Age | Commit message (Collapse) | Author | Files | Lines |
|
cgroup.h (therefore swap.h, therefore half of the universe)
includes bpf.h which in turn includes module.h and slab.h.
Since we're about to get rid of that dependency we need
to clean things up.
v2: drop the cpu.h include from cacheinfo.h, it's not necessary
and it makes riscv sensitive to ordering of include files.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Krzysztof Wilczyński <kw@linux.com>
Acked-by: Peter Chen <peter.chen@kernel.org>
Acked-by: SeongJae Park <sj@kernel.org>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/all/20211120035253.72074-1-kuba@kernel.org/ # v1
Link: https://lore.kernel.org/all/20211120165528.197359-1-kuba@kernel.org/ # cacheinfo discussion
Link: https://lore.kernel.org/bpf/20211202203400.1208663-1-kuba@kernel.org
|
|
DEFINE_SMP_CALL_CACHE_FUNCTION() was usefel before the CPU hotplug rework
to ensure that the cache related functions are called on the upcoming CPU
because the notifier itself could run on any online CPU.
The hotplug state machine guarantees that the callbacks are invoked on the
upcoming CPU. So there is no need to have this SMP function call
obfuscation. That indirection was missed when the hotplug notifiers were
converted.
This also solves the problem of ARM64 init_cache_level() invoking ACPI
functions which take a semaphore in that context. That's invalid as SMP
function calls run with interrupts disabled. Running it just from the
callback in context of the CPU hotplug thread solves this.
Fixes: 8571890e1513 ("arm64: Add support for ACPI based firmware tables")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/871r69ersb.ffs@tglx
|
|
resctrl/core.c defines get_cache_id() for use in its cpu-hotplug
callbacks. This gets the id attribute of the cache at the corresponding
level of a CPU.
Later rework means this private function needs to be shared. Move
it to the header file.
The name conflicts with a different definition in intel_cacheinfo.c,
name it get_cpu_cacheinfo_id() to show its relation with
get_cpu_cacheinfo().
Now this is visible on other architectures, check the id attribute
has actually been set.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/20200708163929.2783-11-james.morse@arm.com
|
|
Add coherency_max_size variable to record the maximum cache line size
for different cache levels. If it is available, we will synchronize
it as cache line size, otherwise we will use CTR_EL0.CWG reporting
in cache_line_size() for arm64.
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Though CONFIG_ACPI_PPTT is selected by platforms and nor user visible,
it may be useful to support the build with CONFIG_ACPI_PPTT disabled.
This patch adds the missing dummy/boiler plate implementation to fix
the build.
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Call ACPI cache parsing routines from base cacheinfo code if ACPI
is enabled. Also stub out cache_setup_acpi and acpi_find_last_cache_level
so that individual architectures can enable ACPI topology parsing.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Vijaya Kumar K <vkilari@codeaurora.org>
Tested-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Tested-by: Tomasz Nowicki <Tomasz.Nowicki@cavium.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Rename and change the type of of_node to indicate
it is a generic pointer which is generally only used
for comparison purposes. In a later patch we will put
an ACPI/PPTT token pointer in fw_token so that
the code which builds the shared cpu masks can be reused.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Vijaya Kumar K <vkilari@codeaurora.org>
Tested-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Tested-by: Tomasz Nowicki <Tomasz.Nowicki@cavium.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache allocation interface from Thomas Gleixner:
"This provides support for Intel's Cache Allocation Technology, a cache
partitioning mechanism.
The interface is odd, but the hardware interface of that CAT stuff is
odd as well.
We tried hard to come up with an abstraction, but that only allows
rather simple partitioning, but no way of sharing and dealing with the
per package nature of this mechanism.
In the end we decided to expose the allocation bitmaps directly so all
combinations of the hardware can be utilized.
There are two ways of associating a cache partition:
- Task
A task can be added to a resource group. It uses the cache
partition associated to the group.
- CPU
All tasks which are not member of a resource group use the group to
which the CPU they are running on is associated with.
That allows for simple CPU based partitioning schemes.
The main expected user sare:
- Virtualization so a VM can only trash only the associated part of
the cash w/o disturbing others
- Real-Time systems to seperate RT and general workloads.
- Latency sensitive enterprise workloads
- In theory this also can be used to protect against cache side
channel attacks"
[ Intel RDT is "Resource Director Technology". The interface really is
rather odd and very specific, which delayed this pull request while I
was thinking about it. The pull request itself came in early during
the merge window, I just delayed it until things had calmed down and I
had more time.
But people tell me they'll use this, and the good news is that it is
_so_ specific that it's rather independent of anything else, and no
user is going to depend on the interface since it's pretty rare. So if
push comes to shove, we can just remove the interface and nothing will
break ]
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86/intel_rdt: Implement show_options() for resctrlfs
x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled
x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount
x86/intel_rdt: Fix setting of closid when adding CPUs to a group
x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee
x86/intel_rdt: Reset per cpu closids on unmount
x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A
x86/intel_rdt: Prevent deadlock against hotplug lock
x86/intel_rdt: Protect info directory from removal
x86/intel_rdt: Add info files to Documentation
x86/intel_rdt: Export the minimum number of set mask bits in sysfs
x86/intel_rdt: Propagate error in rdt_mount() properly
x86/intel_rdt: Add a missing #include
MAINTAINERS: Add maintainer for Intel RDT resource allocation
x86/intel_rdt: Add scheduler hook
x86/intel_rdt: Add schemata file
x86/intel_rdt: Add tasks files
x86/intel_rdt: Add cpus file
x86/intel_rdt: Add mkdir to resctrl file system
x86/intel_rdt: Add "info" files to resctrl file system
...
|
|
With CONFIG_OF enabled on x86, we get the following error on boot:
"
Failed to find cpu0 device node
Unable to detect cache hierarchy from DT for CPU 0
"
and the cacheinfo fails to get populated in the corresponding sysfs
entries. This is because cache_setup_of_node looks for of_node for
setting up the shared cpu_map without checking that it's already
populated in the architecture specific callback.
In order to indicate that the shared cpu_map is already populated, this
patch introduces a boolean `cpu_map_populated` in struct cpu_cacheinfo
that can be used by the generic code to skip cache_shared_cpu_map_setup.
This patch also sets that boolean for x86.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Cache management software needs an id for each instance of a cache of
a particular type.
The current cacheinfo structure does not provide any information about
the underlying hardware so there is no way to expose it.
Hardware with cache management features provides means (cpuid, enumeration
etc.) to retrieve the hardware id of a particular cache instance. Cache
instances which share hardware have the same hardware id.
Add an 'id' field to struct cacheinfo to store this information. Expose
this information under the /sys/devices/system/cpu/cpu*/cache/index*/
directory as well.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Dave Hansen" <dave.hansen@intel.com>
Cc: "Shaohua Li" <shli@fb.com>
Cc: "Nilay Vaish" <nilayvaish@gmail.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "Ingo Molnar" <mingo@elte.hu>
Cc: "Borislav Petkov" <bp@suse.de>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1477142405-32078-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
s/hierarcy/hierarchy/
Maybe the typo will annoy people enough so that they add the missing
nodes to their device-tree files, but I still think this is better off
fixed.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds initial support for providing processor cache information
to userspace through sysfs interface. This is based on already existing
implementations(x86, ia64, s390 and powerpc) and hence the interface is
intended to be fully compatible.
The main purpose of this generic support is to avoid further code
duplication to support new architectures and also to unify all the existing
different implementations.
This implementation maintains the hierarchy of cache objects which reflects
the system's cache topology. Cache devices are instantiated as needed as
CPUs come online. The cache information is replicated per-cpu even if they are
shared. A per-cpu array of cache information maintained is used mainly for
sysfs-related book keeping.
It also implements the shared_cpu_map attribute, which is essential for
enabling both kernel and user-space to discover the system's overall cache
topology.
This patch also add the missing ABI documentation for the cacheinfo sysfs
interface already, which is well defined and widely used.
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Stephen Boyd <sboyd@codeaurora.org>
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linux-api@vger.kernel.org
Cc: linux390@de.ibm.com
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: x86@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|