Age | Commit message (Collapse) | Author | Files | Lines |
|
In commit a6d190f8c767 ("can: skb: drop tx skb if in listen only
mode") the priv->ctrlmode element is read even on virtual CAN
interfaces that do not create the struct can_priv at startup. This
out-of-bounds read may lead to CAN frame drops for virtual CAN
interfaces like vcan and vxcan.
This patch mainly reverts the original commit and adds a new helper
for CAN interface drivers that provide the required information in
struct can_priv.
Fixes: a6d190f8c767 ("can: skb: drop tx skb if in listen only mode")
Reported-by: Dariusz Stojaczyk <Dariusz.Stojaczyk@opensynergy.com>
Cc: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Cc: Max Staudt <max@enpas.org>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Acked-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/all/20221102095431.36831-1-socketcan@hartkopp.net
Cc: stable@vger.kernel.org # 6.0.x
[mkl: patch pch_can, too]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Make use of new can_skb_get_data_len() helper.
Add support for variable CANXL MTU using the new can_is_canxl_dev_mtu().
Acked-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/all/20220912170725.120748-7-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Tools based on libpcap (such as tcpdump) expect the SIOCSHWTSTAMP
ioctl call to be supported. This is also specified in the kernel doc
[1]. The purpose of this ioctl is to toggle the hardware timestamps.
Currently, CAN devices which support hardware timestamping have those
always activated. can_eth_ioctl_hwts() is a dumb function that will
always succeed when requested to set tx_type to HWTSTAMP_TX_ON or
rx_filter to HWTSTAMP_FILTER_ALL.
[1] Kernel doc: Timestamping, section 3.1 "Hardware Timestamping
Implementation: Device Drivers"
Link: https://docs.kernel.org/networking/timestamping.html#hardware-timestamping-implementation-device-drivers
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/all/20220727101641.198847-9-mailhol.vincent@wanadoo.fr
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Add function can_ethtool_op_get_ts_info_hwts(). This function will be
used by CAN devices with hardware TX/RX timestamping support to
implement ethtool_ops::get_ts_info. This function does not offer
support to activate/deactivate hardware timestamps at device level nor
support the filter options (which is currently the case for all CAN
devices with hardware timestamping support).
The fact that hardware timestamp can not be deactivated at hardware
level does not impact the userland. As long as the user do not set
SO_TIMESTAMPING using a setsockopt() or ioctl(), the kernel will not
emit TX timestamps (RX timestamps will still be reproted as it is the
case currently).
Drivers which need more fine grained control remains free to implement
their own function, but we foresee that the generic function
introduced here will be sufficient for the majority.
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/all/20220727101641.198847-8-mailhol.vincent@wanadoo.fr
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Since commit 30f3b42147ba6f ("can: mark led trigger as broken") the
CAN specific LED support was disabled and marked as BROKEN. As the
common LED support with CONFIG_LEDS_TRIGGER_NETDEV should do this work
now the code can be removed as preparation for a CAN netdevice Kconfig
rework.
Link: https://lore.kernel.org/all/20220518154527.29046-1-socketcan@hartkopp.net
Suggested-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
[mkl: remove led.h from MAINTAINERS]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Save eight bytes of holes on x86-64 architectures by reordering the
members of struct can_priv.
Before:
| $ pahole -C can_priv drivers/net/can/dev/dev.o
| struct can_priv {
| struct net_device * dev; /* 0 8 */
| struct can_device_stats can_stats; /* 8 24 */
| const struct can_bittiming_const * bittiming_const; /* 32 8 */
| const struct can_bittiming_const * data_bittiming_const; /* 40 8 */
| struct can_bittiming bittiming; /* 48 32 */
| /* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */
| struct can_bittiming data_bittiming; /* 80 32 */
| const struct can_tdc_const * tdc_const; /* 112 8 */
| struct can_tdc tdc; /* 120 12 */
| /* --- cacheline 2 boundary (128 bytes) was 4 bytes ago --- */
| unsigned int bitrate_const_cnt; /* 132 4 */
| const u32 * bitrate_const; /* 136 8 */
| const u32 * data_bitrate_const; /* 144 8 */
| unsigned int data_bitrate_const_cnt; /* 152 4 */
| u32 bitrate_max; /* 156 4 */
| struct can_clock clock; /* 160 4 */
| unsigned int termination_const_cnt; /* 164 4 */
| const u16 * termination_const; /* 168 8 */
| u16 termination; /* 176 2 */
|
| /* XXX 6 bytes hole, try to pack */
|
| struct gpio_desc * termination_gpio; /* 184 8 */
| /* --- cacheline 3 boundary (192 bytes) --- */
| u16 termination_gpio_ohms[2]; /* 192 4 */
| enum can_state state; /* 196 4 */
| u32 ctrlmode; /* 200 4 */
| u32 ctrlmode_supported; /* 204 4 */
| int restart_ms; /* 208 4 */
|
| /* XXX 4 bytes hole, try to pack */
|
| struct delayed_work restart_work; /* 216 88 */
|
| /* XXX last struct has 4 bytes of padding */
|
| /* --- cacheline 4 boundary (256 bytes) was 48 bytes ago --- */
| int (*do_set_bittiming)(struct net_device *); /* 304 8 */
| int (*do_set_data_bittiming)(struct net_device *); /* 312 8 */
| /* --- cacheline 5 boundary (320 bytes) --- */
| int (*do_set_mode)(struct net_device *, enum can_mode); /* 320 8 */
| int (*do_set_termination)(struct net_device *, u16); /* 328 8 */
| int (*do_get_state)(const struct net_device *, enum can_state *); /* 336 8 */
| int (*do_get_berr_counter)(const struct net_device *, struct can_berr_counter *); /* 344 8 */
| unsigned int echo_skb_max; /* 352 4 */
|
| /* XXX 4 bytes hole, try to pack */
|
| struct sk_buff * * echo_skb; /* 360 8 */
|
| /* size: 368, cachelines: 6, members: 32 */
| /* sum members: 354, holes: 3, sum holes: 14 */
| /* paddings: 1, sum paddings: 4 */
| /* last cacheline: 48 bytes */
| };
After:
| $ pahole -C can_priv drivers/net/can/dev/dev.o
| struct can_priv {
| struct net_device * dev; /* 0 8 */
| struct can_device_stats can_stats; /* 8 24 */
| const struct can_bittiming_const * bittiming_const; /* 32 8 */
| const struct can_bittiming_const * data_bittiming_const; /* 40 8 */
| struct can_bittiming bittiming; /* 48 32 */
| /* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */
| struct can_bittiming data_bittiming; /* 80 32 */
| const struct can_tdc_const * tdc_const; /* 112 8 */
| struct can_tdc tdc; /* 120 12 */
| /* --- cacheline 2 boundary (128 bytes) was 4 bytes ago --- */
| unsigned int bitrate_const_cnt; /* 132 4 */
| const u32 * bitrate_const; /* 136 8 */
| const u32 * data_bitrate_const; /* 144 8 */
| unsigned int data_bitrate_const_cnt; /* 152 4 */
| u32 bitrate_max; /* 156 4 */
| struct can_clock clock; /* 160 4 */
| unsigned int termination_const_cnt; /* 164 4 */
| const u16 * termination_const; /* 168 8 */
| u16 termination; /* 176 2 */
|
| /* XXX 6 bytes hole, try to pack */
|
| struct gpio_desc * termination_gpio; /* 184 8 */
| /* --- cacheline 3 boundary (192 bytes) --- */
| u16 termination_gpio_ohms[2]; /* 192 4 */
| unsigned int echo_skb_max; /* 196 4 */
| struct sk_buff * * echo_skb; /* 200 8 */
| enum can_state state; /* 208 4 */
| u32 ctrlmode; /* 212 4 */
| u32 ctrlmode_supported; /* 216 4 */
| int restart_ms; /* 220 4 */
| struct delayed_work restart_work; /* 224 88 */
|
| /* XXX last struct has 4 bytes of padding */
|
| /* --- cacheline 4 boundary (256 bytes) was 56 bytes ago --- */
| int (*do_set_bittiming)(struct net_device *); /* 312 8 */
| /* --- cacheline 5 boundary (320 bytes) --- */
| int (*do_set_data_bittiming)(struct net_device *); /* 320 8 */
| int (*do_set_mode)(struct net_device *, enum can_mode); /* 328 8 */
| int (*do_set_termination)(struct net_device *, u16); /* 336 8 */
| int (*do_get_state)(const struct net_device *, enum can_state *); /* 344 8 */
| int (*do_get_berr_counter)(const struct net_device *, struct can_berr_counter *); /* 352 8 */
|
| /* size: 360, cachelines: 6, members: 32 */
| /* sum members: 354, holes: 1, sum holes: 6 */
| /* paddings: 1, sum paddings: 4 */
| /* last cacheline: 40 bytes */
| };
Link: https://lore.kernel.org/all/20211213160226.56219-4-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Previous patch removed can_priv::ctrlmode_static to replace it with
can_get_static_ctrlmode().
A condition sine qua non for this to work is that the controller
static modes should never be set in can_priv::ctrlmode_supported
(c.f. the comment on can_priv::ctrlmode_supported which states that it
is for "options that can be *modified* by netlink"). Also, this
condition is already correctly fulfilled by all existing drivers
which rely on the ctrlmode_static feature.
Nonetheless, we added an extra safeguard in can_set_static_ctrlmode()
to return an error value and to warn the developer who would be
adventurous enough to set to static a given feature that is already
set to supported.
The drivers which rely on the static controller mode are then updated
to check the return value of can_set_static_ctrlmode().
Link: https://lore.kernel.org/all/20211213160226.56219-3-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The statically enabled features of a CAN controller can be retrieved
using below formula:
| u32 ctrlmode_static = priv->ctrlmode & ~priv->ctrlmode_supported;
As such, there is no need to store this information. This patch remove
the field ctrlmode_static of struct can_priv and provides, in
replacement, the inline function can_get_static_ctrlmode() which
returns the same value.
Link: https://lore.kernel.org/all/20211213160226.56219-2-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
struct can_tdc::tdco represents the absolute offset from TDCV. Some
controllers use instead an offset relative to the Sample Point (SP)
such that:
| SSP = TDCV + absolute TDCO
| = TDCV + SP + relative TDCO
Consequently:
| relative TDCO = absolute TDCO - SP
The function can_tdc_get_relative_tdco() allow to retrieve this
relative TDCO value.
Link: https://lore.kernel.org/all/20210918095637.20108-7-mailhol.vincent@wanadoo.fr
CC: Stefan Mätje <Stefan.Maetje@esd.eu>
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Some CAN device can measure the TDCV (Transmission Delay Compensation
Value) automatically for each transmitted CAN frames.
A callback function do_get_auto_tdcv() is added to retrieve that
value. This function is used only if CAN_CTRLMODE_TDC_AUTO is enabled
(if CAN_CTRLMODE_TDC_MANUAL is selected, the TDCV value is provided by
the user).
If the device does not support reporting of TDCV, do_get_auto_tdcv()
should be set to NULL and TDCV will not be reported by the netlink
interface.
On success, do_get_auto_tdcv() shall return 0. If the value can not be
measured by the device, for example because network is down or because
no frames were transmitted yet, can_priv::do_get_auto_tdcv() shall
return a negative error code (e.g. -EINVAL) to signify that the value
is not yet available. In such cases, TDCV is not reported by the
netlink interface.
Link: https://lore.kernel.org/all/20210918095637.20108-6-mailhol.vincent@wanadoo.fr
CC: Stefan Mätje <stefan.maetje@esd.eu>
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
ISO 11898-1 specifies in section 11.3.3 "Transmitter delay
compensation" that "the configuration range for [the] SSP position
shall be at least 0 to 63 minimum time quanta."
Because SSP = TDCV + TDCO, it means that we should allow both TDCV and
TDCO to hold zero value in order to honor SSP's minimum possible
value.
However, current implementation assigned special meaning to TDCV and
TDCO's zero values:
* TDCV = 0 -> TDCV is automatically measured by the transceiver.
* TDCO = 0 -> TDC is off.
In order to allow for those values to really be zero and to maintain
current features, we introduce two new flags:
* CAN_CTRLMODE_TDC_AUTO indicates that the controller support
automatic measurement of TDCV.
* CAN_CTRLMODE_TDC_MANUAL indicates that the controller support
manual configuration of TDCV. N.B.: current implementation failed
to provide an option for the driver to indicate that only manual
mode was supported.
TDC is disabled if both CAN_CTRLMODE_TDC_AUTO and
CAN_CTRLMODE_TDC_MANUAL flags are off, c.f. the helper function
can_tdc_is_enabled() which is also introduced in this patch.
Also, this patch adds three fields: tdcv_min, tdco_min and tdcf_min to
struct can_tdc_const. While we are not convinced that those three
fields could be anything else than zero, we can imagine that some
controllers might specify a lower bound on these. Thus, those minimums
are really added "just in case".
Comments of struct can_tdc and can_tdc_const are updated accordingly.
Finally, the changes are applied to the etas_es58x driver.
Link: https://lore.kernel.org/all/20210918095637.20108-2-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
For CAN buses to work, a termination resistor has to be present at both
ends of the bus. This resistor is usually 120 Ohms, other values may be
required for special bus topologies.
This patch adds support for a generic GPIO based CAN termination. The
resistor value has to be specified via device tree, and it can only be
attached to or detached from the bus. By default the termination is not
active.
Link: https://lore.kernel.org/r/20210818071232.20585-4-o.rempel@pengutronix.de
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Save eight bytes of holes on x86-64 architectures by reordering struct
can_priv members.
Before:
$ pahole -C can_priv drivers/net/can/dev/dev.o
struct can_priv {
struct net_device * dev; /* 0 8 */
struct can_device_stats can_stats; /* 8 24 */
struct can_bittiming bittiming; /* 32 32 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct can_bittiming data_bittiming; /* 64 32 */
const struct can_bittiming_const * bittiming_const; /* 96 8 */
const struct can_bittiming_const * data_bittiming_const; /* 104 8 */
struct can_tdc tdc; /* 112 12 */
/* XXX 4 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
const struct can_tdc_const * tdc_const; /* 128 8 */
const u16 * termination_const; /* 136 8 */
unsigned int termination_const_cnt; /* 144 4 */
u16 termination; /* 148 2 */
/* XXX 2 bytes hole, try to pack */
const u32 * bitrate_const; /* 152 8 */
unsigned int bitrate_const_cnt; /* 160 4 */
/* XXX 4 bytes hole, try to pack */
const u32 * data_bitrate_const; /* 168 8 */
unsigned int data_bitrate_const_cnt; /* 176 4 */
u32 bitrate_max; /* 180 4 */
struct can_clock clock; /* 184 4 */
enum can_state state; /* 188 4 */
/* --- cacheline 3 boundary (192 bytes) --- */
u32 ctrlmode; /* 192 4 */
u32 ctrlmode_supported; /* 196 4 */
u32 ctrlmode_static; /* 200 4 */
int restart_ms; /* 204 4 */
struct delayed_work restart_work; /* 208 168 */
/* XXX last struct has 4 bytes of padding */
/* --- cacheline 5 boundary (320 bytes) was 56 bytes ago --- */
int (*do_set_bittiming)(struct net_device *); /* 376 8 */
/* --- cacheline 6 boundary (384 bytes) --- */
int (*do_set_data_bittiming)(struct net_device *); /* 384 8 */
int (*do_set_mode)(struct net_device *, enum can_mode); /* 392 8 */
int (*do_set_termination)(struct net_device *, u16); /* 400 8 */
int (*do_get_state)(const struct net_device *, enum can_state *); /* 408 8 */
int (*do_get_berr_counter)(const struct net_device *, struct can_berr_counter *); /* 416 8 */
unsigned int echo_skb_max; /* 424 4 */
/* XXX 4 bytes hole, try to pack */
struct sk_buff * * echo_skb; /* 432 8 */
/* size: 440, cachelines: 7, members: 31 */
/* sum members: 426, holes: 4, sum holes: 14 */
/* paddings: 1, sum paddings: 4 */
/* last cacheline: 56 bytes */
};
After:
$ pahole -C can_priv drivers/net/can/dev/dev.o
struct can_priv {
struct net_device * dev; /* 0 8 */
struct can_device_stats can_stats; /* 8 24 */
const struct can_bittiming_const * bittiming_const; /* 32 8 */
const struct can_bittiming_const * data_bittiming_const; /* 40 8 */
struct can_bittiming bittiming; /* 48 32 */
/* --- cacheline 1 boundary (64 bytes) was 16 bytes ago --- */
struct can_bittiming data_bittiming; /* 80 32 */
const struct can_tdc_const * tdc_const; /* 112 8 */
struct can_tdc tdc; /* 120 12 */
/* --- cacheline 2 boundary (128 bytes) was 4 bytes ago --- */
unsigned int bitrate_const_cnt; /* 132 4 */
const u32 * bitrate_const; /* 136 8 */
const u32 * data_bitrate_const; /* 144 8 */
unsigned int data_bitrate_const_cnt; /* 152 4 */
u32 bitrate_max; /* 156 4 */
struct can_clock clock; /* 160 4 */
unsigned int termination_const_cnt; /* 164 4 */
const u16 * termination_const; /* 168 8 */
u16 termination; /* 176 2 */
/* XXX 2 bytes hole, try to pack */
enum can_state state; /* 180 4 */
u32 ctrlmode; /* 184 4 */
u32 ctrlmode_supported; /* 188 4 */
/* --- cacheline 3 boundary (192 bytes) --- */
u32 ctrlmode_static; /* 192 4 */
int restart_ms; /* 196 4 */
struct delayed_work restart_work; /* 200 168 */
/* XXX last struct has 4 bytes of padding */
/* --- cacheline 5 boundary (320 bytes) was 48 bytes ago --- */
int (*do_set_bittiming)(struct net_device *); /* 368 8 */
int (*do_set_data_bittiming)(struct net_device *); /* 376 8 */
/* --- cacheline 6 boundary (384 bytes) --- */
int (*do_set_mode)(struct net_device *, enum can_mode); /* 384 8 */
int (*do_set_termination)(struct net_device *, u16); /* 392 8 */
int (*do_get_state)(const struct net_device *, enum can_state *); /* 400 8 */
int (*do_get_berr_counter)(const struct net_device *, struct can_berr_counter *); /* 408 8 */
unsigned int echo_skb_max; /* 416 4 */
/* XXX 4 bytes hole, try to pack */
struct sk_buff * * echo_skb; /* 424 8 */
/* size: 432, cachelines: 7, members: 31 */
/* sum members: 426, holes: 2, sum holes: 6 */
/* paddings: 1, sum paddings: 4 */
/* last cacheline: 48 bytes */
};
Link: https://lore.kernel.org/r/20210224002008.4158-3-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
At high bit rates, the propagation delay from the TX pin to the RX pin
of the transceiver causes measurement errors: the sample point on the
RX pin might occur on the previous bit.
This issue is addressed in ISO 11898-1 section 11.3.3 "Transmitter
delay compensation" (TDC).
This patch adds two new structures: can_tdc and can_tdc_const in order
to implement this TDC.
The structures are then added to can_priv.
A controller supports TDC if an only if can_priv::tdc_const is not
NULL.
TDC is active if and only if:
- fd flag is on
- can_priv::tdc.tdco is not zero.
It is the driver responsibility to check those two conditions are met.
No new controller modes are introduced (i.e. no CAN_CTRL_MODE_TDC) in
order not to be redundant with above logic.
The names of the parameters are chosen to match existing CAN
controllers specification. References:
- Bosch C_CAN FD8:
https://www.bosch-semiconductors.com/media/ip_modules/pdf_2/c_can_fd8/users_manual_c_can_fd8_r210_1.pdf
- Microchip CAN FD Controller Module:
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP251XXFD-CAN-FD-Controller-Module-Family-Reference-Manual-20005678B.pdf
- SAM E701/S70/V70/V71 Family:
https://www.mouser.com/datasheet/2/268/60001527A-1284321.pdf
Link: https://lore.kernel.org/r/20210224002008.4158-2-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The can_get_state_str() function is also relevant to the drivers. Export the
symbol and make it visible in the can/dev.h header.
Link: https://lore.kernel.org/r/20210119170355.12040-1-mailhol.vincent@wanadoo.fr
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch moves the netlink related code of the CAN device infrastructure into
a separate file.
Reviewed-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20210111141930.693847-7-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch moves the skb related code of the CAN device infrastructure into a
separate file.
Reviewed-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20210111141930.693847-6-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch moves all CAN frame length related code of the CAN device
infrastructure into a separate file.
Reviewed-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20210111141930.693847-5-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch moves the bittiming related code of the CAN device infrastructure
into a separate file.
Reviewed-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20210111141930.693847-4-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch adds the following helper to functions to access Classical CAN DLC
values.
can_get_cc_dlc(): get the data length code for Classical CAN raw DLC access
can_frame_set_cc_len(): set len and len8_dlc value for Classical CAN raw DLC access
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110154913.1404582-2-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The helper functions can_len2dlc and can_dlc2len are only relevant for
CAN FD data length code (DLC) conversion.
To fit the introduced can_cc_dlc2len for Classical CAN we rename:
can_dlc2len -> can_fd_dlc2len to get the payload length from the DLC
can_len2dlc -> can_fd_len2dlc to get the DLC from the payload length
Suggested-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110101852.1973-6-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The naming of can_dlc as element of struct can_frame and also as variable
name is misleading as it claims to be a 'data length CODE' but in reality
it always was a plain data length.
With the indroduction of a new 'len' element in struct can_frame we can now
remove can_dlc as name and make clear which of the former uses was a plain
length (-> 'len') or a data length code (-> 'dlc') value.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201120100444.3199-1-socketcan@hartkopp.net
[mkl: gs_usb: keep struct gs_host_frame::can_dlc as is]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The macro was always used together with can_dlc2len() which sanitizes the
given dlc value on its own.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110101852.1973-4-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The get_can_dlc() macro is used to ensure the payload length information of
the Classical CAN frame to be max 8 bytes (the CAN_MAX_DLEN).
Rename the macro and use the correct constant in preparation of the len/dlc
cleanup for Classical CAN frames.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://lore.kernel.org/r/20201110101852.1973-3-socketcan@hartkopp.net
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Rename macro CAN_CALC_SYNC_SEG to CAN_SYNC_SEG and make it available
through include/linux/can/dev.h
Add an helper function can_bit_time() which returns the duration (in
time quanta) of one CAN bit.
Rationale for this patch: the sync segment and the bit time are two
concepts which are defined in the CAN ISO standard. Device drivers for
CAN might need those.
Please refer to ISO 11898-1:2015, section 11.3.1.1 "Bit time" for
additional information.
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20201002154219.4887-6-mailhol.vincent@wanadoo.fr
[mkl: Let can_bit_time() return an unsinged int, make argument const]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The macros get_can_dlc() and get_canfd_dlc() are not visible in
userland. As such, type u8 should be preferred over type __u8.
Reference: https://lkml.org/lkml/2020/10/1/708
Signed-off-by: Vincent Mailhol <mailhol.vincent@wanadoo.fr>
Link: https://lore.kernel.org/r/20201002154219.4887-3-mailhol.vincent@wanadoo.fr
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The function can_put_echo_skb() can fail for several reasons. It may
fail due to OOM, but when it fails it's usually due to locking problems
in the driver.
In order to help developing and debugging of new drivers propagate error
value in case of errors.
Link: https://lore.kernel.org/r/20200915223527.1417033-12-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch fixes spelling erros found by "codespell" in the
include/linux/can subtree.
Link: https://lore.kernel.org/r/20200915223527.1417033-4-mkl@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
CAN sk_buffs
KMSAN sysbot detected a read access to an untinitialized value in the
headroom of an outgoing CAN related sk_buff. When using CAN sockets this
area is filled appropriately - but when using a packet socket this
initialization is missing.
The problematic read access occurs in the CAN receive path which can
only be triggered when the sk_buff is sent through a (virtual) CAN
interface. So we check in the sending path whether we need to perform
the missing initializations.
Fixes: d3b58c47d330d ("can: replace timestamp as unique skb attribute")
Reported-by: syzbot+b02ff0707a97e4e79ebb@syzkaller.appspotmail.com
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Tested-by: Oliver Hartkopp <socketcan@hartkopp.net>
Cc: linux-stable <stable@vger.kernel.org> # >= v4.1
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch fixes long lines in the generic CAN device infrastructure.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
__can_get_echo_skb()
This patch factors out all non sending parts of can_get_echo_skb() into
a seperate function __can_get_echo_skb(), so that it can be re-used in
an upcoming patch.
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The existing SocketCAN implementation provides alloc_candev() to
allocate a CAN device using a single Tx and Rx queue. This can lead to
priority inversion in case the single Tx queue is already full with low
priority messages and a high priority message needs to be sent while the
bus is fully loaded with medium priority messages.
This problem can be solved by using the existing multi-queue support of
the network subsytem. The commit makes it possible to use multi-queue in
the CAN subsystem in the same way it is used in the Ethernet subsystem
by adding an alloc_candev_mqs() call and accompanying macros. With this
support a CAN device can use multi-queue qdisc (e.g. mqprio) to avoid
the aforementioned priority inversion.
The exisiting functionality of alloc_candev() is the same as before.
CAN devices need to have prioritized multiple hardware queues or are
able to abort waiting for arbitration to make sensible use of
multi-queues.
Signed-off-by: Zhu Yi <yi.zhu5@cn.bosch.com>
Signed-off-by: Mark Jonas <mark.jonas@de.bosch.com>
Reviewed-by: Heiko Schocher <hs@denx.de>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Various CAN or CAN-FD IP may be able to run at a faster rate than
what the transceiver the CAN node is connected to. This can lead to
unexpected errors. However, CAN transceivers typically have fixed
limitations and provide no means to discover these limitations at
runtime. Therefore, add support for a can-transceiver node that
can be reused by other CAN peripheral drivers to determine for both
CAN and CAN-FD what the max bitrate that can be used. If the user
tries to configure CAN to pass these maximum bitrates it will throw
an error.
Also add support for reading bitrate_max via the netlink interface.
Reviewed-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Franklin S Cooper Jr <fcooper@ti.com>
[nsekhar@ti.com: fix build error with !CONFIG_OF]
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
Signed-off-by: Faiz Abbas <faiz_abbas@ti.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Some CAN interfaces only support fixed fixed bitrates. This patch adds a
netlink interface to get the list of the CAN interface's fixed bitrates and
data bitrates.
Inside the driver arrays of supported data- bitrate values are defined.
const u32 drvname_bitrate[] = { 20000, 50000, 100000 };
const u32 drvname_data_bitrate[] = { 200000, 500000, 1000000 };
struct drvname_priv *priv;
priv = netdev_priv(dev);
priv->bitrate_const = drvname_bitrate;
priv->bitrate_const_cnt = ARRAY_SIZE(drvname_bitrate);
priv->data_bitrate_const = drvname_data_bitrate;
priv->data_bitrate_const_cnt = ARRAY_SIZE(drvname_data_bitrate);
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch adds a netlink interface to configure the CAN bus termination of
CAN interfaces.
Inside the driver an array of supported termination values is defined:
const u16 drvname_termination[] = { 60, 120, CAN_TERMINATION_DISABLED };
struct drvname_priv *priv;
priv = netdev_priv(dev);
priv->termination_const = drvname_termination;
priv->termination_const_cnt = ARRAY_SIZE(drvname_termination);
priv->termination = CAN_TERMINATION_DISABLED;
And the funtion to set the value has to be defined:
priv->do_set_termination = drvname_set_termination;
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Reviewed-by: Ramesh Shanmugasundaram <Ramesh.shanmugasundaram@bp.renesas.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
A timer was used to restart after the bus-off state, leading to a
relatively large can_restart() executed in an interrupt context,
which in turn sets up pinctrl. When this happens during system boot,
there is a high probability of grabbing the pinctrl_list_mutex,
which is locked already by the probe() of other device, making the
kernel suspect a deadlock condition [1].
To resolve this issue, the restart_timer is replaced by a delayed
work.
[1] https://github.com/victronenergy/venus/issues/24
Signed-off-by: Sergei Miroshnichenko <sergeimir@emcraft.com>
Cc: linux-stable <stable@vger.kernel.org>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
As described in 'can: m_can: tag current CAN FD controllers as non-ISO'
(6cfda7fbebe) it is possible to define fixed configuration options by
setting the according bit in 'ctrlmode' and clear it in 'ctrlmode_supported'.
This leads to the incovenience that the fixed configuration bits can not be
passed by netlink even when they have the correct values (e.g. non-ISO, FD).
This patch fixes that issue and not only allows fixed set bit values to be set
again but now requires(!) to provide these fixed values at configuration time.
A valid CAN FD configuration consists of a nominal/arbitration bittiming, a
data bittiming and a control mode with CAN_CTRLMODE_FD set - which is now
enforced by a new can_validate() function. This fix additionally removed the
inconsistency that was prohibiting the support of 'CANFD-only' controller
drivers, like the RCar CAN FD.
For this reason a new helper can_set_static_ctrlmode() has been introduced to
provide a proper interface to handle static enabled CAN controller options.
Reported-by: Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Reviewed-by: Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>
Cc: <stable@vger.kernel.org> # >= 3.18
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch makes can_dropped_invalid_skb return bool due to this
particular function only using either one or zero as its return
value.
No functional change.
Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch adds the missing #include-s to the dev.h and led.h, so that they can
be used without including further header files.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Add <ifname>-rxtx trigger, that will be activated both for tx
as rx events. This trigger mimics "activity" LED for Ethernet
devices.
Signed-off-by: Yegor Yefremov <yegorslists@googlemail.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The handling of can error states is different between platforms.
This is an attempt to correct that problem.
I've moved this handling into a generic function for changing the
error state. This ensures that error state changes are handled
the same way everywhere (where this function is used).
This new mechanism also adds reverse state transitioning in error
frames, i.e. the user will be notified through the socket interface
when the state goes down.
Signed-off-by: Andri Yngvason <andri.yngvason@marel.com>
Acked-by: Wolfgang Grandegger <wg@grandegger.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The CAN device drivers can use can_is_canfd_skb() to check if the frame to send
is on CAN FD mode or normal CAN mode.
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Dong Aisheng <b29396@freescale.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
Armin pointed me to the fact that the identifier which is used to ensure the
unique include processing in lunux/include/uapi/linux/can.h is CAN_H.
This clashed with his own source as includes from libraries and APIs should
use an underscore '_' at the identifier start.
This patch fixes the protection identifiers in all CAN relavant includes.
Reported-by: Armin Burchardt <armin@uni-bremen.de>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
The configuration for CAN FD depends on CAN_CTRLMODE_FD enabled in the driver
specific ctrlmode_supported capabilities.
The configuration can be done either with the 'fd { on | off }' option in the
'ip' tool from iproute2 or by setting the CAN netdevice MTU to CAN_MTU (16) or
to CANFD_MTU (72).
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Acked-by: Stephane Grosjean <s.grosjean@peak-system.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
As CAN FD offers a second bitrate for the data section of the CAN frame the
infrastructure for storing and configuring this second bitrate is introduced.
Improved the readability of the if-statement by inserting some newlines.
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Acked-by: Stephane Grosjean <s.grosjean@peak-system.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch adds the ability of allocating a CANFD frame data structure in the
skb data area.
Signed-off-by: Stephane Grosjean <s.grosjean@peak-system.com>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
In net_device notifier calls, it was impossible to determine
if a CAN device is based on candev in a safe way.
This patch adds such test in order to access candev storage
from within those notifiers.
Signed-off-by: Kurt Van Dijck <kurt.van.dijck@eia.be>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Fabio Baltieri <fabio.baltieri@gmail.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch implements the functions to add two LED triggers, named
<ifname>-tx and <ifname>-rx, to a canbus device driver.
Triggers are called from specific handlers by each CAN device driver and
can be disabled altogether with a Kconfig option.
The implementation keeps the LED on when the interface is UP and blinks
the LED on network activity at a configurable rate.
This only supports can-dev based drivers, as it uses some support field
in the can_priv structure.
Supported drivers should call devm_can_led_init() and can_led_event() as
needed.
Cleanup is handled automatically by devres, so no *_exit function is
needed.
Supported events are:
- CAN_LED_EVENT_OPEN: turn on tx/rx LEDs
- CAN_LED_EVENT_STOP: turn off tx/rx LEDs
- CAN_LED_EVENT_TX: trigger tx LED blink
- CAN_LED_EVENT_RX: trigger tx LED blink
Cc: Wolfgang Grandegger <wg@grandegger.com>
Cc: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Fabio Baltieri <fabio.baltieri@gmail.com>
Acked-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|
|
This patch marks the bittiming_const pointer as in the struct can_pric as
"const". This allows us to mark the struct can_bittiming_const in the CAN
drivers as "const", too.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
|