summaryrefslogtreecommitdiff
path: root/include/linux/cgroup.h
AgeCommit message (Collapse)AuthorFilesLines
2019-08-09cgroup: Include dying leaders with live threads in PROCS iterationsTejun Heo1-0/+1
commit c03cd7738a83b13739f00546166969342c8ff014 upstream. CSS_TASK_ITER_PROCS currently iterates live group leaders; however, this means that a process with dying leader and live threads will be skipped. IOW, cgroup.procs might be empty while cgroup.threads isn't, which is confusing to say the least. Fix it by making cset track dying tasks and include dying leaders with live threads in PROCS iteration. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Topi Miettinen <toiwoton@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-09cgroup: Implement css_task_iter_skip()Tejun Heo1-0/+3
commit b636fd38dc40113f853337a7d2a6885ad23b8811 upstream. When a task is moved out of a cset, task iterators pointing to the task are advanced using the normal css_task_iter_advance() call. This is fine but we'll be tracking dying tasks on csets and thus moving tasks from cset->tasks to (to be added) cset->dying_tasks. When we remove a task from cset->tasks, if we advance the iterators, they may move over to the next cset before we had the chance to add the task back on the dying list, which can allow the task to escape iteration. This patch separates out skipping from advancing. Skipping only moves the affected iterators to the next pointer rather than fully advancing it and the following advancing will recognize that the cursor has already been moved forward and do the rest of advancing. This ensures that when a task moves from one list to another in its cset, as long as it moves in the right direction, it's always visible to iteration. This doesn't cause any visible behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-19cgroup: Use css_tryget() instead of css_tryget_online() in task_get_css()Tejun Heo1-2/+8
commit 18fa84a2db0e15b02baa5d94bdb5bd509175d2f6 upstream. A PF_EXITING task can stay associated with an offline css. If such task calls task_get_css(), it can get stuck indefinitely. This can be triggered by BSD process accounting which writes to a file with PF_EXITING set when racing against memcg disable as in the backtrace at the end. After this change, task_get_css() may return a css which was already offline when the function was called. None of the existing users are affected by this change. INFO: rcu_sched self-detected stall on CPU INFO: rcu_sched detected stalls on CPUs/tasks: ... NMI backtrace for cpu 0 ... Call Trace: <IRQ> dump_stack+0x46/0x68 nmi_cpu_backtrace.cold.2+0x13/0x57 nmi_trigger_cpumask_backtrace+0xba/0xca rcu_dump_cpu_stacks+0x9e/0xce rcu_check_callbacks.cold.74+0x2af/0x433 update_process_times+0x28/0x60 tick_sched_timer+0x34/0x70 __hrtimer_run_queues+0xee/0x250 hrtimer_interrupt+0xf4/0x210 smp_apic_timer_interrupt+0x56/0x110 apic_timer_interrupt+0xf/0x20 </IRQ> RIP: 0010:balance_dirty_pages_ratelimited+0x28f/0x3d0 ... btrfs_file_write_iter+0x31b/0x563 __vfs_write+0xfa/0x140 __kernel_write+0x4f/0x100 do_acct_process+0x495/0x580 acct_process+0xb9/0xdb do_exit+0x748/0xa00 do_group_exit+0x3a/0xa0 get_signal+0x254/0x560 do_signal+0x23/0x5c0 exit_to_usermode_loop+0x5d/0xa0 prepare_exit_to_usermode+0x53/0x80 retint_user+0x8/0x8 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable@vger.kernel.org # v4.2+ Fixes: ec438699a9ae ("cgroup, block: implement task_get_css() and use it in bio_associate_current()") Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-05cgroup/pids: turn cgroup_subsys->free() into cgroup_subsys->release() to fix ↵Oleg Nesterov1-0/+2
the accounting [ Upstream commit 51bee5abeab2058ea5813c5615d6197a23dbf041 ] The only user of cgroup_subsys->free() callback is pids_cgrp_subsys which needs pids_free() to uncharge the pid. However, ->free() is called from __put_task_struct()->cgroup_free() and this is too late. Even the trivial program which does for (;;) { int pid = fork(); assert(pid >= 0); if (pid) wait(NULL); else exit(0); } can run out of limits because release_task()->call_rcu(delayed_put_task_struct) implies an RCU gp after the task/pid goes away and before the final put(). Test-case: mkdir -p /tmp/CG mount -t cgroup2 none /tmp/CG echo '+pids' > /tmp/CG/cgroup.subtree_control mkdir /tmp/CG/PID echo 2 > /tmp/CG/PID/pids.max perl -e 'while ($p = fork) { wait; } $p // die "fork failed: $!\n"' & echo $! > /tmp/CG/PID/cgroup.procs Without this patch the forking process fails soon after migration. Rename cgroup_subsys->free() to cgroup_subsys->release() and move the callsite into the new helper, cgroup_release(), called by release_task() which actually frees the pid(s). Reported-by: Herton R. Krzesinski <hkrzesin@redhat.com> Reported-by: Jan Stancek <jstancek@redhat.com> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-08-13bpf: Introduce bpf_skb_ancestor_cgroup_id helperAndrey Ignatov1-0/+30
== Problem description == It's useful to be able to identify cgroup associated with skb in TC so that a policy can be applied to this skb, and existing bpf_skb_cgroup_id helper can help with this. Though in real life cgroup hierarchy and hierarchy to apply a policy to don't map 1:1. It's often the case that there is a container and corresponding cgroup, but there are many more sub-cgroups inside container, e.g. because it's delegated to containerized application to control resources for its subsystems, or to separate application inside container from infra that belongs to containerization system (e.g. sshd). At the same time it may be useful to apply a policy to container as a whole. If multiple containers like this are run on a host (what is often the case) and many of them have sub-cgroups, it may not be possible to apply per-container policy in TC with existing helpers such as bpf_skb_under_cgroup or bpf_skb_cgroup_id: * bpf_skb_cgroup_id will return id of immediate cgroup associated with skb, i.e. if it's a sub-cgroup inside container, it can't be used to identify container's cgroup; * bpf_skb_under_cgroup can work only with one cgroup and doesn't scale, i.e. if there are N containers on a host and a policy has to be applied to M of them (0 <= M <= N), it'd require M calls to bpf_skb_under_cgroup, and, if M changes, it'd require to rebuild & load new BPF program. == Solution == The patch introduces new helper bpf_skb_ancestor_cgroup_id that can be used to get id of cgroup v2 that is an ancestor of cgroup associated with skb at specified level of cgroup hierarchy. That way admin can place all containers on one level of cgroup hierarchy (what is a good practice in general and already used in many configurations) and identify specific cgroup on this level no matter what sub-cgroup skb is associated with. E.g. if there is a cgroup hierarchy: root/ root/container1/ root/container1/app11/ root/container1/app11/sub-app-a/ root/container1/app12/ root/container2/ root/container2/app21/ root/container2/app22/ root/container2/app22/sub-app-b/ , then having skb associated with root/container1/app11/sub-app-a/ it's possible to get ancestor at level 1, what is container1 and apply policy for this container, or apply another policy if it's container2. Policies can be kept e.g. in a hash map where key is a container cgroup id and value is an action. Levels where container cgroups are created are usually known in advance whether cgroup hierarchy inside container may be hard to predict especially in case when its creation is delegated to containerized application. == Implementation details == The helper gets ancestor by walking parents up to specified level. Another option would be to get different kind of "id" from cgroup->ancestor_ids[level] and use it with idr_find() to get struct cgroup for ancestor. But that would require radix lookup what doesn't seem to be better (at least it's not obviously better). Format of return value of the new helper is same as that of bpf_skb_cgroup_id. Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27cgroup: Replace cgroup_rstat_mutex with a spinlockTejun Heo1-0/+1
Currently, rstat flush path is protected with a mutex which is fine as all the existing users are from interface file show path. However, rstat is being generalized for use by controllers and flushing from atomic contexts will be necessary. This patch replaces cgroup_rstat_mutex with a spinlock and adds a irq-safe flush function - cgroup_rstat_flush_irqsafe(). Explicit yield handling is added to the flush path so that other flush functions can yield to other threads and flushers. Signed-off-by: Tejun Heo <tj@kernel.org>
2018-04-27cgroup: Factor out and expose cgroup_rstat_*() interface functionsTejun Heo1-2/+9
cgroup_rstat is being generalized so that controllers can use it too. This patch factors out and exposes the following interface functions. * cgroup_rstat_updated(): Renamed from cgroup_rstat_cpu_updated() for consistency. * cgroup_rstat_flush_hold/release(): Factored out from base stat implementation. * cgroup_rstat_flush(): Verbatim expose. While at it, drop assert on cgroup_rstat_mutex in cgroup_base_stat_flush() as it crosses layers and make a minor comment update. v2: Added EXPORT_SYMBOL_GPL(cgroup_rstat_updated) to fix a build bug. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-11-16Merge branch 'for-4.15' of ↵Linus Torvalds1-0/+58
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Cgroup2 cpu controller support is finally merged. - Basic cpu statistics support to allow monitoring by default without the CPU controller enabled. - cgroup2 cpu controller support. - /sys/kernel/cgroup files to help dealing with new / optional features" * 'for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: export list of cgroups v2 features using sysfs cgroup: export list of delegatable control files using sysfs cgroup: mark @cgrp __maybe_unused in cpu_stat_show() MAINTAINERS: relocate cpuset.c cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.stat sched: Implement interface for cgroup unified hierarchy sched: Misc preps for cgroup unified hierarchy interface sched/cputime: Add dummy cputime_adjust() implementation for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE cgroup: statically initialize init_css_set->dfl_cgrp cgroup: Implement cgroup2 basic CPU usage accounting cpuacct: Introduce cgroup_account_cputime[_field]() sched/cputime: Expose cputime_adjust()
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-26cgroup, sched: Move basic cpu stats from cgroup.stat to cpu.statTejun Heo1-2/+0
The basic cpu stat is currently shown with "cpu." prefix in cgroup.stat, and the same information is duplicated in cpu.stat when cpu controller is enabled. This is ugly and not very scalable as we want to expand the coverage of stat information which is always available. This patch makes cgroup core always create "cpu.stat" file and show the basic cpu stat there and calls the cpu controller to show the extra stats when enabled. This ensures that the same information isn't presented in multiple places and makes future expansion of basic stats easier. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2017-09-25cgroup: Implement cgroup2 basic CPU usage accountingTejun Heo1-0/+22
In cgroup1, while cpuacct isn't actually controlling any resources, it is a separate controller due to combination of two factors - 1. enabling cpu controller has significant side effects, and 2. we have to pick one of the hierarchies to account CPU usages on. cpuacct controller is effectively used to designate a hierarchy to track CPU usages on. cgroup2's unified hierarchy removes the second reason and we can account basic CPU usages by default. While we can use cpuacct for this purpose, both its interface and implementation leave a lot to be desired - it collects and exposes two sources of truth which don't agree with each other and some of the exposed statistics don't make much sense. Also, it propagates all the way up the hierarchy on each accounting event which is unnecessary. This patch adds basic resource accounting mechanism to cgroup2's unified hierarchy and accounts CPU usages using it. * All accountings are done per-cpu and don't propagate immediately. It just bumps the per-cgroup per-cpu counters and links to the parent's updated list if not already on it. * On a read, the per-cpu counters are collected into the global ones and then propagated upwards. Only the per-cpu counters which have changed since the last read are propagated. * CPU usage stats are collected and shown in "cgroup.stat" with "cpu." prefix. Total usage is collected from scheduling events. User/sys breakdown is sourced from tick sampling and adjusted to the usage using cputime_adjust(). This keeps the accounting side hot path O(1) and per-cpu and the read side O(nr_updated_since_last_read). v2: Minor changes and documentation updates as suggested by Waiman and Roman. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Waiman Long <longman@redhat.com> Cc: Roman Gushchin <guro@fb.com>
2017-09-25cpuacct: Introduce cgroup_account_cputime[_field]()Tejun Heo1-0/+38
Introduce cgroup_account_cputime[_field]() which wrap cpuacct_charge() and cgroup_account_field(). This doesn't introduce any functional changes and will be used to add cgroup basic resource accounting. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com>
2017-09-07Merge branch 'for-4.14/block' of git://git.kernel.dk/linux-blockLinus Torvalds1-1/+15
Pull block layer updates from Jens Axboe: "This is the first pull request for 4.14, containing most of the code changes. It's a quiet series this round, which I think we needed after the churn of the last few series. This contains: - Fix for a registration race in loop, from Anton Volkov. - Overflow complaint fix from Arnd for DAC960. - Series of drbd changes from the usual suspects. - Conversion of the stec/skd driver to blk-mq. From Bart. - A few BFQ improvements/fixes from Paolo. - CFQ improvement from Ritesh, allowing idling for group idle. - A few fixes found by Dan's smatch, courtesy of Dan. - A warning fixup for a race between changing the IO scheduler and device remova. From David Jeffery. - A few nbd fixes from Josef. - Support for cgroup info in blktrace, from Shaohua. - Also from Shaohua, new features in the null_blk driver to allow it to actually hold data, among other things. - Various corner cases and error handling fixes from Weiping Zhang. - Improvements to the IO stats tracking for blk-mq from me. Can drastically improve performance for fast devices and/or big machines. - Series from Christoph removing bi_bdev as being needed for IO submission, in preparation for nvme multipathing code. - Series from Bart, including various cleanups and fixes for switch fall through case complaints" * 'for-4.14/block' of git://git.kernel.dk/linux-block: (162 commits) kernfs: checking for IS_ERR() instead of NULL drbd: remove BIOSET_NEED_RESCUER flag from drbd_{md_,}io_bio_set drbd: Fix allyesconfig build, fix recent commit drbd: switch from kmalloc() to kmalloc_array() drbd: abort drbd_start_resync if there is no connection drbd: move global variables to drbd namespace and make some static drbd: rename "usermode_helper" to "drbd_usermode_helper" drbd: fix race between handshake and admin disconnect/down drbd: fix potential deadlock when trying to detach during handshake drbd: A single dot should be put into a sequence. drbd: fix rmmod cleanup, remove _all_ debugfs entries drbd: Use setup_timer() instead of init_timer() to simplify the code. drbd: fix potential get_ldev/put_ldev refcount imbalance during attach drbd: new disk-option disable-write-same drbd: Fix resource role for newly created resources in events2 drbd: mark symbols static where possible drbd: Send P_NEG_ACK upon write error in protocol != C drbd: add explicit plugging when submitting batches drbd: change list_for_each_safe to while(list_first_entry_or_null) drbd: introduce drbd_recv_header_maybe_unplug ...
2017-08-11cgroup: misc changesTejun Heo1-0/+24
Misc trivial changes to prepare for future changes. No functional difference. * Expose cgroup_get(), cgroup_tryget() and cgroup_parent(). * Implement task_dfl_cgroup() which dereferences css_set->dfl_cgrp. * Rename cgroup_stats_show() to cgroup_stat_show() for consistency with the file name. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-29blktrace: add an option to allow displaying cgroup pathShaohua Li1-0/+6
By default we output cgroup id in blktrace. This adds an option to display cgroup path. Since get cgroup path is a relativly heavy operation, we don't enable it by default. with the option enabled, blktrace will output something like this: dd-1353 [007] d..2 293.015252: 8,0 /test/level D R 24 + 8 [dd] Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-29cgroup: export fhandle info for a cgroupShaohua Li1-0/+8
Add an API to export cgroup fhandle info. We don't export a full 'struct file_handle', there are unrequired info. Sepcifically, cgroup is always a directory, so we don't need a 'FILEID_INO32_GEN_PARENT' type fhandle, we only need export the inode number and generation number just like what generic_fh_to_dentry does. And we can avoid the overhead of getting an inode too, since kernfs_node_id (ino and generation) has all the info required. Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-29kernfs: introduce kernfs_node_idShaohua Li1-1/+1
inode number and generation can identify a kernfs node. We are going to export the identification by exportfs operations, so put ino and generation into a separate structure. It's convenient when later patches use the identification. Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-21cgroup: implement CSS_TASK_ITER_THREADEDTejun Heo1-0/+6
cgroup v2 is in the process of growing thread granularity support. Once thread mode is enabled, the root cgroup of the subtree serves as the dom_cgrp to which the processes of the subtree conceptually belong and domain-level resource consumptions not tied to any specific task are charged. In the subtree, threads won't be subject to process granularity or no-internal-task constraint and can be distributed arbitrarily across the subtree. This patch implements a new task iterator flag CSS_TASK_ITER_THREADED, which, when used on a dom_cgrp, makes the iteration include the tasks on all the associated threaded css_sets. "cgroup.procs" read path is updated to use it so that reading the file on a proc_cgrp lists all processes. This will also be used by controller implementations which need to walk processes or tasks at the resource domain level. Task iteration is implemented nested in css_set iteration. If CSS_TASK_ITER_THREADED is specified, after walking tasks of each !threaded css_set, all the associated threaded css_sets are visited before moving onto the next !threaded css_set. v2: ->cur_pcset renamed to ->cur_dcset. Updated for the new enable-threaded-per-cgroup behavior. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-21cgroup: introduce cgroup->dom_cgrp and threaded css_set handlingTejun Heo1-1/+2
cgroup v2 is in the process of growing thread granularity support. A threaded subtree is composed of a thread root and threaded cgroups which are proper members of the subtree. The root cgroup of the subtree serves as the domain cgroup to which the processes (as opposed to threads / tasks) of the subtree conceptually belong and domain-level resource consumptions not tied to any specific task are charged. Inside the subtree, threads won't be subject to process granularity or no-internal-task constraint and can be distributed arbitrarily across the subtree. This patch introduces cgroup->dom_cgrp along with threaded css_set handling. * cgroup->dom_cgrp points to self for normal and thread roots. For proper thread subtree members, points to the dom_cgrp (the thread root). * css_set->dom_cset points to self if for normal and thread roots. If threaded, points to the css_set which belongs to the cgrp->dom_cgrp. The dom_cgrp serves as the resource domain and keeps the matching csses available. The dom_cset holds those csses and makes them easily accessible. * All threaded csets are linked on their dom_csets to enable iteration of all threaded tasks. * cgroup->nr_threaded_children keeps track of the number of threaded children. This patch adds the above but doesn't actually use them yet. The following patches will build on top. v4: ->nr_threaded_children added. v3: ->proc_cgrp/cset renamed to ->dom_cgrp/cset. Updated for the new enable-threaded-per-cgroup behavior. v2: Added cgroup_is_threaded() helper. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-21cgroup: add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCSTejun Heo1-1/+5
css_task_iter currently always walks all tasks. With the scheduled cgroup v2 thread support, the iterator would need to handle multiple types of iteration. As a preparation, add @flags to css_task_iter_start() and implement CSS_TASK_ITER_PROCS. If the flag is not specified, it walks all tasks as before. When asserted, the iterator only walks the group leaders. For now, the only user of the flag is cgroup v2 "cgroup.procs" file which no longer needs to skip non-leader tasks in cgroup_procs_next(). Note that cgroup v1 "cgroup.procs" can't use the group leader walk as v1 "cgroup.procs" doesn't mean "list all thread group leaders in the cgroup" but "list all thread group id's with any threads in the cgroup". While at it, update cgroup_procs_show() to use task_pid_vnr() instead of task_tgid_vnr(). As the iteration guarantees that the function only sees group leaders, this doesn't change the output and will allow sharing the function for thread iteration. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-17cgroup: distinguish local and children populated statesTejun Heo1-1/+1
cgrp->populated_cnt counts both local (the cgroup's populated css_sets) and subtree proper (populated children) so that it's only zero when the whole subtree, including self, is empty. This patch splits the counter into two so that local and children populated states are tracked separately. It allows finer-grained tests on the state of the hierarchy which will be used to replace css_set walking local populated test. Signed-off-by: Tejun Heo <tj@kernel.org>
2017-05-24cpuset: consider dying css as offlineTejun Heo1-0/+20
In most cases, a cgroup controller don't care about the liftimes of cgroups. For the controller, a css becomes online when ->css_online() is called on it and offline when ->css_offline() is called. However, cpuset is special in that the user interface it exposes cares whether certain cgroups exist or not. Combined with the RCU delay between cgroup removal and css offlining, this can lead to user visible behavior oddities where operations which should succeed after cgroup removals fail for some time period. The effects of cgroup removals are delayed when seen from userland. This patch adds css_is_dying() which tests whether offline is pending and updates is_cpuset_online() so that the function returns false also while offline is pending. This gets rid of the userland visible delays. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Daniel Jordan <daniel.m.jordan@oracle.com> Link: http://lkml.kernel.org/r/327ca1f5-7957-fbb9-9e5f-9ba149d40ba2@oracle.com Cc: stable@vger.kernel.org Signed-off-by: Tejun Heo <tj@kernel.org>
2017-05-01Merge branch 'for-4.12' of ↵Linus Torvalds1-4/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Nothing major. Two notable fixes are Li's second stab at fixing the long-standing race condition in the mount path and suppression of spurious warning from cgroup_get(). All other changes are trivial" * 'for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: mark cgroup_get() with __maybe_unused cgroup: avoid attaching a cgroup root to two different superblocks, take 2 cgroup: fix spurious warnings on cgroup_is_dead() from cgroup_sk_alloc() cgroup: move cgroup_subsys_state parent field for cache locality cpuset: Remove cpuset_update_active_cpus()'s parameter. cgroup: switch to BUG_ON() cgroup: drop duplicate header nsproxy.h kernel: convert css_set.refcount from atomic_t to refcount_t kernel: convert cgroup_namespace.count from atomic_t to refcount_t
2017-03-24cgroup: drop duplicate header nsproxy.hGeliang Tang1-1/+0
Drop duplicate header nsproxy.h from linux/cgroup.h. Signed-off-by: Geliang Tang <geliangtang@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2017-03-17cgroup, kthread: close race window where new kthreads can be migrated to ↵Tejun Heo1-0/+21
non-root cgroups Creation of a kthread goes through a couple interlocked stages between the kthread itself and its creator. Once the new kthread starts running, it initializes itself and wakes up the creator. The creator then can further configure the kthread and then let it start doing its job by waking it up. In this configuration-by-creator stage, the creator is the only one that can wake it up but the kthread is visible to userland. When altering the kthread's attributes from userland is allowed, this is fine; however, for cases where CPU affinity is critical, kthread_bind() is used to first disable affinity changes from userland and then set the affinity. This also prevents the kthread from being migrated into non-root cgroups as that can affect the CPU affinity and many other things. Unfortunately, the cgroup side of protection is racy. While the PF_NO_SETAFFINITY flag prevents further migrations, userland can win the race before the creator sets the flag with kthread_bind() and put the kthread in a non-root cgroup, which can lead to all sorts of problems including incorrect CPU affinity and starvation. This bug got triggered by userland which periodically tries to migrate all processes in the root cpuset cgroup to a non-root one. Per-cpu workqueue workers got caught while being created and ended up with incorrected CPU affinity breaking concurrency management and sometimes stalling workqueue execution. This patch adds task->no_cgroup_migration which disallows the task to be migrated by userland. kthreadd starts with the flag set making every child kthread start in the root cgroup with migration disallowed. The flag is cleared after the kthread finishes initialization by which time PF_NO_SETAFFINITY is set if the kthread should stay in the root cgroup. It'd be better to wait for the initialization instead of failing but I couldn't think of a way of implementing that without adding either a new PF flag, or sleeping and retrying from waiting side. Even if userland depends on changing cgroup membership of a kthread, it either has to be synchronized with kthread_create() or periodically repeat, so it's unlikely that this would break anything. v2: Switch to a simpler implementation using a new task_struct bit field suggested by Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Oleg Nesterov <oleg@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Reported-and-debugged-by: Chris Mason <clm@fb.com> Cc: stable@vger.kernel.org # v4.3+ (we can't close the race on < v4.3) Signed-off-by: Tejun Heo <tj@kernel.org>
2017-03-06kernel: convert cgroup_namespace.count from atomic_t to refcount_tElena Reshetova1-3/+4
refcount_t type and corresponding API should be used instead of atomic_t when the variable is used as a reference counter. This allows to avoid accidental refcounter overflows that might lead to use-after-free situations. Signed-off-by: Elena Reshetova <elena.reshetova@intel.com> Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: David Windsor <dwindsor@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2016-12-27cgroup: fix a comment typoGeliang Tang1-1/+1
Fix a comment typo in cgroup.h. Signed-off-by: Geliang Tang <geliangtang@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2016-10-14Merge branch 'for-4.9' of ↵Linus Torvalds1-5/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - tracepoints for basic cgroup management operations added - kernfs and cgroup path formatting functions updated to behave in the style of strlcpy() - non-critical bug fixes * 'for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: blkcg: Unlock blkcg_pol_mutex only once when cpd == NULL cgroup: fix error handling regressions in proc_cgroup_show() and cgroup_release_agent() cpuset: fix error handling regression in proc_cpuset_show() cgroup: add tracepoints for basic operations cgroup: make cgroup_path() and friends behave in the style of strlcpy() kernfs: remove kernfs_path_len() kernfs: make kernfs_path*() behave in the style of strlcpy() kernfs: add dummy implementation of kernfs_path_from_node()
2016-10-06Merge branch 'for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull namespace updates from Eric Biederman: "This set of changes is a number of smaller things that have been overlooked in other development cycles focused on more fundamental change. The devpts changes are small things that were a distraction until we managed to kill off DEVPTS_MULTPLE_INSTANCES. There is an trivial regression fix to autofs for the unprivileged mount changes that went in last cycle. A pair of ioctls has been added by Andrey Vagin making it is possible to discover the relationships between namespaces when referring to them through file descriptors. The big user visible change is starting to add simple resource limits to catch programs that misbehave. With namespaces in general and user namespaces in particular allowing users to use more kinds of resources, it has become important to have something to limit errant programs. Because the purpose of these limits is to catch errant programs the code needs to be inexpensive to use as it always on, and the default limits need to be high enough that well behaved programs on well behaved systems don't encounter them. To this end, after some review I have implemented per user per user namespace limits, and use them to limit the number of namespaces. The limits being per user mean that one user can not exhause the limits of another user. The limits being per user namespace allow contexts where the limit is 0 and security conscious folks can remove from their threat anlysis the code used to manage namespaces (as they have historically done as it root only). At the same time the limits being per user namespace allow other parts of the system to use namespaces. Namespaces are increasingly being used in application sand boxing scenarios so an all or nothing disable for the entire system for the security conscious folks makes increasing use of these sandboxes impossible. There is also added a limit on the maximum number of mounts present in a single mount namespace. It is nontrivial to guess what a reasonable system wide limit on the number of mount structure in the kernel would be, especially as it various based on how a system is using containers. A limit on the number of mounts in a mount namespace however is much easier to understand and set. In most cases in practice only about 1000 mounts are used. Given that some autofs scenarious have the potential to be 30,000 to 50,000 mounts I have set the default limit for the number of mounts at 100,000 which is well above every known set of users but low enough that the mount hash tables don't degrade unreaonsably. These limits are a start. I expect this estabilishes a pattern that other limits for resources that namespaces use will follow. There has been interest in making inotify event limits per user per user namespace as well as interest expressed in making details about what is going on in the kernel more visible" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (28 commits) autofs: Fix automounts by using current_real_cred()->uid mnt: Add a per mount namespace limit on the number of mounts netns: move {inc,dec}_net_namespaces into #ifdef nsfs: Simplify __ns_get_path tools/testing: add a test to check nsfs ioctl-s nsfs: add ioctl to get a parent namespace nsfs: add ioctl to get an owning user namespace for ns file descriptor kernel: add a helper to get an owning user namespace for a namespace devpts: Change the owner of /dev/pts/ptmx to the mounter of /dev/pts devpts: Remove sync_filesystems devpts: Make devpts_kill_sb safe if fsi is NULL devpts: Simplify devpts_mount by using mount_nodev devpts: Move the creation of /dev/pts/ptmx into fill_super devpts: Move parse_mount_options into fill_super userns: When the per user per user namespace limit is reached return ENOSPC userns; Document per user per user namespace limits. mntns: Add a limit on the number of mount namespaces. netns: Add a limit on the number of net namespaces cgroupns: Add a limit on the number of cgroup namespaces ipcns: Add a limit on the number of ipc namespaces ...
2016-08-13cgroup: Add task_under_cgroup_hierarchy cgroup inline function to headersSargun Dhillon1-0/+23
This commit adds an inline function to cgroup.h to check whether a given task is under a given cgroup hierarchy. This is to avoid having to put ifdefs in .c files to gate access to cgroups. When cgroups are disabled this always returns true. Signed-off-by: Sargun Dhillon <sargun@sargun.me> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Tejun Heo <tj@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-10cgroup: make cgroup_path() and friends behave in the style of strlcpy()Tejun Heo1-11/+5
cgroup_path() and friends used to format the path from the end and thus the resulting path usually didn't start at the start of the passed in buffer. Also, when the buffer was too small, the partial result was truncated from the head rather than tail and there was no way to tell how long the full path would be. These make the functions less robust and more awkward to use. With recent updates to kernfs_path(), cgroup_path() and friends can be made to behave in strlcpy() style. * cgroup_path(), cgroup_path_ns[_locked]() and task_cgroup_path() now always return the length of the full path. If buffer is too small, it contains nul terminated truncated output. * All users updated accordingly. v2: cgroup_path() usage in kernel/sched/debug.c converted. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Serge Hallyn <serge.hallyn@ubuntu.com> Cc: Peter Zijlstra <peterz@infradead.org>
2016-08-10kernfs: make kernfs_path*() behave in the style of strlcpy()Tejun Heo1-1/+6
kernfs_path*() functions always return the length of the full path but the path content is undefined if the length is larger than the provided buffer. This makes its behavior different from strlcpy() and requires error handling in all its users even when they don't care about truncation. In addition, the implementation can actully be simplified by making it behave properly in strlcpy() style. * Update kernfs_path_from_node_locked() to always fill up the buffer with path. If the buffer is not large enough, the output is truncated and terminated. * kernfs_path() no longer needs error handling. Make it a simple inline wrapper around kernfs_path_from_node(). * sysfs_warn_dup()'s use of kernfs_path() doesn't need error handling. Updated accordingly. * cgroup_path()'s use of kernfs_path() updated to retain the old behavior. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Serge Hallyn <serge.hallyn@ubuntu.com>
2016-08-08cgroupns: Add a limit on the number of cgroup namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-07-01cgroup: Add cgroup_get_from_fdMartin KaFai Lau1-0/+1
Add a helper function to get a cgroup2 from a fd. It will be stored in a bpf array (BPF_MAP_TYPE_CGROUP_ARRAY) which will be introduced in the later patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Tejun Heo <tj@kernel.org> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16cgroup: introduce cgroup namespacesAditya Kali1-0/+49
Introduce the ability to create new cgroup namespace. The newly created cgroup namespace remembers the cgroup of the process at the point of creation of the cgroup namespace (referred as cgroupns-root). The main purpose of cgroup namespace is to virtualize the contents of /proc/self/cgroup file. Processes inside a cgroup namespace are only able to see paths relative to their namespace root (unless they are moved outside of their cgroupns-root, at which point they will see a relative path from their cgroupns-root). For a correctly setup container this enables container-tools (like libcontainer, lxc, lmctfy, etc.) to create completely virtualized containers without leaking system level cgroup hierarchy to the task. This patch only implements the 'unshare' part of the cgroupns. Signed-off-by: Aditya Kali <adityakali@google.com> Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2016-01-13Merge branch 'for-4.5' of ↵Linus Torvalds1-13/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: - cgroup v2 interface is now official. It's no longer hidden behind a devel flag and can be mounted using the new cgroup2 fs type. Unfortunately, cpu v2 interface hasn't made it yet due to the discussion around in-process hierarchical resource distribution and only memory and io controllers can be used on the v2 interface at the moment. - The existing documentation which has always been a bit of mess is relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt is added as the authoritative documentation for the v2 interface. - Some features are added through for-4.5-ancestor-test branch to enable netfilter xt_cgroup match to use cgroup v2 paths. The actual netfilter changes will be merged through the net tree which pulled in the said branch. - Various cleanups * 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: rename cgroup documentations cgroup: fix a typo. cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX. cgroup: demote subsystem init messages to KERN_DEBUG cgroup: Fix uninitialized variable warning cgroup: put controller Kconfig options in meaningful order cgroup: clean up the kernel configuration menu nomenclature cgroup_pids: fix a typo. Subject: cgroup: Fix incomplete dd command in blkio documentation cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends cpuset: Replace all instances of time_t with time64_t cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/ cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
2015-12-18Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller1-24/+23
Conflicts: drivers/net/geneve.c Here we had an overlapping change, where in 'net' the extraneous stats bump was being removed whilst in 'net-next' the final argument to udp_tunnel6_xmit_skb() was being changed. Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-09sock, cgroup: add sock->sk_cgroupTejun Heo1-0/+41
In cgroup v1, dealing with cgroup membership was difficult because the number of membership associations was unbound. As a result, cgroup v1 grew several controllers whose primary purpose is either tagging membership or pull in configuration knobs from other subsystems so that cgroup membership test can be avoided. net_cls and net_prio controllers are examples of the latter. They allow configuring network-specific attributes from cgroup side so that network subsystem can avoid testing cgroup membership; unfortunately, these are not only cumbersome but also problematic. Both net_cls and net_prio aren't properly hierarchical. Both inherit configuration from the parent on creation but there's no interaction afterwards. An ancestor doesn't restrict the behavior in its subtree in anyway and configuration changes aren't propagated downwards. Especially when combined with cgroup delegation, this is problematic because delegatees can mess up whatever network configuration implemented at the system level. net_prio would allow the delegatees to set whatever priority value regardless of CAP_NET_ADMIN and net_cls the same for classid. While it is possible to solve these issues from controller side by implementing hierarchical allowable ranges in both controllers, it would involve quite a bit of complexity in the controllers and further obfuscate network configuration as it becomes even more difficult to tell what's actually being configured looking from the network side. While not much can be done for v1 at this point, as membership handling is sane on cgroup v2, it'd be better to make cgroup matching behave like other network matches and classifiers than introducing further complications. In preparation, this patch updates sock->sk_cgrp_data handling so that it points to the v2 cgroup that sock was created in until either net_prio or net_cls is used. Once either of the two is used, sock->sk_cgrp_data reverts to its previous role of carrying prioidx and classid. This is to avoid adding yet another cgroup related field to struct sock. As the mode switching can happen at most once per boot, the switching mechanism is aimed at lowering hot path overhead. It may leak a finite, likely small, number of cgroup refs and report spurious prioidx or classid on switching; however, dynamic updates of prioidx and classid have always been racy and lossy - socks between creation and fd installation are never updated, config changes don't update existing sockets at all, and prioidx may index with dead and recycled cgroup IDs. Non-critical inaccuracies from small race windows won't make any noticeable difference. This patch doesn't make use of the pointer yet. The following patch will implement netfilter match for cgroup2 membership. v2: Use sock_cgroup_data to avoid inflating struct sock w/ another cgroup specific field. v3: Add comments explaining why sock_data_prioidx() and sock_data_classid() use different fallback values. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Daniel Wagner <daniel.wagner@bmw-carit.de> CC: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-08Merge branch 'for-4.5-ancestor-test' of ↵Tejun Heo1-1/+24
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup into for-4.5 Signed-off-by: Tejun Heo <tj@kernel.org>
2015-12-03cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friendsOleg Nesterov1-13/+6
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process(). Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2015-12-03cgroup: fix handling of multi-destination migration from subtree_control ↵Tejun Heo1-11/+22
enabling Consider the following v2 hierarchy. P0 (+memory) --- P1 (-memory) --- A \- B P0 has memory enabled in its subtree_control while P1 doesn't. If both A and B contain processes, they would belong to the memory css of P1. Now if memory is enabled on P1's subtree_control, memory csses should be created on both A and B and A's processes should be moved to the former and B's processes the latter. IOW, enabling controllers can cause atomic migrations into different csses. The core cgroup migration logic has been updated accordingly but the controller migration methods haven't and still assume that all tasks migrate to a single target css; furthermore, the methods were fed the css in which subtree_control was updated which is the parent of the target csses. pids controller depends on the migration methods to move charges and this made the controller attribute charges to the wrong csses often triggering the following warning by driving a counter negative. WARNING: CPU: 1 PID: 1 at kernel/cgroup_pids.c:97 pids_cancel.constprop.6+0x31/0x40() Modules linked in: CPU: 1 PID: 1 Comm: systemd Not tainted 4.4.0-rc1+ #29 ... ffffffff81f65382 ffff88007c043b90 ffffffff81551ffc 0000000000000000 ffff88007c043bc8 ffffffff810de202 ffff88007a752000 ffff88007a29ab00 ffff88007c043c80 ffff88007a1d8400 0000000000000001 ffff88007c043bd8 Call Trace: [<ffffffff81551ffc>] dump_stack+0x4e/0x82 [<ffffffff810de202>] warn_slowpath_common+0x82/0xc0 [<ffffffff810de2fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff8118e031>] pids_cancel.constprop.6+0x31/0x40 [<ffffffff8118e0fd>] pids_can_attach+0x6d/0xf0 [<ffffffff81188a4c>] cgroup_taskset_migrate+0x6c/0x330 [<ffffffff81188e05>] cgroup_migrate+0xf5/0x190 [<ffffffff81189016>] cgroup_attach_task+0x176/0x200 [<ffffffff8118949d>] __cgroup_procs_write+0x2ad/0x460 [<ffffffff81189684>] cgroup_procs_write+0x14/0x20 [<ffffffff811854e5>] cgroup_file_write+0x35/0x1c0 [<ffffffff812e26f1>] kernfs_fop_write+0x141/0x190 [<ffffffff81265f88>] __vfs_write+0x28/0xe0 [<ffffffff812666fc>] vfs_write+0xac/0x1a0 [<ffffffff81267019>] SyS_write+0x49/0xb0 [<ffffffff81bcef32>] entry_SYSCALL_64_fastpath+0x12/0x76 This patch fixes the bug by removing @css parameter from the three migration methods, ->can_attach, ->cancel_attach() and ->attach() and updating cgroup_taskset iteration helpers also return the destination css in addition to the task being migrated. All controllers are updated accordingly. * Controllers which don't care whether there are one or multiple target csses can be converted trivially. cpu, io, freezer, perf, netclassid and netprio fall in this category. * cpuset's current implementation assumes that there's single source and destination and thus doesn't support v2 hierarchy already. The only change made by this patchset is how that single destination css is obtained. * memory migration path already doesn't do anything on v2. How the single destination css is obtained is updated and the prep stage of mem_cgroup_can_attach() is reordered to accomodate the change. * pids is the only controller which was affected by this bug. It now correctly handles multi-destination migrations and no longer causes counter underflow from incorrect accounting. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-and-tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Cc: Aleksa Sarai <cyphar@cyphar.com>
2015-11-20cgroup: implement cgroup_get_from_path() and expose cgroup_put()Tejun Heo1-0/+7
Implement cgroup_get_from_path() using kernfs_walk_and_get() which obtains a default hierarchy cgroup from its path. This will be used to allow cgroup path based matching from outside cgroup proper - e.g. networking and perf. v2: Add EXPORT_SYMBOL_GPL(cgroup_get_from_path). Signed-off-by: Tejun Heo <tj@kernel.org>
2015-11-20cgroup: record ancestor IDs and reimplement cgroup_is_descendant() using itTejun Heo1-1/+17
cgroup_is_descendant() currently walks up the hierarchy and compares each ancestor to the cgroup in question. While enough for cgroup core usages, this can't be used in hot paths to test cgroup membership. This patch adds cgroup->ancestor_ids[] which records the IDs of all ancestors including self and cgroup->level for the nesting level. This allows testing whether a given cgroup is a descendant of another in three finite steps - testing whether the two belong to the same hierarchy, whether the descendant candidate is at the same or a higher level than the ancestor and comparing the recorded ancestor_id at the matching level. cgroup_is_descendant() is accordingly reimplmented and made inline. Signed-off-by: Tejun Heo <tj@kernel.org>
2015-11-16cgroup: fix cftype->file_offset handlingTejun Heo1-13/+1
6f60eade2433 ("cgroup: generalize obtaining the handles of and notifying cgroup files") introduced cftype->file_offset so that the handles for per-css file instances can be recorded. These handles then can be used, for example, to generate file modified notifications. Unfortunately, it made the wrong assumption that files are created once for a given css and removed on its destruction. Due to the dependencies among subsystems, a css may be hidden from userland and then later shown again. This is implemented by removing and re-creating the affected files, so the associated kernfs_node for a given cgroup file may change over time. This incorrect assumption led to the corruption of css->files lists. Reimplement cftype->file_offset handling so that cgroup_file->kn is protected by a lock and updated as files are created and destroyed. This also makes keeping them on per-cgroup list unnecessary. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: James Sedgwick <jsedgwick@fb.com> Fixes: 6f60eade2433 ("cgroup: generalize obtaining the handles of and notifying cgroup files") Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Zefan Li <lizefan@huawei.com>
2015-10-15cgroup: keep zombies associated with their original cgroupsTejun Heo1-0/+2
cgroup_exit() is called when a task exits and disassociates the exiting task from its cgroups and half-attach it to the root cgroup. This is unnecessary and undesirable. No controller actually needs an exiting task to be disassociated with non-root cgroups. Both cpu and perf_event controllers update the association to the root cgroup from their exit callbacks just to keep consistent with the cgroup core behavior. Also, this disassociation makes it difficult to track resources held by zombies or determine where the zombies came from. Currently, pids controller is completely broken as it uncharges on exit and zombies always escape the resource restriction. With cgroup association being reset on exit, fixing it is pretty painful. There's no reason to reset cgroup membership on exit. The zombie can be removed from its css_set so that it doesn't show up on "cgroup.procs" and thus can't be migrated or interfere with cgroup removal. It can still pin and point to the css_set so that its cgroup membership is maintained. This patch makes cgroup core keep zombies associated with their cgroups at the time of exit. * Previous patches decoupled populated_cnt tracking from css_set lifetime, so a dying task can be simply unlinked from its css_set while pinning and pointing to the css_set. This keeps css_set association from task side alive while hiding it from "cgroup.procs" and populated_cnt tracking. The css_set reference is dropped when the task_struct is freed. * ->exit() callback no longer needs the css arguments as the associated css never changes once PF_EXITING is set. Removed. * cpu and perf_events controllers no longer need ->exit() callbacks. There's no reason to explicitly switch away on exit. The final schedule out is enough. The callbacks are removed. * On traditional hierarchies, nothing changes. "/proc/PID/cgroup" still reports "/" for all zombies. On the default hierarchy, "/proc/PID/cgroup" keeps reporting the cgroup that the task belonged to at the time of exit. If the cgroup gets removed before the task is reaped, " (deleted)" is appended. v2: Build brekage due to missing dummy cgroup_free() when !CONFIG_CGROUP fixed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
2015-10-15cgroup: make css_set_rwsem a spinlock and rename it to css_set_lockTejun Heo1-3/+2
css_set_rwsem is the inner lock protecting css_sets and is accessed from hot paths such as fork and exit. Internally, it has no reason to be a rwsem or even mutex. There are no internal blocking operations while holding it. This was rwsem because css task iteration used to expose it to external iterator users. As the previous patch updated css task iteration such that the locking is not leaked to its users, there's no reason to keep it a rwsem. This patch converts css_set_rwsem to a spinlock and rename it to css_set_lock. It uses bh-safe operations as a planned usage needs to access it from RCU callback context. Signed-off-by: Tejun Heo <tj@kernel.org>
2015-10-15cgroup: don't hold css_set_rwsem across css task iterationTejun Heo1-0/+4
css_sets are synchronized through css_set_rwsem but the locking scheme is kinda bizarre. The hot paths - fork and exit - have to write lock the rwsem making the rw part pointless; furthermore, many readers already hold cgroup_mutex. One of the readers is css task iteration. It read locks the rwsem over the entire duration of iteration. This leads to silly locking behavior. When cpuset tries to migrate processes of a cgroup to a different NUMA node, css_set_rwsem is held across the entire migration attempt which can take a long time locking out forking, exiting and other cgroup operations. This patch updates css task iteration so that it locks css_set_rwsem only while the iterator is being advanced. css task iteration involves two levels - css_set and task iteration. As css_sets in use are practically immutable, simply pinning the current one is enough for resuming iteration afterwards. Task iteration is tricky as tasks may leave their css_set while iteration is in progress. This is solved by keeping track of active iterators and advancing them if their next task leaves its css_set. v2: put_task_struct() in css_task_iter_next() moved outside css_set_rwsem. A later patch will add cgroup operations to task_struct free path which may grab the same lock and this avoids deadlock possibilities. css_set_move_task() updated to use list_for_each_entry_safe() when walking task_iters and advancing them. This is necessary as advancing an iter may remove it from the list. Signed-off-by: Tejun Heo <tj@kernel.org>
2015-10-15cgroup: replace cgroup_has_tasks() with cgroup_is_populated()Tejun Heo1-2/+2
Currently, cgroup_has_tasks() tests whether the target cgroup has any css_set linked to it. This works because a css_set's refcnt converges with the number of tasks linked to it and thus there's no css_set linked to a cgroup if it doesn't have any live tasks. To help tracking resource usage of zombie tasks, putting the ref of css_set will be separated from disassociating the task from the css_set which means that a cgroup may have css_sets linked to it even when it doesn't have any live tasks. This patch replaces cgroup_has_tasks() with cgroup_is_populated() which tests cgroup->nr_populated instead which locally counts the number of populated css_sets. Unlike cgroup_has_tasks(), cgroup_is_populated() is recursive - if any of the descendants is populated, the cgroup is populated too. While this changes the meaning of the test, all the existing users are okay with the change. While at it, replace the open-coded ->populated_cnt test in cgroup_events_show() with cgroup_is_populated(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org>
2015-09-22cgroup, memcg, cpuset: implement cgroup_taskset_for_each_leader()Tejun Heo1-0/+22
It wasn't explicitly documented but, when a process is being migrated, cpuset and memcg depend on cgroup_taskset_first() returning the threadgroup leader; however, this approach is somewhat ghetto and would no longer work for the planned multi-process migration. This patch introduces explicit cgroup_taskset_for_each_leader() which iterates over only the threadgroup leaders and replaces cgroup_taskset_first() usages for accessing the leader with it. This prepares both memcg and cpuset for multi-process migration. This patch also updates the documentation for cgroup_taskset_for_each() to clarify the iteration rules and removes comments mentioning task ordering in tasksets. v2: A previous patch which added threadgroup leader test was dropped. Patch updated accordingly. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Zefan Li <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org>
2015-09-19cgroup: generalize obtaining the handles of and notifying cgroup filesTejun Heo1-0/+13
cgroup core handles creations and removals of cgroup interface files as described by cftypes. There are cases where the handle for a given file instance is necessary, for example, to generate a file modified event. Currently, this is handled by explicitly matching the callback method pointer and storing the file handle manually in cgroup_add_file(). While this simple approach works for cgroup core files, it can't for controller interface files. This patch generalizes cgroup interface file handle handling. struct cgroup_file is defined and each cftype can optionally tell cgroup core to store the file handle by setting ->file_offset. A file handle remains accessible as long as the containing css is accessible. Both "cgroup.procs" and "cgroup.events" are converted to use the new generic mechanism instead of hooking directly into cgroup_add_file(). Also, cgroup_file_notify() which takes a struct cgroup_file and generates a file modified event on it is added and replaces explicit kernfs_notify() invocations. This generalizes cgroup file handle handling and allows controllers to generate file modified notifications. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org>