable@vger.kernel.org> # 2.6.31+ Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-09-18cpuset: simplify proc_cpuset_show()Zefan Li1-1/+2
Use the ONE macro instead of REG, and we can simplify proc_cpuset_show(). Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-06-05mm: page_alloc: use jump labels to avoid checking number_of_cpusetsMel Gorman1-3/+26
If cpusets are not in use then we still check a global variable on every page allocation. Use jump labels to avoid the overhead. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04mm: optimize put_mems_allowed() usageMel Gorman1-13/+14
Since put_mems_allowed() is strictly optional, its a seqcount retry, we don't need to evaluate the function if the allocation was in fact successful, saving a smp_rmb some loads and comparisons on some relative fast-paths. Since the naming, get/put_mems_allowed() does suggest a mandatory pairing, rename the interface, as suggested by Mel, to resemble the seqcount interface. This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(), where it is important to note that the return value of the latter call is inverted from its previous incarnation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-06cpuset: Fix potential deadlock w/ set_mems_allowedJohn Stultz1-0/+4
After adding lockdep support to seqlock/seqcount structures, I started seeing the following warning: [ 1.070907] ====================================================== [ 1.072015] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ] [ 1.073181] 3.11.0+ #67 Not tainted [ 1.073801] ------------------------------------------------------ [ 1.074882] kworker/u4:2/708 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire: [ 1.076088] (&p->mems_allowed_seq){+.+...}, at: [<ffffffff81187d7f>] new_slab+0x5f/0x280 [ 1.077572] [ 1.077572] and this task is already holding: [ 1.078593] (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff81339f03>] blk_execute_rq_nowait+0x53/0xf0 [ 1.080042] which would create a new lock dependency: [ 1.080042] (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...} [ 1.080042] [ 1.080042] but this new dependency connects a SOFTIRQ-irq-safe lock: [ 1.080042] (&(&q->__queue_lock)->rlock){..-...} [ 1.080042] ... which became SOFTIRQ-irq-safe at: [ 1.080042] [<ffffffff810ec179>] __lock_acquire+0x5b9/0x1db0 [ 1.080042] [<ffffffff810edfe5>] lock_acquire+0x95/0x130 [ 1.080042] [<ffffffff818968a1>] _raw_spin_lock+0x41/0x80 [ 1.080042] [<ffffffff81560c9e>] scsi_device_unbusy+0x7e/0xd0 [ 1.080042] [<ffffffff8155a612>] scsi_finish_command+0x32/0xf0 [ 1.080042] [<ffffffff81560e91>] scsi_softirq_done+0xa1/0x130 [ 1.080042] [<ffffffff8133b0f3>] blk_done_softirq+0x73/0x90 [ 1.080042] [<ffffffff81095dc0>] __do_softirq+0x110/0x2f0 [ 1.080042] [<ffffffff81095fcd>] run_ksoftirqd+0x2d/0x60 [ 1.080042] [<ffffffff810bc506>] smpboot_thread_fn+0x156/0x1e0 [ 1.080042] [<ffffffff810b3916>] kthread+0xd6/0xe0 [ 1.080042] [<ffffffff818980ac>] ret_from_fork+0x7c/0xb0 [ 1.080042] [ 1.080042] to a SOFTIRQ-irq-unsafe lock: [ 1.080042] (&p->mems_allowed_seq){+.+...} [ 1.080042] ... which became SOFTIRQ-irq-unsafe at: [ 1.080042] ... [<ffffffff810ec1d3>] __lock_acquire+0x613/0x1db0 [ 1.080042] [<ffffffff810edfe5>] lock_acquire+0x95/0x130 [ 1.080042] [<ffffffff810b3df2>] kthreadd+0x82/0x180 [ 1.080042] [<ffffffff818980ac>] ret_from_fork+0x7c/0xb0 [ 1.080042] [ 1.080042] other info that might help us debug this: [ 1.080042] [ 1.080042] Possible interrupt unsafe locking scenario: [ 1.080042] [ 1.080042] CPU0 CPU1 [ 1.080042] ---- ---- [ 1.080042] lock(&p->mems_allowed_seq); [ 1.080042] local_irq_disable(); [ 1.080042] lock(&(&q->__queue_lock)->rlock); [ 1.080042] lock(&p->mems_allowed_seq); [ 1.080042] <Interrupt> [ 1.080042] lock(&(&q->__queue_lock)->rlock); [ 1.080042] [ 1.080042] *** DEADLOCK *** The issue stems from the kthreadd() function calling set_mems_allowed with irqs enabled. While its possibly unlikely for the actual deadlock to trigger, a fix is fairly simple: disable irqs before taking the mems_allowed_seq lock. Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: netdev@vger.kernel.org Link: http://lkml.kernel.org/r/1381186321-4906-4-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-02Merge branch 'for-linus' of ↵Linus Torvalds1-2/+1
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull VFS updates from Al Viro, Misc cleanups all over the place, mainly wrt /proc interfaces (switch create_proc_entry to proc_create(), get rid of the deprecated create_proc_read_entry() in favor of using proc_create_data() and seq_file etc). 7kloc removed. * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (204 commits) don't bother with deferred freeing of fdtables proc: Move non-public stuff from linux/proc_fs.h to fs/proc/internal.h proc: Make the PROC_I() and PDE() macros internal to procfs proc: Supply a function to remove a proc entry by PDE take cgroup_open() and cpuset_open() to fs/proc/base.c ppc: Clean up scanlog ppc: Clean up rtas_flash driver somewhat hostap: proc: Use remove_proc_subtree() drm: proc: Use remove_proc_subtree() drm: proc: Use minor->index to label things, not PDE->name drm: Constify drm_proc_list[] zoran: Don't print proc_dir_entry data in debug reiserfs: Don't access the proc_dir_entry in r_open(), r_start() r_show() proc: Supply an accessor for getting the data from a PDE's parent airo: Use remove_proc_subtree() rtl8192u: Don't need to save device proc dir PDE rtl8187se: Use a dir under /proc/net/r8180/ proc: Add proc_mkdir_data() proc: Move some bits from linux/proc_fs.h to linux/{of.h,signal.h,tty.h} proc: Move PDE_NET() to fs/proc/proc_net.c ...
2013-05-02take cgroup_open() and cpuset_open() to fs/proc/base.cAl Viro1-2/+1
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-03-05cpuset: remove include of cgroup.h from cpuset.hLi Zefan1-1/+0
We don't need to include cgroup.h in cpuset.h. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2012-12-13cpuset: use N_MEMORY instead N_HIGH_MEMORYLai Jiangshan1-1/+1
N_HIGH_MEMORY stands for the nodes that has normal or high memory. N_MEMORY stands for the nodes that has any memory. The code here need to handle with the nodes which have memory, we should use N_MEMORY instead. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Signed-off-by: Wen Congyang <wency@cn.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Lin Feng <linfeng@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-24cpusets, hotplug: Restructure functions that are invoked during hotplugSrivatsa S. Bhat1-2/+2
Separate out the cpuset related handling for CPU/Memory online/offline. This also helps us exploit the most obvious and basic level of optimization that any notification mechanism (CPU/Mem online/offline) has to offer us: "We *know* why we have been invoked. So stop pretending that we are lost, and do only the necessary amount of processing!". And while at it, rename scan_for_empty_cpusets() to scan_cpusets_upon_hotplug(), which is more appropriate considering how it is restructured. Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20120524141650.3692.48637.stgit@srivatsabhat.in.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-30Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds1-4/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar. * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: cpusets: Remove an unused variable sched/rt: Improve pick_next_highest_task_rt() sched: Fix select_fallback_rq() vs cpu_active/cpu_online sched/x86/smp: Do not enable IRQs over calibrate_delay() sched: Fix compiler warning about declared inline after use MAINTAINERS: Update email address for SCHEDULER and PERF EVENTS
2012-03-27sched: Fix select_fallback_rq() vs cpu_active/cpu_onlinePeter Zijlstra1-4/+2
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was supposed to finally sort the cpu_active mess, instead uncovered more. Since CPU_STARTING is ran before setting the cpu online, there's a (small) window where the cpu has active,!online. If during this time there's a wakeup of a task that used to reside on that cpu select_task_rq() will use select_fallback_rq() to compute an alternative cpu to run on since we find !online. select_fallback_rq() however will compute the new cpu against cpu_active, this means that it can return the same cpu it started out with, the !online one, since that cpu is in fact marked active. This results in us trying to scheduling a task on an offline cpu and triggering a WARN in the IPI code. The solution proposed by Chuansheng Liu of setting cpu_active in set_cpu_online() is buggy, firstly not all archs actually use set_cpu_online(), secondly, not all archs call set_cpu_online() with IRQs disabled, this means we would introduce either the same race or the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on wrong CPU") -- albeit much narrower. [ By setting online first and active later we have a window of online,!active, fresh and bound kthreads have task_cpu() of 0 and since cpu0 isn't in tsk_cpus_allowed() we end up in select_fallback_rq() which excludes !active, resulting in a reset of ->cpus_allowed and the thread running all over the place. ] The solution is to re-work select_fallback_rq() to require active _and_ online. This makes the active,!online case work as expected, OTOH archs running CPU_STARTING after setting online are now vulnerable to the issue from fd8a7de17 -- these are alpha and blackfin. Reported-by: Chuansheng Liu <chuansheng.liu@intel.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Frysinger <vapier@gentoo.org> Cc: linux-alpha@vger.kernel.org Link: http://lkml.kernel.org/n/tip-hubqk1i10o4dpvlm06gq7v6j@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-22cpuset: mm: reduce large amounts of memory barrier related damage v3Mel Gorman1-27/+20
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-28cpuset: Fix cpuset_cpus_allowed_fallback(), don't update tsk->rt.nr_cpus_allowedKOSAKI Motohiro1-1/+1
The rule is, we have to update tsk->rt.nr_cpus_allowed if we change tsk->cpus_allowed. Otherwise RT scheduler may confuse. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-08sched: adjust when cpu_active and cpuset configurations are updated during ↵Tejun Heo1-0/+6
cpu on/offlining Currently, when a cpu goes down, cpu_active is cleared before CPU_DOWN_PREPARE starts and cpuset configuration is updated from a default priority cpu notifier. When a cpu is coming up, it's set before CPU_ONLINE but cpuset configuration again is updated from the same cpu notifier. For cpu notifiers, this presents an inconsistent state. Threads which a CPU_DOWN_PREPARE notifier expects to be bound to the CPU can be migrated to other cpus because the cpu is no more inactive. Fix it by updating cpu_active in the highest priority cpu notifier and cpuset configuration in the second highest when a cpu is coming up. Down path is updated similarly. This guarantees that all other cpu notifiers see consistent cpu_active and cpuset configuration. cpuset_track_online_cpus() notifier is converted to cpuset_update_active_cpus() which just updates the configuration and now called from cpuset_cpu_[in]active() notifiers registered from sched_init_smp(). If cpuset is disabled, cpuset_update_active_cpus() degenerates into partition_sched_domains() making separate notifier for !CONFIG_CPUSETS unnecessary. This problem is triggered by cmwq. During CPU_DOWN_PREPARE, hotplug callback creates a kthread and kthread_bind()s it to the target cpu, and the thread is expected to run on that cpu. * Ingo's test discovered __cpuinit/exit markups were incorrect. Fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Menage <menage@google.com>
2010-05-27cpusets: new round-robin rotor for SLAB allocationsJack Steiner1-0/+6
We have observed several workloads running on multi-node systems where memory is assigned unevenly across the nodes in the system. There are numerous reasons for this but one is the round-robin rotor in cpuset_mem_spread_node(). For example, a simple test that writes a multi-page file will allocate pages on nodes 0 2 4 6 ... Odd nodes are skipped. (Sometimes it allocates on odd nodes & skips even nodes). An example is shown below. The program "lfile" writes a file consisting of 10 pages. The program then mmaps the file & uses get_mempolicy(..., MPOL_F_NODE) to determine the nodes where the file pages were allocated. The output is shown below: # ./lfile allocated on nodes: 2 4 6 0 1 2 6 0 2 There is a single rotor that is used for allocating both file pages & slab pages. Writing the file allocates both a data page & a slab page (buffer_head). This advances the RR rotor 2 nodes for each page allocated. A quick confirmation seems to confirm this is the cause of the uneven allocation: # echo 0 >/dev/cpuset/memory_spread_slab # ./lfile allocated on nodes: 6 7 8 9 0 1 2 3 4 5 This patch introduces a second rotor that is used for slab allocations. Signed-off-by: Jack Steiner <steiner@sgi.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Paul Menage <menage@google.com> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-25cpuset,mm: fix no node to alloc memory when changing cpuset's memsMiao Xie1-0/+43
Before applying this patch, cpuset updates task->mems_allowed and mempolicy by setting all new bits in the nodemask first, and clearing all old unallowed bits later. But in the way, the allocator may find that there is no node to alloc memory. The reason is that cpuset rebinds the task's mempolicy, it cleans the nodes which the allocater can alloc pages on, for example: (mpol: mempolicy) task1 task1's mpol task2 alloc page 1 alloc on node0? NO 1 1 change mems from 1 to 0 1 rebind task1's mpol 0-1 set new bits 0 clear disallowed bits alloc on node1? NO 0 ... can't alloc page goto oom This patch fixes this problem by expanding the nodes range first(set newly allowed bits) and shrink it lazily(clear newly disallowed bits). So we use a variable to tell the write-side task that read-side task is reading nodemask, and the write-side task clears newly disallowed nodes after read-side task ends the current memory allocation. [akpm@linux-foundation.org: fix spello] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Paul Menage <menage@google.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: Ravikiran Thirumalai <kiran@scalex86.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-02sched: Make select_fallback_rq() cpuset friendlyOleg Nesterov1-0/+7
Introduce cpuset_cpus_allowed_fallback() helper to fix the cpuset problems with select_fallback_rq(). It can be called from any context and can't use any cpuset locks including task_lock(). It is called when the task doesn't have online cpus in ->cpus_allowed but ttwu/etc must be able to find a suitable cpu. I am not proud of this patch. Everything which needs such a fat comment can't be good even if correct. But I'd prefer to not change the locking rules in the code I hardly understand, and in any case I believe this simple change make the code much more correct compared to deadlocks we currently have. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100315091027.GA9155@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-04-02sched: Kill the broken and deadlockable ↵Oleg Nesterov1-13/+0
cpuset_lock/cpuset_cpus_allowed_locked code This patch just states the fact the cpusets/cpuhotplug interaction is broken and removes the deadlockable code which only pretends to work. - cpuset_lock() doesn't really work. It is needed for cpuset_cpus_allowed_locked() but we can't take this lock in try_to_wake_up()->select_fallback_rq() path. - cpuset_lock() is deadlockable. Suppose that a task T bound to CPU takes callback_mutex. If cpu_down(CPU) happens before T drops callback_mutex stop_machine() preempts T, then migration_call(CPU_DEAD) tries to take cpuset_lock() and hangs forever because CPU is already dead and thus T can't be scheduled. - cpuset_cpus_allowed_locked() is deadlockable too. It takes task_lock() which is not irq-safe, but try_to_wake_up() can be called from irq. Kill them, and change select_fallback_rq() to use cpu_possible_mask, like we currently do without CONFIG_CPUSETS. Also, with or without this patch, with or without CONFIG_CPUSETS, the callers of select_fallback_rq() can race with each other or with set_cpus_allowed() pathes. The subsequent patches try to to fix these problems. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <20100315091003.GA9123@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-17cpuset,mm: update tasks' mems_allowed in timeMiao Xie1-4/+9
Fix allocating page cache/slab object on the unallowed node when memory spread is set by updating tasks' mems_allowed after its cpuset's mems is changed. In order to update tasks' mems_allowed in time, we must modify the code of memory policy. Because the memory policy is applied in the process's context originally. After applying this patch, one task directly manipulates anothers mems_allowed, and we use alloc_lock in the task_struct to protect mems_allowed and memory policy of the task. But in the fast path, we didn't use lock to protect them, because adding a lock may lead to performance regression. But if we don't add a lock,the task might see no nodes when changing cpuset's mems_allowed to some non-overlapping set. In order to avoid it, we set all new allowed nodes, then clear newly disallowed ones. [lee.schermerhorn@hp.com: The rework of mpol_new() to extract the adjusting of the node mask to apply cpuset and mpol flags "context" breaks set_mempolicy() and mbind() with MPOL_PREFERRED and a NULL nodemask--i.e., explicit local allocation. Fix this by adding the check for MPOL_PREFERRED and empty node mask to mpol_new_mpolicy(). Remove the now unneeded 'nodes = NULL' from mpol_new(). Note that mpol_new_mempolicy() is always called with a non-NULL 'nodes' parameter now that it has been removed from mpol_new(). Therefore, we don't need to test nodes for NULL before testing it for 'empty'. However, just to be extra paranoid, add a VM_BUG_ON() to verify this assumption.] [lee.schermerhorn@hp.com: I don't think the function name 'mpol_new_mempolicy' is descriptive enough to differentiate it from mpol_new(). This function applies cpuset set context, usually constraining nodes to those allowed by the cpuset. However, when the 'RELATIVE_NODES flag is set, it also translates the nodes. So I settled on 'mpol_set_nodemask()', because the comment block for mpol_new() mentions that we need to call this function to "set nodes". Some additional minor line length, whitespace and typo cleanup.] Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Paul Menage <menage@google.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03cpusets: replace zone allowed functions with node allowedDavid Rientjes1-6/+27
The cpuset_zone_allowed() variants are actually only a function of the zone's node. Cc: Paul Menage <menage@google.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-03-30cpumask: use new cpumask_ functions in core code.Rusty Russell1-2/+2
Impact: cleanup Time to clean up remaining laggards using the old cpu_ functions. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Trond.Myklebust@netapp.com
2009-01-08cpuset: remove remaining pointers to cpumask_tLi Zefan1-4/+6
Impact: cleanups, use new cpumask API Final trivial cleanups: mainly s/cpumask_t/struct cpumask Note there is a FIXME in generate_sched_domains(). A future patch will change struct cpumask *doms to struct cpumask *doms[]. (I suppose Rusty will do this.) Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Rusty Russell <rusty@rustcorp.com.au> Acked-by: Mike Travis <travis@sgi.com> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-07oom: print triggering task's cpuset and mems allowedDavid Rientjes1-0/+6
When cpusets are enabled, it's necessary to print the triggering task's set of allowable nodes so the subsequently printed meminfo can be interpreted correctly. We also print the task's cpuset name for informational purposes. [rientjes@google.com: task lock current before dereferencing cpuset] Cc: Paul Menage <menage@google.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-20cpuset: update top cpuset's mems after adding a nodeMiao Xie1-4/+0
After adding a node into the machine, top cpuset's mems isn't updated. By reviewing the code, we found that the update function cpuset_track_online_nodes() was invoked after node_states[N_ONLINE] changes. It is wrong because N_ONLINE just means node has pgdat, and if node has/added memory, we use N_HIGH_MEMORY. So, We should invoke the update function after node_states[N_HIGH_MEMORY] changes, just like its commit says. This patch fixes it. And we use notifier of memory hotplug instead of direct calling of cpuset_track_online_nodes(). Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Acked-by: Yasunori Goto <y-goto@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Menage <menage@google.com Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-09-06sched: arch_reinit_sched_domains() must destroy domains to force rebuildMax Krasnyansky1-1/+1
What I realized recently is that calling rebuild_sched_domains() in arch_reinit_sched_domains() by itself is not enough when cpusets are enabled. partition_sched_domains() code is trying to avoid unnecessary domain rebuilds and will not actually rebuild anything if new domain masks match the old ones. What this means is that doing echo 1 > /sys/devices/system/cpu/sched_mc_power_savings on a system with cpusets enabled will not take affect untill something changes in the cpuset setup (ie new sets created or deleted). This patch fixes restore correct behaviour where domains must be rebuilt in order to enable MC powersaving flags. Test on quad-core Core2 box with both CONFIG_CPUSETS and !CONFIG_CPUSETS. Also tested on dual-core Core2 laptop. Lockdep is happy and things are working as expected. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Tested-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-07-18cpu hotplug, sched: Introduce cpu_active_map and redo sched domain managment ↵Max Krasnyansky1-0/+7
(take 2) This is based on Linus' idea of creating cpu_active_map that prevents scheduler load balancer from migrating tasks to the cpu that is going down. It allows us to simplify domain management code and avoid unecessary domain rebuilds during cpu hotplug event handling. Please ignore the cpusets part for now. It needs some more work in order to avoid crazy lock nesting. Although I did simplfy and unify domain reinitialization logic. We now simply call partition_sched_domains() in all the cases. This means that we're using exact same code paths as in cpusets case and hence the test below cover cpusets too. Cpuset changes to make rebuild_sched_domains() callable from various contexts are in the separate patch (right next after this one). This not only boots but also easily handles while true; do make clean; make -j 8; done and while true; do on-off-cpu 1; done at the same time. (on-off-cpu 1 simple does echo 0/1 > /sys/.../cpu1/online thing). Suprisingly the box (dual-core Core2) is quite usable. In fact I'm typing this on right now in gnome-terminal and things are moving just fine. Also this is running with most of the debug features enabled (lockdep, mutex, etc) no BUG_ONs or lockdep complaints so far. I believe I addressed all of the Dmitry's comments for original Linus' version. I changed both fair and rt balancer to mask out non-active cpus. And replaced cpu_is_offline() with !cpu_active() in the main scheduler code where it made sense (to me). Signed-off-by: Max Krasnyanskiy <maxk@qualcomm.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Gregory Haskins <ghaskins@novell.com> Cc: dmitry.adamushko@gmail.com Cc: pj@sgi.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-28mm: filter based on a nodemask as well as a gfp_maskMel Gorman1-2/+2
The MPOL_BIND policy creates a zonelist that is used for allocations controlled by that mempolicy. As the per-node zonelist is already being filtered based on a zone id, this patch adds a version of __alloc_pages() that takes a nodemask for further filtering. This eliminates the need for MPOL_BIND to create a custom zonelist. A positive benefit of this is that allocations using MPOL_BIND now use the local node's distance-ordered zonelist instead of a custom node-id-ordered zonelist. I.e., pages will be allocated from the closest allowed node with available memory. [Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments] [Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask] [Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Hugh Dickins <hugh@veritas.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-19cpuset: modify cpuset_set_cpus_allowed to use cpumask pointerMike Travis1-6/+7
* Modify cpuset_cpus_allowed to return the currently allowed cpuset via a pointer argument instead of as the function return value. * Use new set_cpus_allowed_ptr function. * Cleanup CPU_MASK_ALL and NODE_MASK_ALL uses. Depends on: [sched-devel]: sched: add new set_cpus_allowed_ptr function Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-02-12mempolicy: silently restrict nodemask to allowed nodesKOSAKI Motohiro1-3/+0
Kosaki Motohito noted that "numactl --interleave=all ..." failed in the presence of memoryless nodes. This patch attempts to fix that problem. Some background: numactl --interleave=all calls set_mempolicy(2) with a fully populated [out to MAXNUMNODES] nodemask. set_mempolicy() [in do_set_mempolicy()] calls contextualize_policy() which requires that the nodemask be a subset of the current task's mems_allowed; else EINVAL will be returned. A task's mems_allowed will always be a subset of node_states[N_HIGH_MEMORY] i.e., nodes with memory. So, a fully populated nodemask will be declared invalid if it includes memoryless nodes. NOTE: the same thing will occur when running in a cpuset with restricted mem_allowed--for the same reason: node mask contains dis-allowed nodes. mbind(2), on the other hand, just masks off any nodes in the nodemask that are not included in the caller's mems_allowed. In each case [mbind() and set_mempolicy()], mpol_check_policy() will complain [again, resulting in EINVAL] if the nodemask contains any memoryless nodes. This is somewhat redundant as mpol_new() will remove memoryless nodes for interleave policy, as will bind_zonelist()--called by mpol_new() for BIND policy. Proposed fix: 1) modify contextualize_policy logic to: a) remember whether the incoming node mask is empty. b) if not, restrict the nodemask to allowed nodes, as is currently done in-line for mbind(). This guarantees that the resulting mask includes only nodes with memory. NOTE: this is a [benign, IMO] change in behavior for set_mempolicy(). Dis-allowed nodes will be silently ignored, rather than returning an error. c) fold this code into mpol_check_policy(), replace 2 calls to contextualize_policy() to call mpol_check_policy() directly and remove contextualize_policy(). 2) In existing mpol_check_policy() logic, after "contextualization": a) MPOL_DEFAULT: require that in coming mask "was_empty" b) MPOL_{BIND|INTERLEAVE}: require that contextualized nodemask contains at least one node. c) add a case for MPOL_PREFERRED: if in coming was not empty and resulting mask IS empty, user specified invalid nodes. Return EINVAL. c) remove the now redundant check for memoryless nodes 3) remove the now redundant masking of policy nodes for interleave policy from mpol_new(). 4) Now that mpol_check_policy() contextualizes the nodemask, remove the in-line nodes_and() from sys_mbind(). I believe that this restores mbind() to the behavior before the memoryless-nodes patch series. E.g., we'll no longer treat an invalid nodemask with MPOL_PREFERRED as local allocation. [ Patch history: v1 -> v2: - Communicate whether or not incoming node mask was empty to mpol_check_policy() for better error checking. - As suggested by David Rientjes, remove the now unused cpuset_nodes_subset_current_mems_allowed() from cpuset.h v2 -> v3: - As suggested by Kosaki Motohito, fold the "contextualization" of policy nodemask into mpol_check_policy(). Looks a little cleaner. ] Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08proc: seqfile convert proc_pid_status to properly handle pid namespacesEric W. Biederman1-4/+5
Currently we possibly lookup the pid in the wrong pid namespace. So seq_file convert proc_pid_status which ensures the proper pid namespaces is passed in. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: build fix] [akpm@linux-foundation.org: another build fix] [akpm@linux-foundation.org: s390 build fix] [akpm@linux-foundation.org: fix task_name() output] [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Andrew Morgan <morgan@kernel.org> Cc: Serge Hallyn <serue@us.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Paul Jackson <pj@sgi.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19hotplug cpu: migrate a task within its cpusetCliff Wickman1-0/+5
When a cpu is disabled, move_task_off_dead_cpu() is called for tasks that have been running on that cpu. Currently, such a task is migrated: 1) to any cpu on the same node as the disabled cpu, which is both online and among that task's cpus_allowed 2) to any cpu which is both online and among that task's cpus_allowed It is typical of a multithreaded application running on a large NUMA system to have its tasks confined to a cpuset so as to cluster them near the memory that they share. Furthermore, it is typical to explicitly place such a task on a specific cpu in that cpuset. And in that case the task's cpus_allowed includes only a single cpu. This patch would insert a preference to migrate such a task to some cpu within its cpuset (and set its cpus_allowed to its entire cpuset). With this patch, migrate the task to: 1) to any cpu on the same node as the disabled cpu, which is both online and among that task's cpus_allowed 2) to any online cpu within the task's cpuset 3) to any cpu which is both online and among that task's cpus_allowed In order to do this, move_task_off_dead_cpu() must make a call to cpuset_cpus_allowed_locked(), a new subset of cpuset_cpus_allowed(), that will not block. (name change - per Oleg's suggestion) Calls are made to cpuset_lock() and cpuset_unlock() in migration_call() to set the cpuset mutex during the whole migrate_live_tasks() and migrate_dead_tasks() procedure. [akpm@linux-foundation.org: build fix] [pj@sgi.com: Fix indentation and spacing] Signed-off-by: Cliff Wickman <cpw@sgi.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Christoph Lameter <clameter@sgi.com> Cc: Paul Jackson <pj@sgi.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19Task Control Groups: make cpusets a client of cgroupsPaul Menage1-4/+8
Remove the filesystem support logic from the cpusets system and makes cpusets a cgroup subsystem The "cpuset" filesystem becomes a dummy filesystem; attempts to mount it get passed through to the cgroup filesystem with the appropriate options to emulate the old cpuset filesystem behaviour. Signed-off-by: Paul Menage <menage@google.com> Cc: Serge E. Hallyn <serue@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Jackson <pj@sgi.com> Cc: Kirill Korotaev <dev@openvz.org> Cc: Herbert Poetzl <herbert@13thfloor.at> Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17oom: compare cpuset mems_allowed instead of exclusive ancestorsDavid Rientjes1-2/+4
Instead of testing for overlap in the memory nodes of the the nearest exclusive ancestor of both current and the candidate task, it is better to simply test for intersection between the task's mems_allowed in their task descriptors. This does not require taking callback_mutex since it is only used as a hint in the badness scoring. Tasks that do not have an intersection in their mems_allowed with the current task are not explicitly restricted from being OOM killed because it is quite possible that the candidate task has allocated memory there before and has since changed its mems_allowed. Cc: Andrea Arcangeli <andrea@suse.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16Memoryless nodes: Use N_HIGH_MEMORY for cpusetsChristoph Lameter1-1/+1
cpusets try to ensure that any node added to a cpuset's mems_allowed is on-line and contains memory. The assumption was that online nodes contained memory. Thus, it is possible to add memoryless nodes to a cpuset and then add tasks to this cpuset. This results in continuous series of oom-kill and apparent system hang. Change cpusets to use node_states[N_HIGH_MEMORY] [a.k.a. node_memory_map] in place of node_online_map when vetting memories. Return error if admin attempts to write a non-empty mems_allowed node mask containing only memoryless-nodes. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Bob Picco <bob.picco@hp.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12[PATCH] mark struct file_operations const 1Arjan van de Ven1-1/+1
Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-30[PATCH] cpuset procfs warning fixAndrew Morton1-1/+1
fs/proc/base.c:1869: warning: initialization discards qualifiers from pointer target type fs/proc/base.c:2150: warning: initialization discards qualifiers from pointer target type Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] cpuset: rework cpuset_zone_allowed apiPaul Jackson1-4/+18
Elaborate the API for calling cpuset_zone_allowed(), so that users have to explicitly choose between the two variants: cpuset_zone_allowed_hardwall() cpuset_zone_allowed_softwall() Until now, whether or not you got the hardwall flavor depended solely on whether or not you or'd in the __GFP_HARDWALL gfp flag to the gfp_mask argument. If you didn't specify __GFP_HARDWALL, you implicitly got the softwall version. Unfortunately, this meant that users would end up with the softwall version without thinking about it. Since only the softwall version might sleep, this led to bugs with possible sleeping in interrupt context on more than one occassion. The hardwall version requires that the current tasks mems_allowed allows the node of the specified zone (or that you're in interrupt or that __GFP_THISNODE is set or that you're on a one cpuset system.) The softwall version, depending on the gfp_mask, might allow a node if it was allowed in the nearest enclusing cpuset marked mem_exclusive (which requires taking the cpuset lock 'callback_mutex' to evaluate.) This patch removes the cpuset_zone_allowed() call, and forces the caller to explicitly choose between the hardwall and the softwall case. If the caller wants the gfp_mask to determine this choice, they should (1) be sure they can sleep or that __GFP_HARDWALL is set, and (2) invoke the cpuset_zone_allowed_softwall() routine. This adds another 100 or 200 bytes to the kernel text space, due to the few lines of nearly duplicate code at the top of both cpuset_zone_allowed_* routines. It should save a few instructions executed for the calls that turned into calls of cpuset_zone_allowed_hardwall, thanks to not having to set (before the call) then check (within the call) the __GFP_HARDWALL flag. For the most critical call, from get_page_from_freelist(), the same instructions are executed as before -- the old cpuset_zone_allowed() routine it used to call is the same code as the cpuset_zone_allowed_softwall() routine that it calls now. Not a perfect win, but seems worth it, to reduce this chance of hitting a sleeping with irq off complaint again. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] struct seq_operations and struct file_operations constificationHelge Deller1-1/+1
- move some file_operations structs into the .rodata section - move static strings from policy_types[] array into the .rodata section - fix generic seq_operations usages, so that those structs may be defined as "const" as well [akpm@osdl.org: couple of fixes] Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] memory page_alloc zonelist caching speedupPaul Jackson1-0/+2
Optimize the critical zonelist scanning for free pages in the kernel memory allocator by caching the zones that were found to be full recently, and skipping them. Remembers the zones in a zonelist that were short of free memory in the last second. And it stashes a zone-to-node table in the zonelist struct, to optimize that conversion (minimize its cache footprint.) Recent changes: This differs in a significant way from a similar patch that I posted a week ago. Now, instead of having a nodemask_t of recently full nodes, I have a bitmask of recently full zones. This solves a problem that last weeks patch had, which on systems with multiple zones per node (such as DMA zone) would take seeing any of these zones full as meaning that all zones on that node were full. Also I changed names - from "zonelist faster" to "zonelist cache", as that seemed to better convey what we're doing here - caching some of the key zonelist state (for faster access.) See below for some performance benchmark results. After all that discussion with David on why I didn't need them, I went and got some ;). I wanted to verify that I had not hurt the normal case of memory allocation noticeably. At least for my one little microbenchmark, I found (1) the normal case wasn't affected, and (2) workloads that forced scanning across multiple nodes for memory improved up to 10% fewer System CPU cycles and lower elapsed clock time ('sys' and 'real'). Good. See details, below. I didn't have the logic in get_page_from_freelist() for various full nodes and zone reclaim failures correct. That should be fixed up now - notice the new goto labels zonelist_scan, this_zone_full, and try_next_zone, in get_page_from_freelist(). There are two reasons I persued this alternative, over some earlier proposals that would have focused on optimizing the fake numa emulation case by caching the last useful zone: 1) Contrary to what I said before, we (SGI, on large ia64 sn2 systems) have seen real customer loads where the cost to scan the zonelist was a problem, due to many nodes being full of memory before we got to a node we could use. Or at least, I think we have. This was related to me by another engineer, based on experiences from some time past. So this is not guaranteed. Most likely, though. The following approach should help such real numa systems just as much as it helps fake numa systems, or any combination thereof. 2) The effort to distinguish fake from real numa, using node_distance, so that we could cache a fake numa node and optimize choosing it over equivalent distance fake nodes, while continuing to properly scan all real nodes in distance order, was going to require a nasty blob of zonelist and node distance munging. The following approach has no new dependency on node distances or zone sorting. See comment in the patch below for a description of what it actually does. Technical details of note (or controversy): - See the use of "zlc_active" and "did_zlc_setup" below, to delay adding any work for this new mechanism until we've looked at the first zone in zonelist. I figured the odds of the first zone having the memory we needed were high enough that we should just look there, first, then get fancy only if we need to keep looking. - Some odd hackery was needed to add items to struct zonelist, while not tripping up the custom zonelists built by the mm/mempolicy.c code for MPOL_BIND. My usual wordy comments below explain this. Search for "MPOL_BIND". - Some per-node data in the struct zonelist is now modified frequently, with no locking. Multiple CPU cores on a node could hit and mangle this data. The theory is that this is just performance hint data, and the memory allocator will work just fine despite any such mangling. The fields at risk are the struct 'zonelist_cache' fields 'fullzones' (a bitmask) and 'last_full_zap' (unsigned long jiffies). It should all be self correcting after at most a one second delay. - This still does a linear scan of the same lengths as before. All I've optimized is making the scan faster, not algorithmically shorter. It is now able to scan a compact array of 'unsigned short' in the case of many full nodes, so one cache line should cover quite a few nodes, rather than each node hitting another one or two new and distinct cache lines. - If both Andi and Nick don't find this too complicated, I will be (pleasantly) flabbergasted. - I removed the comment claiming we only use one cachline's worth of zonelist. We seem, at least in the fake numa case, to have put the lie to that claim. - I pay no attention to the various watermarks and such in this performance hint. A node could be marked full for one watermark, and then skipped over when searching for a page using a different watermark. I think that's actually quite ok, as it will tend to slightly increase the spreading of memory over other nodes, away from a memory stressed node. =============== Performance - some benchmark results and analysis: This benchmark runs a memory hog program that uses multiple threads to touch alot of memory as quickly as it can. Multiple runs were made, touching 12, 38, 64 or 90 GBytes out of the total 96 GBytes on the system, and using 1, 19, 37, or 55 threads (on a 56 CPU system.) System, user and real (elapsed) timings were recorded for each run, shown in units of seconds, in the table below. Two kernels were tested - 2.6.18-mm3 and the same kernel with this zonelist caching patch added. The table also shows the percentage improvement the zonelist caching sys time is over (lower than) the stock *-mm kernel. number 2.6.18-mm3 zonelist-cache delta (< 0 good) percent GBs N ------------ -------------- ---------------- systime mem threads sys user real sys user real sys user real better 12 1 153 24 177 151 24 176 -2 0 -1 1% 12 19 99 22 8 99 22 8 0 0 0 0% 12 37 111 25 6 112 25 6 1 0 0 -0% 12 55 115 25 5 110 23 5 -5 -2 0 4% 38 1 502 74 576 497 73 570 -5 -1 -6 0% 38 19 426 78 48 373 76 39 -53 -2 -9 12% 38 37 544 83 36 547 82 36 3 -1 0 -0% 38 55 501 77 23 511 80 24 10 3 1 -1% 64 1 917 125 1042 890 124 1014 -27 -1 -28 2% 64 19 1118 138 119 965 141 103 -153 3 -16 13% 64 37 1202 151 94 1136 150 81 -66 -1 -13 5% 64 55 1118 141 61 1072 140 58 -46 -1 -3 4% 90 1 1342 177 1519 1275 174 1450 -67 -3 -69 4% 90 19 2392 199 192 2116 189 176 -276 -10 -16 11% 90 37 3313 238 175 2972 225 145 -341 -13 -30 10% 90 55 1948 210 104 1843 213 100 -105 3 -4 5% Notes: 1) This test ran a memory hog program that started a specified number N of threads, and had each thread allocate and touch 1/N'th of the total memory to be used in the test run in a single loop, writing a constant word to memory, one store every 4096 bytes. Watching this test during some earlier trial runs, I would see each of these threads sit down on one CPU and stay there, for the remainder of the pass, a different CPU for each thread. 2) The 'real' column is not comparable to the 'sys' or 'user' columns. The 'real' column is seconds wall clock time elapsed, from beginning to end of that test pass. The 'sys' and 'user' columns are total CPU seconds spent on that test pass. For a 19 thread test run, for example, the sum of 'sys' and 'user' could be up to 19 times the number of 'real' elapsed wall clock seconds. 3) Tests were run on a fresh, single-user boot, to minimize the amount of memory already in use at the start of the test, and to minimize the amount of background activity that might interfere. 4) Tests were done on a 56 CPU, 28 Node system with 96 GBytes of RAM. 5) Notice that the 'real' time gets large for the single thread runs, even though the measured 'sys' and 'user' times are modest. I'm not sure what that means - probably something to do with it being slow for one thread to be accessing memory along ways away. Perhaps the fake numa system, running ostensibly the same workload, would not show this substantial degradation of 'real' time for one thread on many nodes -- lets hope not. 6) The high thread count passes (one thread per CPU - on 55 of 56 CPUs) ran quite efficiently, as one might expect. Each pair of threads needed to allocate and touch the memory on the node the two threads shared, a pleasantly parallizable workload. 7) The intermediate thread count passes, when asking for alot of memory forcing them to go to a few neighboring nodes, improved the most with this zonelist caching patch. Conclusions: * This zonelist cache patch probably makes little difference one way or the other for most workloads on real numa hardware, if those workloads avoid heavy off node allocations. * For memory intensive workloads requiring substantial off-node allocations on real numa hardware, this patch improves both kernel and elapsed timings up to ten per-cent. * For fake numa systems, I'm optimistic, but will have to leave that up to Rohit Seth to actually test (once I get him a 2.6.18 backport.) Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Rohit Seth <rohitseth@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: David Rientjes <rientjes@cs.washington.edu> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>