Age | Commit message (Collapse) | Author | Files | Lines |
|
Move the headers to include/asm-x86 and fixup the
header install make rules
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
When a machine check or NMI occurs while multiple byte code is patched
the CPU could theoretically see an inconsistent instruction and crash.
Prevent this by temporarily disabling MCEs and returning early in the
NMI handler.
Based on discussion with Mathieu Desnoyers.
Cc: Mathieu Desnoyers <compudj@krystal.dyndns.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Background:
/dev/mcelog is typically polled manually. This is less than optimal for
situations where accurate accounting of MCEs is important. Calling
poll() on /dev/mcelog does not work.
Description:
This patch adds support for poll() to /dev/mcelog. This results in
immediate wakeup of user apps whenever the poller finds MCEs. Because
the exception handler can not take any locks, it can not call the wakeup
itself. Instead, it uses a thread_info flag (TIF_MCE_NOTIFY) which is
caught at the next return from interrupt or exit from idle, calling the
mce_user_notify() routine. This patch also disables the "fake panic"
path of the mce_panic(), because it results in printk()s in the exception
handler and crashy systems.
This patch also does some small cleanup for essentially unused variables,
and moves the user notification into the body of the poller, so it is
only called once per poll, rather than once per CPU.
Result:
Applications can now poll() on /dev/mcelog. When an error is logged
(whether through the poller or through an exception) the applications are
woken up promptly. This should not affect any previous behaviors. If no
MCEs are being logged, there is no overhead.
Alternatives:
I considered simply supporting poll() through the poller and not using
TIF_MCE_NOTIFY at all. However, the time between an uncorrectable error
happening and the user application being notified is *the*most* critical
window for us. Many uncorrectable errors can be logged to the network if
given a chance.
I also considered doing the MCE poll directly from the idle notifier, but
decided that was overkill.
Testing:
I used an error-injecting DIMM to create lots of correctable DRAM errors
and verified that my user app is woken up in sync with the polling interval.
I also used the northbridge to inject uncorrectable ECC errors, and
verified (printk() to the rescue) that the notify routine is called and the
user app does wake up. I built with PREEMPT on and off, and verified
that my machine survives MCEs.
[wli@holomorphy.com: build fix]
Signed-off-by: Tim Hockin <thockin@google.com>
Signed-off-by: William Irwin <bill.irwin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a machine check event is detected (including a AMD RevF threshold
overflow event) allow to run a "trigger" program. This allows user space
to react to such events sooner.
The trigger is configured using a new trigger entry in the
machinecheck sysfs interface. It is currently shared between
all CPUs.
I also fixed the AMD threshold handler to run the machine
check polling code immediately to actually log any events
that might have caused the threshold interrupt.
Also added some documentation for the mce sysfs interface.
Signed-off-by: Andi Kleen <ak@suse.de>
|
|
Refactor the event processing (syslog messaging and rate limiting)
into separate file therm_throt.c. This allows consistent reporting
of CPU thermal throttle events.
After ACK'ing the interrupt, if the event is current, the user
(p4.c/mce_intel.c) calls therm_throt_process to log (and rate limit)
the event. If that function returns 1, the user has the option to log
things further (such as to mce_log in x86_64).
AK: minor cleanup
Signed-off-by: Dmitriy Zavin <dmitriyz@google.com>
Signed-off-by: Andi Kleen <ak@suse.de>
|
|
Add support for mce threshold registers found in future
AMD family 0x10 processors. Backwards compatible with
family 0xF hardware.
AK: fixed build on !SMP
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Get rid of /sys/devices/system/threshold directory and move
mce_amd thresholding files into the machine sysfs directory --
/sys/devices/system/machinecheck.
AK: Fixed warning
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Machine checks can stall the machine for a long time and
it's not good to trigger the nmi watchdog during that.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
MC4_MISC - DRAM Errors Threshold Register realized under AMD K8 Rev F.
This register is used to count correctable and uncorrectable ECC errors that occur during DRAM read operations.
The user may interface through sysfs files in order to change the threshold configuration.
bank%d/error_count - reads current error count, write to clear.
bank%d/interrupt_enable - set/clear interrupt enable.
bank%d/threshold_limit - read/write the threshold limit.
APIC vector 0xF9 in hw_irq.h.
5 software defined bank ids in mce.h.
new apic.c function to setup threshold apic lvt.
defaults to interrupt off, count enabled, and threshold limit max.
sysfs interface created on /sys/devices/system/threshold.
AK: added some ifdefs to make it compile on UP
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|