Age | Commit message (Collapse) | Author | Files | Lines |
|
Needed to be able to include spu.h independant from other
headers.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
|
|
This adds a platform specific spu management abstraction and the coresponding
routines to support the IBM Cell Blade. It also removes the hypervisor only
resources that were included in struct spu.
Three new platform specific routines are introduced, spu_enumerate_spus(),
spu_create_spu() and spu_destroy_spu(). The underlying design uses a new
type, struct spu_management_ops, to hold function pointers that the platform
setup code is expected to initialize to instances appropriate to that platform.
For the IBM Cell Blade support, I put the hypervisor only resources that were
in struct spu into a platform specific data structure struct spu_pdata.
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
|
|
This patch adds SPU elf notes to the coredump. It creates a separate note
for each of /regs, /fpcr, /lslr, /decr, /decr_status, /mem, /signal1,
/signal1_type, /signal2, /signal2_type, /event_mask, /event_status,
/mbox_info, /ibox_info, /wbox_info, /dma_info, /proxydma_info, /object-id.
A new macro, ARCH_HAVE_EXTRA_NOTES, was created for architectures to
specify they have extra elf core notes.
A new macro, ELF_CORE_EXTRA_NOTES_SIZE, was created so the size of the
additional notes could be calculated and added to the notes phdr entry.
A new macro, ELF_CORE_WRITE_EXTRA_NOTES, was created so the new notes
would be written after the existing notes.
The SPU coredump code resides in spufs. Stub functions are provided in the
kernel which are hooked into the spufs code which does the actual work via
register_arch_coredump_calls().
A new set of __spufs_<file>_read/get() functions was provided to allow the
coredump code to read from the spufs files without having to lock the
SPU context for each file read from.
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Dwayne Grant McConnell <decimal@us.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
|
|
In order to add sysfs attributes to all spu's, there is a
need for a list of all available spu's. Adding the device_node
makes also sense, as it is needed for proper register access.
This patch also adds two functions to create and remove sysfs
attributes and attribute_groups to all spus.
That allows to group spu attributes in a subdirectory like:
/sys/devices/system/spu/spuX/group_name/what_ever
This will be used by cbe_thermal to group all attributes dealing with
thermal support in one directory.
Signed-off-by: Christian Krafft <krafft@de.ibm.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This adds two new flags to spu_create:
SPU_CREATE_NONSCHED: create a context that is never moved
away from an SPE once it has started running. This flag
can only be used by tasks with the CAP_SYS_NICE capability.
SPU_CREATE_ISOLATED: create a nonschedulable context that
enters isolation mode upon first run. This requires the
SPU_CREATE_NONSCHED flag.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Remove the mostly unused variable isrc from struct spu and a forgotten
function declaration.
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This adds an 'object-id' file that the spe library can
use to store a pointer to its ELF object. This was
originally meant for use by oprofile, but is now
also used by the GNU debugger, if available.
In order for oprofile to find the location in an spu-elf
binary where an event counter triggered, we need a way
to identify the binary in the first place.
Unfortunately, that binary itself can be embedded in a
powerpc ELF binary. Since we can assume it is mapped into
the effective address space of the running process,
have that one write the pointer value into a new spufs
file.
When a context switch occurs, pass the user value to
the profiler so that can look at the mapped file (with
some care).
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Add the concept of a gang to spufs as a new type of object.
So far, this has no impact whatsover on scheduling, but makes
it possible to add that later.
A new type of object in spufs is now a spu_gang. It is created
with the spu_create system call with the flags argument set
to SPU_CREATE_GANG (0x2). Inside of a spu_gang, it
is then possible to create spu_context objects, which until
now was only possible at the root of spufs.
There is a new member in struct spu_context pointing to
the spu_gang it belongs to, if any. The spu_gang maintains
a list of spu_context structures that are its children.
This information can then be used in the scheduler in the
future.
There is still a bug that needs to be resolved in this
basic infrastructure regarding the order in which objects
are removed. When the spu_gang file descriptor is closed
before the spu_context descriptors, we leak the dentry
and inode for the gang. Any ideas how to cleanly solve
this are appreciated.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This tries to fix spufs so we have an interface closer to what is
specified in the man page for events returned in the third argument of
spu_run.
Fortunately, libspe has never been using the returned contents of that
register, as they were the same as the return code of spu_run (duh!).
Unlike the specification that we never implemented correctly, we now
require a SPU_CREATE_EVENTS_ENABLED flag passed to spu_create, in
order to get the new behavior. When this flag is not passed, spu_run
will simply ignore the third argument now.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch adds NUMA support to the the spufs scheduler.
The new arch/powerpc/platforms/cell/spufs/sched.c is greatly
simplified, in an attempt to reduce complexity while adding
support for NUMA scheduler domains. SPUs are allocated starting
from the calling thread's node, moving to others as supported by
current->cpus_allowed. Preemption is gone as it was buggy, but
should be re-enabled in another patch when stable.
The new arch/powerpc/platforms/cell/spu_base.c maintains idle
lists on a per-node basis, and allows caller to specify which
node(s) an SPU should be allocated from, while passing -1 tells
spu_alloc() that any node is allowed.
Since the patch removes the currently implemented preemptive
scheduling, it is technically a regression, but practically
all users have since migrated to this version, as it is
part of the IBM SDK and the yellowdog distribution, so there
is not much point holding it back while the new preemptive
scheduling patch gets delayed further.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Now that get_property() returns a void *, there's no need to cast its
return value. Also, treat the return value as const, so we can
constify get_property later.
cell platform changes.
Built for cell_defconfig
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This adds the new irq remapper core and removes the old one. Because
there are some fundamental conflicts with the old code, like the value
of NO_IRQ which I'm now setting to 0 (as per discussions with Linus),
etc..., this commit also changes the relevant platform and driver code
over to use the new remapper (so as not to cause difficulties later
in bisecting).
This patch removes the old pre-parsing of the open firmware interrupt
tree along with all the bogus assumptions it made to try to renumber
interrupts according to the platform. This is all to be handled by the
new code now.
For the pSeries XICS interrupt controller, a single remapper host is
created for the whole machine regardless of how many interrupt
presentation and source controllers are found, and it's set to match
any device node that isn't a 8259. That works fine on pSeries and
avoids having to deal with some of the complexities of split source
controllers vs. presentation controllers in the pSeries device trees.
The powerpc i8259 PIC driver now always requests the legacy interrupt
range. It also has the feature of being able to match any device node
(including NULL) if passed no device node as an input. That will help
porting over platforms with broken device-trees like Pegasos who don't
have a proper interrupt tree.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc: (139 commits)
[POWERPC] re-enable OProfile for iSeries, using timer interrupt
[POWERPC] support ibm,extended-*-frequency properties
[POWERPC] Extra sanity check in EEH code
[POWERPC] Dont look for class-code in pci children
[POWERPC] Fix mdelay badness on shared processor partitions
[POWERPC] disable floating point exceptions for init
[POWERPC] Unify ppc syscall tables
[POWERPC] mpic: add support for serial mode interrupts
[POWERPC] pseries: Print PCI slot location code on failure
[POWERPC] spufs: one more fix for 64k pages
[POWERPC] spufs: fail spu_create with invalid flags
[POWERPC] spufs: clear class2 interrupt status before wakeup
[POWERPC] spufs: fix Makefile for "make clean"
[POWERPC] spufs: remove stop_code from struct spu
[POWERPC] spufs: fix spu irq affinity setting
[POWERPC] spufs: further abstract priv1 register access
[POWERPC] spufs: split the Cell BE support into generic and platform dependant parts
[POWERPC] spufs: dont try to access SPE channel 1 count
[POWERPC] spufs: use kzalloc in create_spu
[POWERPC] spufs: fix initial state of wbox file
...
Manually resolved conflicts in:
drivers/net/phy/Makefile
include/asm-powerpc/spu.h
|
|
This patch remove 'stop_code' -- discarded member of struct spu.
It is written at initialize and interrupt, but never read
in current implementation.
Signed-off-by: Masato Noguchi <Masato.Noguchi@jp.sony.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
To support muti-platform binaries the spu hypervisor accessor
routines must have runtime binding.
I removed the existing statically linked routines in spu.h
and spu_priv1_mmio.c and created new accessor routines in spu_priv1.h
that operate indirectly through an ops struct spu_priv1_ops.
spu_priv1_mmio.c contains the instance of the accessor routines
for running on raw hardware.
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
SPUs are registered as system devices, exposing attributes through
sysfs. Since the sysdev includes a kref, we can remove the one in
struct spu (it isn't used at the moment anyway).
Currently only the interrupt source and numa node attributes are added.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Add an nid member to the spu structure, and store the numa id of the spu there
on creation.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
This patch is layered on top of CONFIG_SPARSEMEM
and is patterned after direct mapping of LS.
This patch allows mmap() of the following regions:
"mfc", which represents the area from [0x3000 - 0x3fff];
"cntl", which represents the area from [0x4000 - 0x4fff];
"signal1" which begins at offset 0x14000; "signal2" which
begins at offset 0x1c000.
The signal1 & signal2 files may be mmap()'d by regular user
processes. The cntl and mfc file, on the other hand, may
only be accessed if the owning process has CAP_SYS_RAWIO,
because they have the potential to confuse the kernel
with regard to parallel access to the same files with
regular file operations: the kernel always holds a spinlock
when accessing registers in these areas to serialize them,
which can not be guaranteed with user mmaps,
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch adds a new file called 'mfc' to each spufs directory.
The file accepts DMA commands that are a subset of what would
be legal DMA commands for problem state register access. Upon
reading the file, a bitmask is returned with the completed
tag groups set.
The file is meant to be used from an abstraction in libspe
that is added by a different patch.
From the kernel perspective, this means a process can now
offload a memory copy from or into an SPE local store
without having to run code on the SPE itself.
The transfer will only be performed while the SPE is owned
by one thread that is waiting in the spu_run system call
and the data will be transferred into that thread's
address space, independent of which thread started the
transfer.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
An SPU does not have a way to implement system calls
itself, but it can create intercepts to the kernel.
This patch uses the method defined by the JSRE interface
for C99 host library calls from an SPU to implement
Linux system calls. It uses the reserved SPU stop code
0x2104 for this, using the structure layout and syscall
numbers for ppc64-linux.
I'm still undecided wether it is better to have a list
of allowed syscalls or a list of forbidden syscalls,
since we can't allow an SPU to call all syscalls that
are defined for ppc64-linux.
This patch implements the easier choice of them, with a
blacklist that only prevents an SPU from calling anything
that interacts with its own execution, e.g fork, execve,
clone, vfork, exit, spu_run and spu_create and everything
that deals with signals.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
For far, all SPU triggered interrupts always end up on
the first SMT thread, which is a bad solution.
This patch implements setting the affinity to the
CPU that was running last when entering execution on
an SPU. This should result in a significant reduction
in IPI calls and better cache locality for SPE thread
specific data.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The size of the local store is architecture defined
and independent from the page size, so it should
not be defined in terms of pages in the first place.
This mistake broke a few places when building for
64kb pages.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
In a hypervisor based setup, direct access to the first
priviledged register space can typically not be allowed
to the kernel and has to be implemented through hypervisor
calls.
As suggested by Masato Noguchi, let's abstract the register
access trough a number of function calls. Since there is
currently no public specification of actual hypervisor
calls to implement this, I only provide a place that
makes it easier to hook into.
Cc: Masato Noguchi <Masato.Noguchi@jp.sony.com>
Cc: Geoff Levand <geoff.levand@am.sony.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
checking bits manually might not be synchonized with
the use of set_bit/clear_bit. Make sure we always use
the correct bitops by removing the unnecessary
identifiers.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
include/asm-ppc/ had #ifdef __KERNEL__ in all header files that
are not meant for use by user space, include/asm-powerpc does
not have this yet.
This patch gets us a lot closer there. There are a few cases
where I was not sure, so I left them out. I have verified
that no CONFIG_* symbols are used outside of __KERNEL__
any more and that there are no obvious compile errors when
including any of the headers in user space libraries.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch reduces lock complexity of SPU scheduler, particularly
for involuntary preemptive switches. As a result the new code
does a better job of mapping the highest priority tasks to SPUs.
Lock complexity is reduced by using the system default workqueue
to perform involuntary saves. In this way we avoid nasty lock
ordering problems that the previous code had. A "minimum timeslice"
for SPU contexts is also introduced. The intent here is to avoid
thrashing.
While the new scheduler does a better job at prioritization it
still does nothing for fairness.
From: Mark Nutter <mnutter@us.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This patch makes it easier to preempt an SPU context by
having the scheduler hold ctx->state_sema for much shorter
periods of time.
As part of this restructuring, the control logic for the "run"
operation is moved from arch/ppc64/kernel/spu_base.c to
fs/spufs/file.c. Of course the base retains "bottom half"
handlers for class{0,1} irqs. The new run loop will re-acquire
an SPU if preempted.
From: Mark Nutter <mnutter@us.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This adds a scheduler for SPUs to make it possible to use
more logical SPUs than physical ones are present in the
system.
Currently, there is no support for preempting a running
SPU thread, they have to leave the SPU by either triggering
an event on the SPU that causes it to return to the
owning thread or by sending a signal to it.
This patch also adds operations that enable accessing an SPU
in either runnable or saved state. We use an RW semaphore
to protect the state of the SPU from changing underneath
us, while we are holding it readable. In order to change
the state, it is acquired writeable and a context save
or restore is executed before downgrading the semaphore
to read-only.
From: Mark Nutter <mnutter@us.ibm.com>,
Uli Weigand <Ulrich.Weigand@de.ibm.com>
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Add some infrastructure for saving and restoring the context of an
SPE. This patch creates a new structure that can hold the whole
state of a physical SPE in memory. It also contains code that
avoids races during the context switch and the binary code that
is loaded to the SPU in order to access its registers.
The actual PPE- and SPE-side context switch code are two separate
patches.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This is the current version of the spu file system, used
for driving SPEs on the Cell Broadband Engine.
This release is almost identical to the version for the
2.6.14 kernel posted earlier, which is available as part
of the Cell BE Linux distribution from
http://www.bsc.es/projects/deepcomputing/linuxoncell/.
The first patch provides all the interfaces for running
spu application, but does not have any support for
debugging SPU tasks or for scheduling. Both these
functionalities are added in the subsequent patches.
See Documentation/filesystems/spufs.txt on how to use
spufs.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|