summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)AuthorFilesLines
2018-05-17btrfs: Split btrfs_del_delalloc_inode into 2 functionsNikolay Borisov2-3/+12
This is in preparation of fixing delalloc inodes leakage on transaction abort. Also export the new function. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-17btrfs: fix reading stale metadata blocks after degraded raid1 mountsLiu Bo1-3/+3
If a btree block, aka. extent buffer, is not available in the extent buffer cache, it'll be read out from the disk instead, i.e. btrfs_search_slot() read_block_for_search() # hold parent and its lock, go to read child btrfs_release_path() read_tree_block() # read child Unfortunately, the parent lock got released before reading child, so commit 5bdd3536cbbe ("Btrfs: Fix block generation verification race") had used 0 as parent transid to read the child block. It forces read_tree_block() not to check if parent transid is different with the generation id of the child that it reads out from disk. A simple PoC is included in btrfs/124, 0. A two-disk raid1 btrfs, 1. Right after mkfs.btrfs, block A is allocated to be device tree's root. 2. Mount this filesystem and put it in use, after a while, device tree's root got COW but block A hasn't been allocated/overwritten yet. 3. Umount it and reload the btrfs module to remove both disks from the global @fs_devices list. 4. mount -odegraded dev1 and write some data, so now block A is allocated to be a leaf in checksum tree. Note that only dev1 has the latest metadata of this filesystem. 5. Umount it and mount it again normally (with both disks), since raid1 can pick up one disk by the writer task's pid, if btrfs_search_slot() needs to read block A, dev2 which does NOT have the latest metadata might be read for block A, then we got a stale block A. 6. As parent transid is not checked, block A is marked as uptodate and put into the extent buffer cache, so the future search won't bother to read disk again, which means it'll make changes on this stale one and make it dirty and flush it onto disk. To avoid the problem, parent transid needs to be passed to read_tree_block(). In order to get a valid parent transid, we need to hold the parent's lock until finishing reading child. This patch needs to be slightly adapted for stable kernels, the &first_key parameter added to read_tree_block() is from 4.16+ (581c1760415c4). The fix is to replace 0 by 'gen'. Fixes: 5bdd3536cbbe ("Btrfs: Fix block generation verification race") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-17btrfs: property: Set incompat flag if lzo/zstd compression is setMisono Tomohiro1-4/+8
Incompat flag of LZO/ZSTD compression should be set at: 1. mount time (-o compress/compress-force) 2. when defrag is done 3. when property is set Currently 3. is missing and this commit adds this. This could lead to a filesystem that uses ZSTD but is not marked as such. If a kernel without a ZSTD support encounteres a ZSTD compressed extent, it will handle that but this could be confusing to the user. Typically the filesystem is mounted with the ZSTD option, but the discrepancy can arise when a filesystem is never mounted with ZSTD and then the property on some file is set (and some new extents are written). A simple mount with -o compress=zstd will fix that up on an unpatched kernel. Same goes for LZO, but this has been around for a very long time (2.6.37) so it's unlikely that a pre-LZO kernel would be used. Fixes: 5c1aab1dd544 ("btrfs: Add zstd support") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add user visible impact ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-17Btrfs: fix duplicate extents after fsync of file with prealloc extentsFilipe Manana1-25/+112
In commit 471d557afed1 ("Btrfs: fix loss of prealloc extents past i_size after fsync log replay"), on fsync, we started to always log all prealloc extents beyond an inode's i_size in order to avoid losing them after a power failure. However under some cases this can lead to the log replay code to create duplicate extent items, with different lengths, in the extent tree. That happens because, as of that commit, we can now log extent items based on extent maps that are not on the "modified" list of extent maps of the inode's extent map tree. Logging extent items based on extent maps is used during the fast fsync path to save time and for this to work reliably it requires that the extent maps are not merged with other adjacent extent maps - having the extent maps in the list of modified extents gives such guarantee. Consider the following example, captured during a long run of fsstress, which illustrates this problem. We have inode 271, in the filesystem tree (root 5), for which all of the following operations and discussion apply to. A buffered write starts at offset 312391 with a length of 933471 bytes (end offset at 1245862). At this point we have, for this inode, the following extent maps with the their field values: em A, start 0, orig_start 0, len 40960, block_start 18446744073709551613, block_len 0, orig_block_len 0 em B, start 40960, orig_start 40960, len 376832, block_start 1106399232, block_len 376832, orig_block_len 376832 em C, start 417792, orig_start 417792, len 782336, block_start 18446744073709551613, block_len 0, orig_block_len 0 em D, start 1200128, orig_start 1200128, len 835584, block_start 1106776064, block_len 835584, orig_block_len 835584 em E, start 2035712, orig_start 2035712, len 245760, block_start 1107611648, block_len 245760, orig_block_len 245760 Extent map A corresponds to a hole and extent maps D and E correspond to preallocated extents. Extent map D ends where extent map E begins (1106776064 + 835584 = 1107611648), but these extent maps were not merged because they are in the inode's list of modified extent maps. An fsync against this inode is made, which triggers the fast path (BTRFS_INODE_NEEDS_FULL_SYNC is not set). This fsync triggers writeback of the data previously written using buffered IO, and when the respective ordered extent finishes, btrfs_drop_extents() is called against the (aligned) range 311296..1249279. This causes a split of extent map D at btrfs_drop_extent_cache(), replacing extent map D with a new extent map D', also added to the list of modified extents, with the following values: em D', start 1249280, orig_start of 1200128, block_start 1106825216 (= 1106776064 + 1249280 - 1200128), orig_block_len 835584, block_len 786432 (835584 - (1249280 - 1200128)) Then, during the fast fsync, btrfs_log_changed_extents() is called and extent maps D' and E are removed from the list of modified extents. The flag EXTENT_FLAG_LOGGING is also set on them. After the extents are logged clear_em_logging() is called on each of them, and that makes extent map E to be merged with extent map D' (try_merge_map()), resulting in D' being deleted and E adjusted to: em E, start 1249280, orig_start 1200128, len 1032192, block_start 1106825216, block_len 1032192, orig_block_len 245760 A direct IO write at offset 1847296 and length of 360448 bytes (end offset at 2207744) starts, and at that moment the following extent maps exist for our inode: em A, start 0, orig_start 0, len 40960, block_start 18446744073709551613, block_len 0, orig_block_len 0 em B, start 40960, orig_start 40960, len 270336, block_start 1106399232, block_len 270336, orig_block_len 376832 em C, start 311296, orig_start 311296, len 937984, block_start 1112842240, block_len 937984, orig_block_len 937984 em E (prealloc), start 1249280, orig_start 1200128, len 1032192, block_start 1106825216, block_len 1032192, orig_block_len 245760 The dio write results in drop_extent_cache() being called twice. The first time for a range that starts at offset 1847296 and ends at offset 2035711 (length of 188416), which results in a double split of extent map E, replacing it with two new extent maps: em F, start 1249280, orig_start 1200128, block_start 1106825216, block_len 598016, orig_block_len 598016 em G, start 2035712, orig_start 1200128, block_start 1107611648, block_len 245760, orig_block_len 1032192 It also creates a new extent map that represents a part of the requested IO (through create_io_em()): em H, start 1847296, len 188416, block_start 1107423232, block_len 188416 The second call to drop_extent_cache() has a range with a start offset of 2035712 and end offset of 2207743 (length of 172032). This leads to replacing extent map G with a new extent map I with the following values: em I, start 2207744, orig_start 1200128, block_start 1107783680, block_len 73728, orig_block_len 1032192 It also creates a new extent map that represents the second part of the requested IO (through create_io_em()): em J, start 2035712, len 172032, block_start 1107611648, block_len 172032 The dio write set the inode's i_size to 2207744 bytes. After the dio write the inode has the following extent maps: em A, start 0, orig_start 0, len 40960, block_start 18446744073709551613, block_len 0, orig_block_len 0 em B, start 40960, orig_start 40960, len 270336, block_start 1106399232, block_len 270336, orig_block_len 376832 em C, start 311296, orig_start 311296, len 937984, block_start 1112842240, block_len 937984, orig_block_len 937984 em F, start 1249280, orig_start 1200128, len 598016, block_start 1106825216, block_len 598016, orig_block_len 598016 em H, start 1847296, orig_start 1200128, len 188416, block_start 1107423232, block_len 188416, orig_block_len 835584 em J, start 2035712, orig_start 2035712, len 172032, block_start 1107611648, block_len 172032, orig_block_len 245760 em I, start 2207744, orig_start 1200128, len 73728, block_start 1107783680, block_len 73728, orig_block_len 1032192 Now do some change to the file, like adding a xattr for example and then fsync it again. This triggers a fast fsync path, and as of commit 471d557afed1 ("Btrfs: fix loss of prealloc extents past i_size after fsync log replay"), we use the extent map I to log a file extent item because it's a prealloc extent and it starts at an offset matching the inode's i_size. However when we log it, we create a file extent item with a value for the disk byte location that is wrong, as can be seen from the following output of "btrfs inspect-internal dump-tree": item 1 key (271 EXTENT_DATA 2207744) itemoff 3782 itemsize 53 generation 22 type 2 (prealloc) prealloc data disk byte 1106776064 nr 1032192 prealloc data offset 1007616 nr 73728 Here the disk byte value corresponds to calculation based on some fields from the extent map I: 1106776064 = block_start (1107783680) - 1007616 (extent_offset) extent_offset = 2207744 (start) - 1200128 (orig_start) = 1007616 The disk byte value of 1106776064 clashes with disk byte values of the file extent items at offsets 1249280 and 1847296 in the fs tree: item 6 key (271 EXTENT_DATA 1249280) itemoff 3568 itemsize 53 generation 20 type 2 (prealloc) prealloc data disk byte 1106776064 nr 835584 prealloc data offset 49152 nr 598016 item 7 key (271 EXTENT_DATA 1847296) itemoff 3515 itemsize 53 generation 20 type 1 (regular) extent data disk byte 1106776064 nr 835584 extent data offset 647168 nr 188416 ram 835584 extent compression 0 (none) item 8 key (271 EXTENT_DATA 2035712) itemoff 3462 itemsize 53 generation 20 type 1 (regular) extent data disk byte 1107611648 nr 245760 extent data offset 0 nr 172032 ram 245760 extent compression 0 (none) item 9 key (271 EXTENT_DATA 2207744) itemoff 3409 itemsize 53 generation 20 type 2 (prealloc) prealloc data disk byte 1107611648 nr 245760 prealloc data offset 172032 nr 73728 Instead of the disk byte value of 1106776064, the value of 1107611648 should have been logged. Also the data offset value should have been 172032 and not 1007616. After a log replay we end up getting two extent items in the extent tree with different lengths, one of 835584, which is correct and existed before the log replay, and another one of 1032192 which is wrong and is based on the logged file extent item: item 12 key (1106776064 EXTENT_ITEM 835584) itemoff 3406 itemsize 53 refs 2 gen 15 flags DATA extent data backref root 5 objectid 271 offset 1200128 count 2 item 13 key (1106776064 EXTENT_ITEM 1032192) itemoff 3353 itemsize 53 refs 1 gen 22 flags DATA extent data backref root 5 objectid 271 offset 1200128 count 1 Obviously this leads to many problems and a filesystem check reports many errors: (...) checking extents Extent back ref already exists for 1106776064 parent 0 root 5 owner 271 offset 1200128 num_refs 1 extent item 1106776064 has multiple extent items ref mismatch on [1106776064 835584] extent item 2, found 3 Incorrect local backref count on 1106776064 root 5 owner 271 offset 1200128 found 2 wanted 1 back 0x55b1d0ad7680 Backref 1106776064 root 5 owner 271 offset 1200128 num_refs 0 not found in extent tree Incorrect local backref count on 1106776064 root 5 owner 271 offset 1200128 found 1 wanted 0 back 0x55b1d0ad4e70 Backref bytes do not match extent backref, bytenr=1106776064, ref bytes=835584, backref bytes=1032192 backpointer mismatch on [1106776064 835584] checking free space cache block group 1103101952 has wrong amount of free space failed to load free space cache for block group 1103101952 checking fs roots (...) So fix this by logging the prealloc extents beyond the inode's i_size based on searches in the subvolume tree instead of the extent maps. Fixes: 471d557afed1 ("Btrfs: fix loss of prealloc extents past i_size after fsync log replay") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14Btrfs: fix xattr loss after power failureFilipe Manana1-0/+7
If a file has xattrs, we fsync it, to ensure we clear the flags BTRFS_INODE_NEEDS_FULL_SYNC and BTRFS_INODE_COPY_EVERYTHING from its inode, the current transaction commits and then we fsync it (without either of those bits being set in its inode), we end up not logging all its xattrs. This results in deleting all xattrs when replying the log after a power failure. Trivial reproducer $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ touch /mnt/foobar $ setfattr -n user.xa -v qwerty /mnt/foobar $ xfs_io -c "fsync" /mnt/foobar $ sync $ xfs_io -c "pwrite -S 0xab 0 64K" /mnt/foobar $ xfs_io -c "fsync" /mnt/foobar <power failure> $ mount /dev/sdb /mnt $ getfattr --absolute-names --dump /mnt/foobar <empty output> $ So fix this by making sure all xattrs are logged if we log a file's inode item and neither the flags BTRFS_INODE_NEEDS_FULL_SYNC nor BTRFS_INODE_COPY_EVERYTHING were set in the inode. Fixes: 36283bf777d9 ("Btrfs: fix fsync xattr loss in the fast fsync path") Cc: <stable@vger.kernel.org> # 4.2+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-14Btrfs: send, fix invalid access to commit roots due to concurrent snapshottingRobbie Ko1-2/+14
[BUG] btrfs incremental send BUG happens when creating a snapshot of snapshot that is being used by send. [REASON] The problem can happen if while we are doing a send one of the snapshots used (parent or send) is snapshotted, because snapshoting implies COWing the root of the source subvolume/snapshot. 1. When doing an incremental send, the send process will get the commit roots from the parent and send snapshots, and add references to them through extent_buffer_get(). 2. When a snapshot/subvolume is snapshotted, its root node is COWed (transaction.c:create_pending_snapshot()). 3. COWing releases the space used by the node immediately, through: __btrfs_cow_block() --btrfs_free_tree_block() ----btrfs_add_free_space(bytenr of node) 4. Because send doesn't hold a transaction open, it's possible that the transaction used to create the snapshot commits, switches the commit root and the old space used by the previous root node gets assigned to some other node allocation. Allocation of a new node will use the existing extent buffer found in memory, which we previously got a reference through extent_buffer_get(), and allow the extent buffer's content (pages) to be modified: btrfs_alloc_tree_block --btrfs_reserve_extent ----find_free_extent (get bytenr of old node) --btrfs_init_new_buffer (use bytenr of old node) ----btrfs_find_create_tree_block ------alloc_extent_buffer --------find_extent_buffer (get old node) 5. So send can access invalid memory content and have unpredictable behaviour. [FIX] So we fix the problem by copying the commit roots of the send and parent snapshots and use those copies. CallTrace looks like this: ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:1861! invalid opcode: 0000 [#1] SMP CPU: 6 PID: 24235 Comm: btrfs Tainted: P O 3.10.105 #23721 ffff88046652d680 ti: ffff88041b720000 task.ti: ffff88041b720000 RIP: 0010:[<ffffffffa08dd0e8>] read_node_slot+0x108/0x110 [btrfs] RSP: 0018:ffff88041b723b68 EFLAGS: 00010246 RAX: ffff88043ca6b000 RBX: ffff88041b723c50 RCX: ffff880000000000 RDX: 000000000000004c RSI: ffff880314b133f8 RDI: ffff880458b24000 RBP: 0000000000000000 R08: 0000000000000001 R09: ffff88041b723c66 R10: 0000000000000001 R11: 0000000000001000 R12: ffff8803f3e48890 R13: ffff8803f3e48880 R14: ffff880466351800 R15: 0000000000000001 FS: 00007f8c321dc8c0(0000) GS:ffff88047fcc0000(0000) CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 R2: 00007efd1006d000 CR3: 0000000213a24000 CR4: 00000000003407e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: ffff88041b723c50 ffff8803f3e48880 ffff8803f3e48890 ffff8803f3e48880 ffff880466351800 0000000000000001 ffffffffa08dd9d7 ffff88041b723c50 ffff8803f3e48880 ffff88041b723c66 ffffffffa08dde85 a9ff88042d2c4400 Call Trace: [<ffffffffa08dd9d7>] ? tree_move_down.isra.33+0x27/0x50 [btrfs] [<ffffffffa08dde85>] ? tree_advance+0xb5/0xc0 [btrfs] [<ffffffffa08e83d4>] ? btrfs_compare_trees+0x2d4/0x760 [btrfs] [<ffffffffa0982050>] ? finish_inode_if_needed+0x870/0x870 [btrfs] [<ffffffffa09841ea>] ? btrfs_ioctl_send+0xeda/0x1050 [btrfs] [<ffffffffa094bd3d>] ? btrfs_ioctl+0x1e3d/0x33f0 [btrfs] [<ffffffff81111133>] ? handle_pte_fault+0x373/0x990 [<ffffffff8153a096>] ? atomic_notifier_call_chain+0x16/0x20 [<ffffffff81063256>] ? set_task_cpu+0xb6/0x1d0 [<ffffffff811122c3>] ? handle_mm_fault+0x143/0x2a0 [<ffffffff81539cc0>] ? __do_page_fault+0x1d0/0x500 [<ffffffff81062f07>] ? check_preempt_curr+0x57/0x90 [<ffffffff8115075a>] ? do_vfs_ioctl+0x4aa/0x990 [<ffffffff81034f83>] ? do_fork+0x113/0x3b0 [<ffffffff812dd7d7>] ? trace_hardirqs_off_thunk+0x3a/0x6c [<ffffffff81150cc8>] ? SyS_ioctl+0x88/0xa0 [<ffffffff8153e422>] ? system_call_fastpath+0x16/0x1b ---[ end trace 29576629ee80b2e1 ]--- Fixes: 7069830a9e38 ("Btrfs: add btrfs_compare_trees function") CC: stable@vger.kernel.org # 3.6+ Signed-off-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-02Btrfs: send, fix missing truncate for inode with prealloc extent past eofFilipe Manana1-0/+4
An incremental send operation can miss a truncate operation when an inode has an increased size in the send snapshot and a prealloc extent beyond its size. Consider the following scenario where a necessary truncate operation is missing in the incremental send stream: 1) In the parent snapshot an inode has a size of 1282957 bytes and it has no prealloc extents beyond its size; 2) In the the send snapshot it has a size of 5738496 bytes and has a new extent at offsets 1884160 (length of 106496 bytes) and a prealloc extent beyond eof at offset 6729728 (and a length of 339968 bytes); 3) When processing the prealloc extent, at offset 6729728, we end up at send.c:send_write_or_clone() and set the @len variable to a value of 18446744073708560384 because @offset plus the original @len value is larger then the inode's size (6729728 + 339968 > 5738496). We then call send_extent_data(), with that @offset and @len, which in turn calls send_write(), and then the later calls fill_read_buf(). Because the offset passed to fill_read_buf() is greater then inode's i_size, this function returns 0 immediately, which makes send_write() and send_extent_data() do nothing and return immediately as well. When we get back to send.c:send_write_or_clone() we adjust the value of sctx->cur_inode_next_write_offset to @offset plus @len, which corresponds to 6729728 + 18446744073708560384 = 5738496, which is precisely the the size of the inode in the send snapshot; 4) Later when at send.c:finish_inode_if_needed() we determine that we don't need to issue a truncate operation because the value of sctx->cur_inode_next_write_offset corresponds to the inode's new size, 5738496 bytes. This is wrong because the last write operation that was issued started at offset 1884160 with a length of 106496 bytes, so the correct value for sctx->cur_inode_next_write_offset should be 1990656 (1884160 + 106496), so that a truncate operation with a value of 5738496 bytes would have been sent to insert a trailing hole at the destination. So fix the issue by making send.c:send_write_or_clone() not attempt to send write or clone operations for extents that start beyond the inode's size, since such attempts do nothing but waste time by calling helper functions and allocating path structures, and send currently has no fallocate command in order to create prealloc extents at the destination (either beyond a file's eof or not). The issue was found running the test btrfs/007 from fstests using a seed value of 1524346151 for fsstress. Reported-by: Gu, Jinxiang <gujx@cn.fujitsu.com> Fixes: ffa7c4296e93 ("Btrfs: send, do not issue unnecessary truncate operations") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-02btrfs: Take trans lock before access running trans in check_delayed_refethanwu1-0/+7
In preivous patch: Btrfs: kill trans in run_delalloc_nocow and btrfs_cross_ref_exist We avoid starting btrfs transaction and get this information from fs_info->running_transaction directly. When accessing running_transaction in check_delayed_ref, there's a chance that current transaction will be freed by commit transaction after the NULL pointer check of running_transaction is passed. After looking all the other places using fs_info->running_transaction, they are either protected by trans_lock or holding the transactions. Fix this by using trans_lock and increasing the use_count. Fixes: e4c3b2dcd144 ("Btrfs: kill trans in run_delalloc_nocow and btrfs_cross_ref_exist") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: ethanwu <ethanwu@synology.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-26btrfs: Fix wrong first_key parameter in replace_pathQu Wenruo1-1/+1
Commit 581c1760415c ("btrfs: Validate child tree block's level and first key") introduced new @first_key parameter for read_tree_block(), however caller in replace_path() is parasing wrong key to read_tree_block(). It should use parameter @first_key other than @key. Normally it won't expose problem as @key is normally initialzied to the same value of @first_key we expect. However in relocation recovery case, @key can be set to (0, 0, 0), and since no valid key in relocation tree can be (0, 0, 0), it will cause read_tree_block() to return -EUCLEAN and interrupt relocation recovery. Fix it by setting @first_key correctly. Fixes: 581c1760415c ("btrfs: Validate child tree block's level and first key") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-20btrfs: print-tree: debugging output enhancementQu Wenruo2-11/+16
This patch enhances the following things: - tree block header * add generation and owner output for node and leaf - node pointer generation output - allow btrfs_print_tree() to not follow nodes * just like btrfs-progs Please note that, although function btrfs_print_tree() is not called by anyone right now, it's still a pretty useful function to debug kernel. So that function is still kept for later use. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-20btrfs: Fix race condition between delayed refs and blockgroup removalNikolay Borisov3-10/+26
When the delayed refs for a head are all run, eventually cleanup_ref_head is called which (in case of deletion) obtains a reference for the relevant btrfs_space_info struct by querying the bg for the range. This is problematic because when the last extent of a bg is deleted a race window emerges between removal of that bg and the subsequent invocation of cleanup_ref_head. This can result in cache being null and either a null pointer dereference or assertion failure. task: ffff8d04d31ed080 task.stack: ffff9e5dc10cc000 RIP: 0010:assfail.constprop.78+0x18/0x1a [btrfs] RSP: 0018:ffff9e5dc10cfbe8 EFLAGS: 00010292 RAX: 0000000000000044 RBX: 0000000000000000 RCX: 0000000000000000 RDX: ffff8d04ffc1f868 RSI: ffff8d04ffc178c8 RDI: ffff8d04ffc178c8 RBP: ffff8d04d29e5ea0 R08: 00000000000001f0 R09: 0000000000000001 R10: ffff9e5dc0507d58 R11: 0000000000000001 R12: ffff8d04d29e5ea0 R13: ffff8d04d29e5f08 R14: ffff8d04efe29b40 R15: ffff8d04efe203e0 FS: 00007fbf58ead500(0000) GS:ffff8d04ffc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe6c6975648 CR3: 0000000013b2a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: __btrfs_run_delayed_refs+0x10e7/0x12c0 [btrfs] btrfs_run_delayed_refs+0x68/0x250 [btrfs] btrfs_should_end_transaction+0x42/0x60 [btrfs] btrfs_truncate_inode_items+0xaac/0xfc0 [btrfs] btrfs_evict_inode+0x4c6/0x5c0 [btrfs] evict+0xc6/0x190 do_unlinkat+0x19c/0x300 do_syscall_64+0x74/0x140 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 RIP: 0033:0x7fbf589c57a7 To fix this, introduce a new flag "is_system" to head_ref structs, which is populated at insertion time. This allows to decouple the querying for the spaceinfo from querying the possibly deleted bg. Fixes: d7eae3403f46 ("Btrfs: rework delayed ref total_bytes_pinned accounting") CC: stable@vger.kernel.org # 4.14+ Suggested-by: Omar Sandoval <osandov@osandov.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-19btrfs: fix unaligned access in readdirDavid Sterba1-8/+12
The last update to readdir introduced a temporary buffer to store the emitted readdir data, but as there are file names of variable length, there's a lot of unaligned access. This was observed on a sparc64 machine: Kernel unaligned access at TPC[102f3080] btrfs_real_readdir+0x51c/0x718 [btrfs] Fixes: 23b5ec74943 ("btrfs: fix readdir deadlock with pagefault") CC: stable@vger.kernel.org # 4.14+ Reported-and-tested-by: René Rebe <rene@exactcode.com> Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-18btrfs: Fix wrong btrfs_delalloc_release_extents parameterQu Wenruo1-1/+1
Commit 43b18595d660 ("btrfs: qgroup: Use separate meta reservation type for delalloc") merged into mainline is not the latest version submitted to mail list in Dec 2017. It has a fatal wrong @qgroup_free parameter, which results increasing qgroup metadata pertrans reserved space, and causing a lot of early EDQUOT. Fix it by applying the correct diff on top of current branch. Fixes: 43b18595d660 ("btrfs: qgroup: Use separate meta reservation type for delalloc") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-18btrfs: delayed-inode: Remove wrong qgroup meta reservation callsQu Wenruo1-4/+16
Commit 4f5427ccce5d ("btrfs: delayed-inode: Use new qgroup meta rsv for delayed inode and item") merged into mainline was not latest version submitted to the mail list in Dec 2017. Which lacks the following fixes: 1) Remove btrfs_qgroup_convert_reserved_meta() call in btrfs_delayed_item_release_metadata() 2) Remove btrfs_qgroup_reserve_meta_prealloc() call in btrfs_delayed_inode_reserve_metadata() Those fixes will resolve unexpected EDQUOT problems. Fixes: 4f5427ccce5d ("btrfs: delayed-inode: Use new qgroup meta rsv for delayed inode and item") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-18btrfs: qgroup: Use independent and accurate per inode qgroup rsvQu Wenruo2-11/+65
Unlike reservation calculation used in inode rsv for metadata, qgroup doesn't really need to care about things like csum size or extent usage for the whole tree COW. Qgroups care more about net change of the extent usage. That's to say, if we're going to insert one file extent, it will mostly find its place in COWed tree block, leaving no change in extent usage. Or causing a leaf split, resulting in one new net extent and increasing qgroup number by nodesize. Or in an even more rare case, increase the tree level, increasing qgroup number by 2 * nodesize. So here instead of using the complicated calculation for extent allocator, which cares more about accuracy and no error, qgroup doesn't need that over-estimated reservation. This patch will maintain 2 new members in btrfs_block_rsv structure for qgroup, using much smaller calculation for qgroup rsv, reducing false EDQUOT. Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com>
2018-04-18btrfs: qgroup: Commit transaction in advance to reduce early EDQUOTQu Wenruo5-2/+63
Unlike previous method that tries to commit transaction inside qgroup_reserve(), this time we will try to commit transaction using fs_info->transaction_kthread to avoid nested transaction and no need to worry about locking context. Since it's an asynchronous function call and we won't wait for transaction commit, unlike previous method, we must call it before we hit the qgroup limit. So this patch will use the ratio and size of qgroup meta_pertrans reservation as indicator to check if we should trigger a transaction commit. (meta_prealloc won't be cleaned in transaction committ, it's useless anyway) Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-13btrfs: Only check first key for committed tree blocksQu Wenruo1-0/+8
When looping btrfs/074 with many cpus (>= 8), it's possible to trigger kernel warning due to first key verification: [ 4239.523446] WARNING: CPU: 5 PID: 2381 at fs/btrfs/disk-io.c:460 btree_read_extent_buffer_pages+0x1ad/0x210 [ 4239.523830] Modules linked in: [ 4239.524630] RIP: 0010:btree_read_extent_buffer_pages+0x1ad/0x210 [ 4239.527101] Call Trace: [ 4239.527251] read_tree_block+0x42/0x70 [ 4239.527434] read_node_slot+0xd2/0x110 [ 4239.527632] push_leaf_right+0xad/0x1b0 [ 4239.527809] split_leaf+0x4ea/0x700 [ 4239.527988] ? leaf_space_used+0xbc/0xe0 [ 4239.528192] ? btrfs_set_lock_blocking_rw+0x99/0xb0 [ 4239.528416] btrfs_search_slot+0x8cc/0xa40 [ 4239.528605] btrfs_insert_empty_items+0x71/0xc0 [ 4239.528798] __btrfs_run_delayed_refs+0xa98/0x1680 [ 4239.529013] btrfs_run_delayed_refs+0x10b/0x1b0 [ 4239.529205] btrfs_commit_transaction+0x33/0xaf0 [ 4239.529445] ? start_transaction+0xa8/0x4f0 [ 4239.529630] btrfs_alloc_data_chunk_ondemand+0x1b0/0x4e0 [ 4239.529833] btrfs_check_data_free_space+0x54/0xa0 [ 4239.530045] btrfs_delalloc_reserve_space+0x25/0x70 [ 4239.531907] btrfs_direct_IO+0x233/0x3d0 [ 4239.532098] generic_file_direct_write+0xcb/0x170 [ 4239.532296] btrfs_file_write_iter+0x2bb/0x5f4 [ 4239.532491] aio_write+0xe2/0x180 [ 4239.532669] ? lock_acquire+0xac/0x1e0 [ 4239.532839] ? __might_fault+0x3e/0x90 [ 4239.533032] do_io_submit+0x594/0x860 [ 4239.533223] ? do_io_submit+0x594/0x860 [ 4239.533398] SyS_io_submit+0x10/0x20 [ 4239.533560] ? SyS_io_submit+0x10/0x20 [ 4239.533729] do_syscall_64+0x75/0x1d0 [ 4239.533979] entry_SYSCALL_64_after_hwframe+0x42/0xb7 [ 4239.534182] RIP: 0033:0x7f8519741697 The problem here is, at btree_read_extent_buffer_pages() we don't have acquired read/write lock on that extent buffer, only basic info like level/bytenr is reliable. So race condition leads to such false alert. However in current call site, it's impossible to acquire proper lock without race window. To fix the problem, we only verify first key for committed tree blocks (whose generation is no larger than fs_info->last_trans_committed), so the content of such tree blocks will not change and there is no need to get read/write lock. Reported-by: Nikolay Borisov <nborisov@suse.com> Fixes: 581c1760415c ("btrfs: Validate child tree block's level and first key") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: add SPDX header to KconfigDavid Sterba1-0/+2
Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- sourcesDavid Sterba58-750/+65
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- headersDavid Sterba35-475/+133
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12Btrfs: fix loss of prealloc extents past i_size after fsync log replayFilipe Manana1-5/+58
Currently if we allocate extents beyond an inode's i_size (through the fallocate system call) and then fsync the file, we log the extents but after a power failure we replay them and then immediately drop them. This behaviour happens since about 2009, commit c71bf099abdd ("Btrfs: Avoid orphan inodes cleanup while replaying log"), because it marks the inode as an orphan instead of dropping any extents beyond i_size before replaying logged extents, so after the log replay, and while the mount operation is still ongoing, we find the inode marked as an orphan and then perform a truncation (drop extents beyond the inode's i_size). Because the processing of orphan inodes is still done right after replaying the log and before the mount operation finishes, the intention of that commit does not make any sense (at least as of today). However reverting that behaviour is not enough, because we can not simply discard all extents beyond i_size and then replay logged extents, because we risk dropping extents beyond i_size created in past transactions, for example: add prealloc extent beyond i_size fsync - clears the flag BTRFS_INODE_NEEDS_FULL_SYNC from the inode transaction commit add another prealloc extent beyond i_size fsync - triggers the fast fsync path power failure In that scenario, we would drop the first extent and then replay the second one. To fix this just make sure that all prealloc extents beyond i_size are logged, and if we find too many (which is far from a common case), fallback to a full transaction commit (like we do when logging regular extents in the fast fsync path). Trivial reproducer: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ xfs_io -f -c "pwrite -S 0xab 0 256K" /mnt/foo $ sync $ xfs_io -c "falloc -k 256K 1M" /mnt/foo $ xfs_io -c "fsync" /mnt/foo <power failure> # mount to replay log $ mount /dev/sdb /mnt # at this point the file only has one extent, at offset 0, size 256K A test case for fstests follows soon, covering multiple scenarios that involve adding prealloc extents with previous shrinking truncates and without such truncates. Fixes: c71bf099abdd ("Btrfs: Avoid orphan inodes cleanup while replaying log") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12Btrfs: clean up resources during umount after trans is abortedLiu Bo1-1/+2
Currently if some fatal errors occur, like all IO get -EIO, resources would be cleaned up when a) transaction is being committed or b) BTRFS_FS_STATE_ERROR is set However, in some rare cases, resources may be left alone after transaction gets aborted and umount may run into some ASSERT(), e.g. ASSERT(list_empty(&block_group->dirty_list)); For case a), in btrfs_commit_transaciton(), there're several places at the beginning where we just call btrfs_end_transaction() without cleaning up resources. For case b), it is possible that the trans handle doesn't have any dirty stuff, then only trans hanlde is marked as aborted while BTRFS_FS_STATE_ERROR is not set, so resources remain in memory. This makes btrfs also check BTRFS_FS_STATE_TRANS_ABORTED to make sure that all resources won't stay in memory after umount. Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-05btrfs: Fix possible softlock on single core machinesNikolay Borisov1-0/+1
do_chunk_alloc implements a loop checking whether there is a pending chunk allocation and if so causes the caller do loop. Generally this loop is executed only once, however testing with btrfs/072 on a single core vm machines uncovered an extreme case where the system could loop indefinitely. This is due to a missing cond_resched when loop which doesn't give a chance to the previous chunk allocator finish its job. The fix is to simply add the missing cond_resched. Fixes: 6d74119f1a3e ("Btrfs: avoid taking the chunk_mutex in do_chunk_alloc") Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-05Btrfs: bail out on error during replay_dir_deletesLiu Bo1-1/+3
If errors were returned by btrfs_next_leaf(), replay_dir_deletes needs to bail out, otherwise @ret would be forced to be 0 after 'break;' and the caller won't be aware of it. Fixes: e02119d5a7b4 ("Btrfs: Add a write ahead tree log to optimize synchronous operations") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-05Btrfs: fix NULL pointer dereference in log_dir_itemsLiu Bo1-2/+5
0, 1 and <0 can be returned by btrfs_next_leaf(), and when <0 is returned, path->nodes[0] could be NULL, log_dir_items lacks such a check for <0 and we may run into a null pointer dereference panic. Fixes: e02119d5a7b4 ("Btrfs: Add a write ahead tree log to optimize synchronous operations") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: lift errors from add_extent_changeset to the callersDavid Sterba1-8/+11
The missing error handling in add_extent_changeset was hidden, so make it at least visible in the callers. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31Btrfs: print error messages when failing to read treesLiu Bo1-9/+22
When mount fails to read trees like fs tree, checksum tree, extent tree, etc, there is not enough information about where went wrong. With this, messages like "BTRFS warning (device sdf): failed to read root (objectid=7): -5" would help us a bit. Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: user proper type for btrfs_mask_flags flagsDavid Sterba1-1/+1
All users pass a local unsigned int and not the __uXX types that are supposed to be used for userspace interfaces. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: split dev-replace locking helpers for read and writeDavid Sterba5-72/+74
The current calls are unclear in what way btrfs_dev_replace_lock takes the locks, so drop the argument, split the helpers and use similar naming as for read and write locks. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: remove stale comments about fs_mutexDavid Sterba1-8/+0
The fs_mutex has been killed in 2008, a213501153fd66e2 ("Btrfs: Replace the big fs_mutex with a collection of other locks"), still remembered in some comments. We don't have any extra needs for locking in the ACL handlers. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: use RCU in btrfs_show_devname for device list traversalDavid Sterba1-5/+10
The show_devname callback is used to print device name in /proc/self/mounts, we need to traverse the device list consistently and read the name that's copied to a seq buffer so we don't need further locking. If the first device is being deleted at the same time, the RCU will allow us to read the device name, though it will become stale right after the RCU protection ends. This is unavoidable and the user can expect that the device will disappear from the filesystem's list at some point. The device_list_mutex was pretty heavy as it is used eg. for writing superblock and a few other IO related contexts. This can stall any application that reads the proc file for no reason. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: update barrier in should_cow_blockDavid Sterba1-2/+2
Once there was a simple int force_cow that was used with the plain barriers, and then converted to a bit, so we should use the appropriate barrier helper. Other variables in the complex if condition do not depend on a barrier, so we should be fine in case the atomic barrier becomes a no-op. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: use lockdep_assert_held for mutexesDavid Sterba3-8/+8
Using lockdep_assert_held is preferred, replace mutex_is_locked. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: use lockdep_assert_held for spinlocksDavid Sterba2-4/+4
Using lockdep_assert_held is preferred, replace assert_spin_locked. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: Validate child tree block's level and first keyQu Wenruo10-46/+170
We have several reports about node pointer points to incorrect child tree blocks, which could have even wrong owner and level but still with valid generation and checksum. Although btrfs check could handle it and print error message like: leaf parent key incorrect 60670574592 Kernel doesn't have enough check on this type of corruption correctly. At least add such check to read_tree_block() and btrfs_read_buffer(), where we need two new parameters @level and @first_key to verify the child tree block. The new @level check is mandatory and all call sites are already modified to extract expected level from its call chain. While @first_key is optional, the following call sites are skipping such check: 1) Root node/leaf As ROOT_ITEM doesn't contain the first key, skip @first_key check. 2) Direct backref Only parent bytenr and level is known and we need to resolve the key all by ourselves, skip @first_key check. Another note of this verification is, it needs extra info from nodeptr or ROOT_ITEM, so it can't fit into current tree-checker framework, which is limited to node/leaf boundary. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: tests/qgroup: Fix wrong tree backref levelQu Wenruo1-1/+1
The extent tree of the test fs is like the following: BTRFS info (device (null)): leaf 16327509003777336587 total ptrs 1 free space 3919 item 0 key (4096 168 4096) itemoff 3944 itemsize 51 extent refs 1 gen 1 flags 2 tree block key (68719476736 0 0) level 1 ^^^^^^^ ref#0: tree block backref root 5 And it's using an empty tree for fs tree, so there is no way that its level can be 1. For REAL (created by mkfs) fs tree backref with no skinny metadata, the result should look like: item 3 key (30408704 EXTENT_ITEM 4096) itemoff 3845 itemsize 51 refs 1 gen 4 flags TREE_BLOCK tree block key (256 INODE_ITEM 0) level 0 ^^^^^^^ tree block backref root 5 Fix the level to 0, so it won't break later tree level checker. Fixes: faa2dbf004e8 ("Btrfs: add sanity tests for new qgroup accounting code") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31Btrfs: fix copy_items() return value when logging an inodeFilipe Manana1-0/+1
When logging an inode, at tree-log.c:copy_items(), if we call btrfs_next_leaf() at the loop which checks for the need to log holes, we need to make sure copy_items() returns the value 1 to its caller and not 0 (on success). This is because the path the caller passed was released and is now different from what is was before, and the caller expects a return value of 0 to mean both success and that the path has not changed, while a return value of 1 means both success and signals the caller that it can not reuse the path, it has to perform another tree search. Even though this is a case that should not be triggered on normal circumstances or very rare at least, its consequences can be very unpredictable (especially when replaying a log tree). Fixes: 16e7549f045d ("Btrfs: incompatible format change to remove hole extents") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31Btrfs: fix fsync after hole punching when using no-holes featureFilipe Manana1-0/+30
When we have the no-holes mode enabled and fsync a file after punching a hole in it, we can end up not logging the whole hole range in the log tree. This happens if the file has extent items that span more than one leaf and we punch a hole that covers a range that starts in a leaf but does not go beyond the offset of the first extent in the next leaf. Example: $ mkfs.btrfs -f -O no-holes -n 65536 /dev/sdb $ mount /dev/sdb /mnt $ for ((i = 0; i <= 831; i++)); do offset=$((i * 2 * 256 * 1024)) xfs_io -f -c "pwrite -S 0xab -b 256K $offset 256K" \ /mnt/foobar >/dev/null done $ sync # We now have 2 leafs in our filesystem fs tree, the first leaf has an # item corresponding the extent at file offset 216530944 and the second # leaf has a first item corresponding to the extent at offset 217055232. # Now we punch a hole that partially covers the range of the extent at # offset 216530944 but does go beyond the offset 217055232. $ xfs_io -c "fpunch $((216530944 + 128 * 1024 - 4000)) 256K" /mnt/foobar $ xfs_io -c "fsync" /mnt/foobar <power fail> # mount to replay the log $ mount /dev/sdb /mnt # Before this patch, only the subrange [216658016, 216662016[ (length of # 4000 bytes) was logged, leaving an incorrect file layout after log # replay. Fix this by checking if there is a hole between the last extent item that we processed and the first extent item in the next leaf, and if there is one, log an explicit hole extent item. Fixes: 16e7549f045d ("Btrfs: incompatible format change to remove hole extents") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: use helper to set ulist aux from a qgroupDavid Sterba1-6/+6
We have a nice helper to do proper casting of a qgroup to a ulist aux value. And several places that could make use of it. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31Revert "btrfs: qgroups: Retry after commit on getting EDQUOT"Qu Wenruo1-23/+0
This reverts commit 48a89bc4f2ceab87bc858a8eb189636b09c846a7. The idea to commit transaction and free some space after hitting qgroup limit is good, although the problem is it can easily cause deadlocks. One deadlock example is caused by trying to flush data while still holding it: Call Trace: __schedule+0x49d/0x10f0 schedule+0xc6/0x290 schedule_timeout+0x187/0x1c0 wait_for_completion+0x204/0x3a0 btrfs_wait_ordered_extents+0xa40/0xaf0 [btrfs] qgroup_reserve+0x913/0xa10 [btrfs] btrfs_qgroup_reserve_data+0x3ef/0x580 [btrfs] btrfs_check_data_free_space+0x96/0xd0 [btrfs] __btrfs_buffered_write+0x3ac/0xd40 [btrfs] btrfs_file_write_iter+0x62a/0xba0 [btrfs] __vfs_write+0x320/0x430 vfs_write+0x107/0x270 SyS_write+0xbf/0x150 do_syscall_64+0x1b0/0x3d0 entry_SYSCALL64_slow_path+0x25/0x25 Another can be caused by trying to commit one transaction while nesting with trans handle held by ourselves: btrfs_start_transaction() |- btrfs_qgroup_reserve_meta_pertrans() |- qgroup_reserve() |- btrfs_join_transaction() |- btrfs_commit_transaction() The retry is causing more problems than exppected when limit is enabled. At least a graceful EDQUOT is way better than deadlock. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Update trace events for metadata reservationQu Wenruo1-3/+4
Now trace_qgroup_meta_reserve() will have extra type parameter. And introduce two new trace events: 1) trace_qgroup_meta_free_all_pertrans() For btrfs_qgroup_free_meta_all_pertrans() 2) trace_qgroup_meta_convert() For btrfs_qgroup_convert_reserved_meta() Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Use root::qgroup_meta_rsv_* to record qgroup meta reserved spaceQu Wenruo3-4/+68
For quota disabled->enable case, it's possible that at reservation time quota was not enabled so no bytes were really reserved, while at release time, quota was enabled so we will try to release some bytes we didn't really own. Such situation can cause metadata reserveation underflow, for both types, also less possible for per-trans type since quota enable will commit transaction. To address this, record qgroup meta reserved bytes into root::qgroup_meta_rsv_pertrans and ::prealloc. So at releasing time we won't free any bytes we didn't reserve. For DATA, it's already handled by io_tree, so nothing needs to be done there. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: delayed-inode: Use new qgroup meta rsv for delayed inode and itemQu Wenruo1-16/+30
Quite similar for delalloc, some modification to delayed-inode and delayed-item reservation. Also needs extra parameter for release case to distinguish normal release and error release. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Use separate meta reservation type for delallocQu Wenruo9-57/+69
Before this patch, btrfs qgroup is mixing per-transcation meta rsv with preallocated meta rsv, making it quite easy to underflow qgroup meta reservation. Since we have the new qgroup meta rsv types, apply it to delalloc reservation. Now for delalloc, most of its reserved space will use META_PREALLOC qgroup rsv type. And for callers reducing outstanding extent like btrfs_finish_ordered_io(), they will convert corresponding META_PREALLOC reservation to META_PERTRANS. This is mainly due to the fact that current qgroup numbers will only be updated in btrfs_commit_transaction(), that's to say if we don't keep such placeholder reservation, we can exceed qgroup limitation. And for callers freeing outstanding extent in error handler, we will just free META_PREALLOC bytes. This behavior makes callers of btrfs_qgroup_release_meta() or btrfs_qgroup_convert_meta() to be aware of which type they are. So in this patch, btrfs_delalloc_release_metadata() and its callers get an extra parameter to info qgroup to do correct meta convert/release. The good news is, even we use the wrong type (convert or free), it won't cause obvious bug, as prealloc type is always in good shape, and the type only affects how per-trans meta is increased or not. So the worst case will be at most metadata limitation can be sometimes exceeded (no convert at all) or metadata limitation is reached too soon (no free at all). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Introduce function to convert META_PREALLOC into META_PERTRANSQu Wenruo2-0/+64
For meta_prealloc reservation users, after btrfs_join_transaction() caller will modify tree so part (or even all) meta_prealloc reservation should be converted to meta_pertrans until transaction commit time. This patch introduces a new function, btrfs_qgroup_convert_reserved_meta() to do this for META_PREALLOC reservation user. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Don't use root->qgroup_meta_rsv for qgroupQu Wenruo3-13/+24
Since qgroup has seperate metadata reservation types now, we can completely get rid of the old root->qgroup_meta_rsv, which mostly acts as current META_PERTRANS reservation type. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertransQu Wenruo4-23/+84
Btrfs uses 2 different methods to reseve metadata qgroup space. 1) Reserve at btrfs_start_transaction() time This is quite straightforward, caller will use the trans handler allocated to modify b-trees. In this case, reserved metadata should be kept until qgroup numbers are updated. 2) Reserve by using block_rsv first, and later btrfs_join_transaction() This is more complicated, caller will reserve space using block_rsv first, and then later call btrfs_join_transaction() to get a trans handle. In this case, before we modify trees, the reserved space can be modified on demand, and after btrfs_join_transaction(), such reserved space should also be kept until qgroup numbers are updated. Since these two types behave differently, split the original "META" reservation type into 2 sub-types: META_PERTRANS: For above case 1) META_PREALLOC: For reservations that happened before btrfs_join_transaction() of case 2) NOTE: This patch will only convert existing qgroup meta reservation callers according to its situation, not ensuring all callers are at correct timing. Such fix will be added in later patches. Signed-off-by: Qu Wenruo <wqu@suse.com> [ update comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Cleanup the remaining old reservation countersQu Wenruo2-14/+0
So qgroup is switched to new separate types reservation system. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Update trace events to use new separate rsv typesQu Wenruo1-15/+21
Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Fix wrong qgroup reservation update for relationship modificationQu Wenruo1-21/+23
When modifying qgroup relationship, for qgroup which only owns exclusive extents, we will go through quick update path. In this path, we will add/subtract exclusive and reference number for parent qgroup, since the source (child) qgroup only has exclusive extents, destination (parent) qgroup will also own or lose those extents exclusively. The same should be the same for reservation, since later reservation adding/releasing will also affect parent qgroup, without the reservation carried from child, parent will underflow reservation or have dead reservation which will never be freed. However original code doesn't do the same thing for reservation. It handles qgroup reservation quite differently: It removes qgroup reservation, as it's allocating space from the reserved qgroup for relationship adding. But does nothing for qgroup reservation if we're removing a qgroup relationship. According to the original code, it looks just like because we're adding qgroup->rfer, the code assumes we're writing new data, so it's follows the normal write routine, by reducing qgroup->reserved and adding qgroup->rfer/excl. This old behavior is wrong, and should be fixed to follow the same excl/rfer behavior. Just fix it by using the correct behavior described above. Fixes: 31193213f1f9 ("Btrfs: qgroup: Introduce a may_use to account space_info->bytes_may_use.") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>