Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit ac1e21bd8c883aeac2f1835fc93b39c1e6838b35 ]
Commit '6a3afb6ac6df ("jbd2: increase the journal IO's priority")'
increases the priority of journal I/O by marking I/O with the
JBD2_JOURNAL_REQ_FLAGS. However, that commit missed the revoke buffers,
so also addresses that kind of I/Os.
Fixes: 6a3afb6ac6df ("jbd2: increase the journal IO's priority")
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Link: https://lore.kernel.org/r/20241203014407.805916-2-yi.zhang@huaweicloud.com
Reviewed-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 3754137d263f52f4b507cf9ae913f8f0497d1b0e upstream.
Entries (including flags) are u64, even on 32bit. So right now we are
cutting of the flags on 32bit. This way, for example the cow selftest
complains about:
# ./cow
...
Bail Out! read and ioctl return unmatched results for populated: 0 1
Link: https://lkml.kernel.org/r/20241217195000.1734039-1-david@redhat.com
Fixes: 2c1f057e5be6 ("fs/proc/task_mmu: properly detect PM_MMAP_EXCLUSIVE per page of PMD-mapped THPs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5f3fd772d152229d94602bca243fbb658068a597 upstream.
When mounting ocfs2 and then remounting it as read-only, a
slab-use-after-free occurs after the user uses a syscall to
quota_getnextquota. Specifically, sb_dqinfo(sb, type)->dqi_priv is the
dangling pointer.
During the remounting process, the pointer dqi_priv is freed but is never
set as null leaving it to be accessed. Additionally, the read-only option
for remounting sets the DQUOT_SUSPENDED flag instead of setting the
DQUOT_USAGE_ENABLED flags. Moreover, later in the process of getting the
next quota, the function ocfs2_get_next_id is called and only checks the
quota usage flags and not the quota suspended flags.
To fix this, I set dqi_priv to null when it is freed after remounting with
read-only and put a check for DQUOT_SUSPENDED in ocfs2_get_next_id.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20241218023924.22821-2-dennis.lamerice@gmail.com
Fixes: 8f9e8f5fcc05 ("ocfs2: Fix Q_GETNEXTQUOTA for filesystem without quotas")
Signed-off-by: Dennis Lam <dennis.lamerice@gmail.com>
Reported-by: syzbot+d173bf8a5a7faeede34c@syzkaller.appspotmail.com
Tested-by: syzbot+d173bf8a5a7faeede34c@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/6731d26f.050a0220.1fb99c.014b.GAE@google.com/T/
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 633609c48a358134d3f8ef8241dff24841577f58 ]
Fix potential problem in rmmod
Signed-off-by: Enzo Matsumiya <ematsumiya@suse.de>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 21e46a79bbe6c4e1aa73b3ed998130f2ff07b128 ]
David reported that the new warning from setattr_copy_mgtime is coming
like the following.
[ 113.215316] ------------[ cut here ]------------
[ 113.215974] WARNING: CPU: 1 PID: 31 at fs/attr.c:300 setattr_copy+0x1ee/0x200
[ 113.219192] CPU: 1 UID: 0 PID: 31 Comm: kworker/1:1 Not tainted 6.13.0-rc1+ #234
[ 113.220127] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
[ 113.221530] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd]
[ 113.222220] RIP: 0010:setattr_copy+0x1ee/0x200
[ 113.222833] Code: 24 28 49 8b 44 24 30 48 89 53 58 89 43 6c 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 48 89 df e8 77 d6 ff ff e9 cd fe ff ff <0f> 0b e9 be fe ff ff 66 0
[ 113.225110] RSP: 0018:ffffaf218010fb68 EFLAGS: 00010202
[ 113.225765] RAX: 0000000000000120 RBX: ffffa446815f8568 RCX: 0000000000000003
[ 113.226667] RDX: ffffaf218010fd38 RSI: ffffa446815f8568 RDI: ffffffff94eb03a0
[ 113.227531] RBP: ffffaf218010fb90 R08: 0000001a251e217d R09: 00000000675259fa
[ 113.228426] R10: 0000000002ba8a6d R11: ffffa4468196c7a8 R12: ffffaf218010fd38
[ 113.229304] R13: 0000000000000120 R14: ffffffff94eb03a0 R15: 0000000000000000
[ 113.230210] FS: 0000000000000000(0000) GS:ffffa44739d00000(0000) knlGS:0000000000000000
[ 113.231215] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 113.232055] CR2: 00007efe0053d27e CR3: 000000000331a000 CR4: 00000000000006b0
[ 113.232926] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 113.233812] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 113.234797] Call Trace:
[ 113.235116] <TASK>
[ 113.235393] ? __warn+0x73/0xd0
[ 113.235802] ? setattr_copy+0x1ee/0x200
[ 113.236299] ? report_bug+0xf3/0x1e0
[ 113.236757] ? handle_bug+0x4d/0x90
[ 113.237202] ? exc_invalid_op+0x13/0x60
[ 113.237689] ? asm_exc_invalid_op+0x16/0x20
[ 113.238185] ? setattr_copy+0x1ee/0x200
[ 113.238692] btrfs_setattr+0x80/0x820 [btrfs]
[ 113.239285] ? get_stack_info_noinstr+0x12/0xf0
[ 113.239857] ? __module_address+0x22/0xa0
[ 113.240368] ? handle_ksmbd_work+0x6e/0x460 [ksmbd]
[ 113.240993] ? __module_text_address+0x9/0x50
[ 113.241545] ? __module_address+0x22/0xa0
[ 113.242033] ? unwind_next_frame+0x10e/0x920
[ 113.242600] ? __pfx_stack_trace_consume_entry+0x10/0x10
[ 113.243268] notify_change+0x2c2/0x4e0
[ 113.243746] ? stack_depot_save_flags+0x27/0x730
[ 113.244339] ? set_file_basic_info+0x130/0x2b0 [ksmbd]
[ 113.244993] set_file_basic_info+0x130/0x2b0 [ksmbd]
[ 113.245613] ? process_scheduled_works+0xbe/0x310
[ 113.246181] ? worker_thread+0x100/0x240
[ 113.246696] ? kthread+0xc8/0x100
[ 113.247126] ? ret_from_fork+0x2b/0x40
[ 113.247606] ? ret_from_fork_asm+0x1a/0x30
[ 113.248132] smb2_set_info+0x63f/0xa70 [ksmbd]
ksmbd is trying to set the atime and mtime via notify_change without also
setting the ctime. so This patch add ATTR_CTIME flags when setting mtime
to avoid a warning.
Reported-by: David Disseldorp <ddiss@suse.de>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2b904d61a97e8ba79e3bc216ba290fd7e1d85028 ]
Some file systems do not ensure that the single call of iterate_dir
reaches the end of the directory. For example, FUSE fetches entries from
a daemon using 4KB buffer and stops fetching if entries exceed the
buffer. And then an actor of caller, KSMBD, is used to fill the entries
from the buffer.
Thus, pattern searching on FUSE, files located after the 4KB could not
be found and STATUS_NO_SUCH_FILE was returned.
Signed-off-by: Hobin Woo <hobin.woo@samsung.com>
Reviewed-by: Sungjong Seo <sj1557.seo@samsung.com>
Reviewed-by: Namjae Jeon <linkinjeon@kernel.org>
Tested-by: Yoonho Shin <yoonho.shin@samsung.com>
Acked-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
unmount
[ Upstream commit f10bef73fb355e3fc85e63a50386798be68ff486 ]
During the unmount path, at close_ctree(), we first stop the cleaner
kthread, using kthread_stop() which frees the associated task_struct, and
then stop and destroy all the work queues. However after we stopped the
cleaner we may still have a worker from the delalloc_workers queue running
inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(),
which in turn tries to wake up the cleaner kthread - which was already
destroyed before, resulting in a use-after-free on the task_struct.
Syzbot reported this with the following stack traces:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-delalloc btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
__lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205
submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615
run_ordered_work fs/btrfs/async-thread.c:288 [inline]
btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:250 [inline]
slab_post_alloc_hook mm/slub.c:4104 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1113
copy_process+0x5d1/0x3d50 kernel/fork.c:2225
kernel_clone+0x223/0x870 kernel/fork.c:2807
kernel_thread+0x1bc/0x240 kernel/fork.c:2869
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:767
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 24:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kmem_cache_free+0x195/0x410 mm/slub.c:4700
put_task_struct include/linux/sched/task.h:144 [inline]
delayed_put_task_struct+0x125/0x300 kernel/exit.c:227
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554
run_ksoftirqd+0xca/0x130 kernel/softirq.c:943
smpboot_thread_fn+0x544/0xa30 kernel/smpboot.c:164
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Last potentially related work creation:
kasan_save_stack+0x3f/0x60 mm/kasan/common.c:47
__kasan_record_aux_stack+0xac/0xc0 mm/kasan/generic.c:544
__call_rcu_common kernel/rcu/tree.c:3086 [inline]
call_rcu+0x167/0xa70 kernel/rcu/tree.c:3190
context_switch kernel/sched/core.c:5372 [inline]
__schedule+0x1803/0x4be0 kernel/sched/core.c:6756
__schedule_loop kernel/sched/core.c:6833 [inline]
schedule+0x14b/0x320 kernel/sched/core.c:6848
schedule_timeout+0xb0/0x290 kernel/time/sleep_timeout.c:75
do_wait_for_common kernel/sched/completion.c:95 [inline]
__wait_for_common kernel/sched/completion.c:116 [inline]
wait_for_common kernel/sched/completion.c:127 [inline]
wait_for_completion+0x355/0x620 kernel/sched/completion.c:148
kthread_stop+0x19e/0x640 kernel/kthread.c:712
close_ctree+0x524/0xd60 fs/btrfs/disk-io.c:4328
generic_shutdown_super+0x139/0x2d0 fs/super.c:642
kill_anon_super+0x3b/0x70 fs/super.c:1237
btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2112
deactivate_locked_super+0xc4/0x130 fs/super.c:473
cleanup_mnt+0x41f/0x4b0 fs/namespace.c:1373
task_work_run+0x24f/0x310 kernel/task_work.c:239
ptrace_notify+0x2d2/0x380 kernel/signal.c:2503
ptrace_report_syscall include/linux/ptrace.h:415 [inline]
ptrace_report_syscall_exit include/linux/ptrace.h:477 [inline]
syscall_exit_work+0xc7/0x1d0 kernel/entry/common.c:173
syscall_exit_to_user_mode_prepare kernel/entry/common.c:200 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:205 [inline]
syscall_exit_to_user_mode+0x24a/0x340 kernel/entry/common.c:218
do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The buggy address belongs to the object at ffff8880259d1e00
which belongs to the cache task_struct of size 7424
The buggy address is located 2584 bytes inside of
freed 7424-byte region [ffff8880259d1e00, ffff8880259d3b00)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x259d0
head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
memcg:ffff88802f4b56c1
flags: 0xfff00000000040(head|node=0|zone=1|lastcpupid=0x7ff)
page_type: f5(slab)
raw: 00fff00000000040 ffff88801bafe500 dead000000000100 dead000000000122
raw: 0000000000000000 0000000000040004 00000001f5000000 ffff88802f4b56c1
head: 00fff00000000040 ffff88801bafe500 dead000000000100 dead000000000122
head: 0000000000000000 0000000000040004 00000001f5000000 ffff88802f4b56c1
head: 00fff00000000003 ffffea0000967401 ffffffffffffffff 0000000000000000
head: 0000000000000008 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 12, tgid 12 (kworker/u8:1), ts 7328037942, free_ts 0
set_page_owner include/linux/page_owner.h:32 [inline]
post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1556
prep_new_page mm/page_alloc.c:1564 [inline]
get_page_from_freelist+0x3651/0x37a0 mm/page_alloc.c:3474
__alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4751
alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265
alloc_slab_page+0x6a/0x140 mm/slub.c:2408
allocate_slab+0x5a/0x2f0 mm/slub.c:2574
new_slab mm/slub.c:2627 [inline]
___slab_alloc+0xcd1/0x14b0 mm/slub.c:3815
__slab_alloc+0x58/0xa0 mm/slub.c:3905
__slab_alloc_node mm/slub.c:3980 [inline]
slab_alloc_node mm/slub.c:4141 [inline]
kmem_cache_alloc_node_noprof+0x269/0x380 mm/slub.c:4205
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1113
copy_process+0x5d1/0x3d50 kernel/fork.c:2225
kernel_clone+0x223/0x870 kernel/fork.c:2807
user_mode_thread+0x132/0x1a0 kernel/fork.c:2885
call_usermodehelper_exec_work+0x5c/0x230 kernel/umh.c:171
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
page_owner free stack trace missing
Memory state around the buggy address:
ffff8880259d2700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880259d2780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8880259d2800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880259d2880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8880259d2900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Fix this by flushing the delalloc workers queue before stopping the
cleaner kthread.
Reported-by: syzbot+b7cf50a0c173770dcb14@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/674ed7e8.050a0220.48a03.0031.GAE@google.com/
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c7c97ceff98cc459bf5e358e5cbd06fcb651d501 ]
Commit e546fe1da9bd ("block: Rework bio_split() return value") changed
bio_split() so that it can return errors.
Add error handling for it in btrfs_split_bio() and ultimately
btrfs_submit_chunk(). As the bio is not submitted, the bio counter must
be decremented to pair btrfs_bio_counter_inc_blocked().
Reviewed-by: John Garry <john.g.garry@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9a45022a0efadd99bcc58f7f1cc2b6fb3b808c40 ]
During swap activation we iterate over the extents of a file, then do
several checks for each extent, some of which may take some significant
time such as checking if an extent is shared. Since a file can have
many thousands of extents, this can be a very slow operation and it's
currently not interruptible. I had a bug during development of a previous
patch that resulted in an infinite loop when iterating the extents, so
a core was busy looping and I couldn't cancel the operation, which is very
annoying and requires a reboot. So make the loop interruptible by checking
for fatal signals at the end of each iteration and stopping immediately if
there is one.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6c3864e055486fadb5b97793b57688082e14b43b ]
Otherwise it won't catch bios turned into regular writes by the block
level zone write plugging. The additional test it adds is for emulated
zone append.
Fixes: 9b1ce7f0c6f8 ("block: Implement zone append emulation")
CC: stable@vger.kernel.org # 6.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 3e74859ee35edc33a022c3f3971df066ea0ca6b9 upstream.
When we call btrfs_read_folio() to bring a folio uptodate, we unlock the
folio. The result of that is that a different thread can modify the
mapping (like remove it with invalidate) before we call folio_lock().
This results in an invalid page and we need to try again.
In particular, if we are relocating concurrently with aborting a
transaction, this can result in a crash like the following:
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP
CPU: 76 PID: 1411631 Comm: kworker/u322:5
Workqueue: events_unbound btrfs_reclaim_bgs_work
RIP: 0010:set_page_extent_mapped+0x20/0xb0
RSP: 0018:ffffc900516a7be8 EFLAGS: 00010246
RAX: ffffea009e851d08 RBX: ffffea009e0b1880 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffc900516a7b90 RDI: ffffea009e0b1880
RBP: 0000000003573000 R08: 0000000000000001 R09: ffff88c07fd2f3f0
R10: 0000000000000000 R11: 0000194754b575be R12: 0000000003572000
R13: 0000000003572fff R14: 0000000000100cca R15: 0000000005582fff
FS: 0000000000000000(0000) GS:ffff88c07fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000407d00f002 CR4: 00000000007706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x78/0xc0
? page_fault_oops+0x2a8/0x3a0
? __switch_to+0x133/0x530
? wq_worker_running+0xa/0x40
? exc_page_fault+0x63/0x130
? asm_exc_page_fault+0x22/0x30
? set_page_extent_mapped+0x20/0xb0
relocate_file_extent_cluster+0x1a7/0x940
relocate_data_extent+0xaf/0x120
relocate_block_group+0x20f/0x480
btrfs_relocate_block_group+0x152/0x320
btrfs_relocate_chunk+0x3d/0x120
btrfs_reclaim_bgs_work+0x2ae/0x4e0
process_scheduled_works+0x184/0x370
worker_thread+0xc6/0x3e0
? blk_add_timer+0xb0/0xb0
kthread+0xae/0xe0
? flush_tlb_kernel_range+0x90/0x90
ret_from_fork+0x2f/0x40
? flush_tlb_kernel_range+0x90/0x90
ret_from_fork_asm+0x11/0x20
</TASK>
This occurs because cleanup_one_transaction() calls
destroy_delalloc_inodes() which calls invalidate_inode_pages2() which
takes the folio_lock before setting mapping to NULL. We fail to check
this, and subsequently call set_extent_mapping(), which assumes that
mapping != NULL (in fact it asserts that in debug mode)
Note that the "fixes" patch here is not the one that introduced the
race (the very first iteration of this code from 2009) but a more recent
change that made this particular crash happen in practice.
Fixes: e7f1326cc24e ("btrfs: set page extent mapped after read_folio in relocate_one_page")
CC: stable@vger.kernel.org # 6.1+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0fba7be1ca6df2881e68386e5575fe096f33c4ca upstream.
When we call btrfs_read_folio() we get an unlocked folio, so it is possible
for a different thread to concurrently modify folio->mapping. We must
check that this hasn't happened once we do have the lock.
CC: stable@vger.kernel.org # 6.12+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44f52bbe96dfdbe4aca3818a2534520082a07040 upstream.
When a COWing a tree block, at btrfs_cow_block(), and we have the
tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled
(CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent
buffer while inside the tracepoint code. This is because in some paths
that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding
the last reference on the extent buffer @buf so btrfs_force_cow_block()
drops the last reference on the @buf extent buffer when it calls
free_extent_buffer_stale(buf), which schedules the release of the extent
buffer with RCU. This means that if we are on a kernel with preemption,
the current task may be preempted before calling trace_btrfs_cow_block()
and the extent buffer already released by the time trace_btrfs_cow_block()
is called, resulting in a use-after-free.
Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to
btrfs_force_cow_block() before the COWed extent buffer is freed.
This also has a side effect of invoking the tracepoint in the tree defrag
code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is
called there, but this is fine and it was actually missing there.
Reported-by: syzbot+8517da8635307182c8a5@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/6759a9b9.050a0220.1ac542.000d.GAE@google.com/
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fca432e73db2bec0fdbfbf6d98d3ebcd5388a977 upstream.
The following sysfs entries are reading super block member directly,
which can have a different endian and cause wrong values:
- sys/fs/btrfs/<uuid>/nodesize
- sys/fs/btrfs/<uuid>/sectorsize
- sys/fs/btrfs/<uuid>/clone_alignment
Thankfully those values (nodesize and sectorsize) are always aligned
inside the btrfs_super_block, so it won't trigger unaligned read errors,
just endian problems.
Fix them by using the native cached members instead.
Fixes: df93589a1737 ("btrfs: export more from FS_INFO to sysfs")
CC: stable@vger.kernel.org
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f2363e6fcc7938c5f0f6ac066fad0dd247598b51 upstream.
Set squota incompat bit before committing the transaction that enables
the feature.
With the config CONFIG_BTRFS_ASSERT enabled, an assertion
failure occurs regarding the simple quota feature.
[5.596534] assertion failed: btrfs_fs_incompat(fs_info, SIMPLE_QUOTA), in fs/btrfs/qgroup.c:365
[5.597098] ------------[ cut here ]------------
[5.597371] kernel BUG at fs/btrfs/qgroup.c:365!
[5.597946] CPU: 1 UID: 0 PID: 268 Comm: mount Not tainted 6.13.0-rc2-00031-gf92f4749861b #146
[5.598450] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[5.599008] RIP: 0010:btrfs_read_qgroup_config+0x74d/0x7a0
[5.604303] <TASK>
[5.605230] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.605538] ? exc_invalid_op+0x56/0x70
[5.605775] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.606066] ? asm_exc_invalid_op+0x1f/0x30
[5.606441] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.606741] ? btrfs_read_qgroup_config+0x74d/0x7a0
[5.607038] ? try_to_wake_up+0x317/0x760
[5.607286] open_ctree+0xd9c/0x1710
[5.607509] btrfs_get_tree+0x58a/0x7e0
[5.608002] vfs_get_tree+0x2e/0x100
[5.608224] fc_mount+0x16/0x60
[5.608420] btrfs_get_tree+0x2f8/0x7e0
[5.608897] vfs_get_tree+0x2e/0x100
[5.609121] path_mount+0x4c8/0xbc0
[5.609538] __x64_sys_mount+0x10d/0x150
The issue can be easily reproduced using the following reproducer:
root@q:linux# cat repro.sh
set -e
mkfs.btrfs -q -f /dev/sdb
mount /dev/sdb /mnt/btrfs
btrfs quota enable -s /mnt/btrfs
umount /mnt/btrfs
mount /dev/sdb /mnt/btrfs
The issue is that when enabling quotas, at btrfs_quota_enable(), we set
BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE at fs_info->qgroup_flags and persist
it in the quota root in the item with the key BTRFS_QGROUP_STATUS_KEY, but
we only set the incompat bit BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA after we
commit the transaction used to enable simple quotas.
This means that if after that transaction commit we unmount the filesystem
without starting and committing any other transaction, or we have a power
failure, the next time we mount the filesystem we will find the flag
BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE set in the item with the key
BTRFS_QGROUP_STATUS_KEY but we will not find the incompat bit
BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA set in the superblock, triggering an
assertion failure at:
btrfs_read_qgroup_config() -> qgroup_read_enable_gen()
To fix this issue, set the BTRFS_FEATURE_INCOMPAT_SIMPLE_QUOTA flag
immediately after setting the BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
This ensures that both flags are flushed to disk within the same
transaction.
Fixes: 182940f4f4db ("btrfs: qgroup: add new quota mode for simple quotas")
CC: stable@vger.kernel.org # 6.6+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Julian Sun <sunjunchao2870@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 03018e5d8508254534511d40fb57bc150e6a87f2 upstream.
When activating a swap file, to determine if an extent is shared we use
can_nocow_extent(), which ends up at btrfs_cross_ref_exist(). That helper
is meant to be quick because it's used in the NOCOW write path, when
flushing delalloc and when doing a direct IO write, however it does return
some false positives, meaning it may indicate that an extent is shared
even if it's no longer the case. For the write path this is fine, we just
do a unnecessary COW operation instead of doing a more rigorous check
which would be too heavy (calling btrfs_is_data_extent_shared()).
However when activating a swap file, the false positives simply result
in a failure, which is confusing for users/applications. One particular
case where this happens is when a data extent only has 1 reference but
that reference is not inlined in the extent item located in the extent
tree - this happens when we create more than 33 references for an extent
and then delete those 33 references plus every other non-inline reference
except one. The function check_committed_ref() assumes that if the size
of an extent item doesn't match the size of struct btrfs_extent_item
plus the size of an inline reference (plus an owner reference in case
simple quotas are enabled), then the extent is shared - that is not the
case however, we can have a single reference but it's not inlined - the
reason we do this is to be fast and avoid inspecting non-inline references
which may be located in another leaf of the extent tree, slowing down
write paths.
The following test script reproduces the bug:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
NUM_CLONES=50
umount $DEV &> /dev/null
run_test()
{
local sync_after_add_reflinks=$1
local sync_after_remove_reflinks=$2
mkfs.btrfs -f $DEV > /dev/null
#mkfs.xfs -f $DEV > /dev/null
mount $DEV $MNT
touch $MNT/foo
chmod 0600 $MNT/foo
# On btrfs the file must be NOCOW.
chattr +C $MNT/foo &> /dev/null
xfs_io -s -c "pwrite -b 1M 0 1M" $MNT/foo
mkswap $MNT/foo
for ((i = 1; i <= $NUM_CLONES; i++)); do
touch $MNT/foo_clone_$i
chmod 0600 $MNT/foo_clone_$i
# On btrfs the file must be NOCOW.
chattr +C $MNT/foo_clone_$i &> /dev/null
cp --reflink=always $MNT/foo $MNT/foo_clone_$i
done
if [ $sync_after_add_reflinks -ne 0 ]; then
# Flush delayed refs and commit current transaction.
sync -f $MNT
fi
# Remove the original file and all clones except the last.
rm -f $MNT/foo
for ((i = 1; i < $NUM_CLONES; i++)); do
rm -f $MNT/foo_clone_$i
done
if [ $sync_after_remove_reflinks -ne 0 ]; then
# Flush delayed refs and commit current transaction.
sync -f $MNT
fi
# Now use the last clone as a swap file. It should work since
# its extent are not shared anymore.
swapon $MNT/foo_clone_${NUM_CLONES}
swapoff $MNT/foo_clone_${NUM_CLONES}
umount $MNT
}
echo -e "\nTest without sync after creating and removing clones"
run_test 0 0
echo -e "\nTest with sync after creating clones"
run_test 1 0
echo -e "\nTest with sync after removing clones"
run_test 0 1
echo -e "\nTest with sync after creating and removing clones"
run_test 1 1
Running the test:
$ ./test.sh
Test without sync after creating and removing clones
wrote 1048576/1048576 bytes at offset 0
1 MiB, 1 ops; 0.0017 sec (556.793 MiB/sec and 556.7929 ops/sec)
Setting up swapspace version 1, size = 1020 KiB (1044480 bytes)
no label, UUID=a6b9c29e-5ef4-4689-a8ac-bc199c750f02
swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument
swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument
Test with sync after creating clones
wrote 1048576/1048576 bytes at offset 0
1 MiB, 1 ops; 0.0036 sec (271.739 MiB/sec and 271.7391 ops/sec)
Setting up swapspace version 1, size = 1020 KiB (1044480 bytes)
no label, UUID=5e9008d6-1f7a-4948-a1b4-3f30aba20a33
swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument
swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument
Test with sync after removing clones
wrote 1048576/1048576 bytes at offset 0
1 MiB, 1 ops; 0.0103 sec (96.665 MiB/sec and 96.6651 ops/sec)
Setting up swapspace version 1, size = 1020 KiB (1044480 bytes)
no label, UUID=916c2740-fa9f-4385-9f06-29c3f89e4764
Test with sync after creating and removing clones
wrote 1048576/1048576 bytes at offset 0
1 MiB, 1 ops; 0.0031 sec (314.268 MiB/sec and 314.2678 ops/sec)
Setting up swapspace version 1, size = 1020 KiB (1044480 bytes)
no label, UUID=06aab1dd-4d90-49c0-bd9f-3a8db4e2f912
swapon: /mnt/sdi/foo_clone_50: swapon failed: Invalid argument
swapoff: /mnt/sdi/foo_clone_50: swapoff failed: Invalid argument
Fix this by reworking btrfs_swap_activate() to instead of using extent
maps and checking for shared extents with can_nocow_extent(), iterate
over the inode's file extent items and use the accurate
btrfs_is_data_extent_shared().
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2c8507c63f5498d4ee4af404a8e44ceae4345056 upstream.
During swap activation we iterate over the extents of a file and we can
have many thousands of them, so we can end up in a busy loop monopolizing
a core. Avoid this by doing a voluntary reschedule after processing each
extent.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0525064bb82e50d59543b62b9d41a606198a4a44 upstream.
When activating the swap file we flush all delalloc and wait for ordered
extent completion, so that we don't miss any delalloc and extents before
we check that the file's extent layout is usable for a swap file and
activate the swap file. We are called with the inode's VFS lock acquired,
so we won't race with buffered and direct IO writes, however we can still
race with memory mapped writes since they don't acquire the inode's VFS
lock. The race window is between flushing all delalloc and locking the
whole file's extent range, since memory mapped writes lock an extent range
with the length of a page.
Fix this by acquiring the inode's mmap lock before we flush delalloc.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e18655cf35a5958fbf4ae9ca3ebf28871a3a1801 ]
GCC 15 introduces -Werror=unterminated-string-initialization by default,
this results in the following build error
fs/smb/server/smb_common.c:21:35: error: initializer-string for array of 'char' is too long [-Werror=unterminated-string-ini
tialization]
21 | static const char basechars[43] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_-!@#$%";
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
To this we are replacing char basechars[43] with a character pointer
and then using strlen to get the length.
Signed-off-by: Brahmajit Das <brahmajit.xyz@gmail.com>
Acked-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6756af923e06aa33ad8894aaecbf9060953ba00f ]
During rename, we are updating link counts of various inodes either when
rename deletes target or when moving directory across directories.
Verify involved link counts are sane so that we don't trip warnings in
VFS.
Reported-by: syzbot+3ff7365dc04a6bcafa66@syzkaller.appspotmail.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c5566903af56dd1abb092f18dcb0c770d6cd8dcb ]
If the parent directory link count is too low (likely directory inode
corruption), just skip updating its link count as if it goes to 0 too
early it can cause unexpected issues.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7917f01a286ce01e9c085e24468421f596ee1a0c ]
A recent patch inadvertently broke callbacks for NFSv4.0.
In the 4.0 case we do not expect a session to be found but still need to
call setup_callback_client() which will not try to dereference it.
This patch moves the check for failure to find a session into the 4.1+
branch of setup_callback_client()
Fixes: 1e02c641c3a4 ("NFSD: Prevent NULL dereference in nfsd4_process_cb_update()")
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 69d803c40edeaf94089fbc8751c9b746cdc35044 ]
This reverts commit f8c989a0c89a75d30f899a7cabdc14d72522bb8d.
Before this commit, svc_export_put or expkey_put will call path_put with
sync mode. After this commit, path_put will be called with async mode.
And this can lead the unexpected results show as follow.
mkfs.xfs -f /dev/sda
echo "/ *(rw,no_root_squash,fsid=0)" > /etc/exports
echo "/mnt *(rw,no_root_squash,fsid=1)" >> /etc/exports
exportfs -ra
service nfs-server start
mount -t nfs -o vers=4.0 127.0.0.1:/mnt /mnt1
mount /dev/sda /mnt/sda
touch /mnt1/sda/file
exportfs -r
umount /mnt/sda # failed unexcepted
The touch will finally call nfsd_cross_mnt, add refcount to mount, and
then add cache_head. Before this commit, exportfs -r will call
cache_flush to cleanup all cache_head, and path_put in
svc_export_put/expkey_put will be finished with sync mode. So, the
latter umount will always success. However, after this commit, path_put
will be called with async mode, the latter umount may failed, and if
we add some delay, umount will success too. Personally I think this bug
and should be fixed. We first revert before bugfix patch, and then fix
the original bug with a different way.
Fixes: f8c989a0c89a ("nfsd: release svc_expkey/svc_export with rcu_work")
Signed-off-by: Yang Erkun <yangerkun@huawei.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 92941c7f2c9529fac1b2670482d0ced3b46eac70 ]
With recent netfs apis changes, the bytes written
value was not getting updated in /proc/fs/cifs/Stats.
Fix this by updating tcon->bytes in write operations.
Fixes: 3ee1a1fc3981 ("cifs: Cut over to using netfslib")
Signed-off-by: Bharath SM <bharathsm@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ee1c8e6b2931811a906b8c78006bfe0a3386fa60 ]
Repeating automatically selected options in Kconfig files is redundant, so
let's delete repeated "select NETFS_SUPPORT" that was added accidentally.
Fixes: 69c3c023af25 ("cifs: Implement netfslib hooks")
Signed-off-by: Dragan Simic <dsimic@manjaro.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 18d44c5d062b97b97bb0162d9742440518958dc1 ]
If mounted with sparseread option, ceph_direct_read_write() ends up
making an unnecessarily allocation for O_DIRECT writes.
Fixes: 03bc06c7b0bd ("ceph: add new mount option to enable sparse reads")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Alex Markuze <amarkuze@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 900bbaae67e980945dec74d36f8afe0de7556d5a upstream.
Now, the epoll only use wake_up() interface to wake up task.
However, sometimes, there are epoll users which want to use
the synchronous wakeup flag to hint the scheduler, such as
Android binder driver.
So add a wake_up_sync() define, and use the wake_up_sync()
when the sync is true in ep_poll_callback().
Co-developed-by: Jing Xia <jing.xia@unisoc.com>
Signed-off-by: Jing Xia <jing.xia@unisoc.com>
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Link: https://lore.kernel.org/r/20240426080548.8203-1-xuewen.yan@unisoc.com
Tested-by: Brian Geffon <bgeffon@google.com>
Reviewed-by: Brian Geffon <bgeffon@google.com>
Reported-by: Benoit Lize <lizeb@google.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Cc: Brian Geffon <bgeffon@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8aca2bc96c833ba695ede7a45ad7784c836a262e upstream.
In current kernel, hugetlb_no_page() calls folio_zero_user() with the
fault address. Where the fault address may be not aligned with the huge
page size. Then, folio_zero_user() may call clear_gigantic_page() with
the address, while clear_gigantic_page() requires the address to be huge
page size aligned. So, this may cause memory corruption or information
leak, addtional, use more obvious naming 'addr_hint' instead of 'addr' for
clear_gigantic_page().
Link: https://lkml.kernel.org/r/20241028145656.932941-1-wangkefeng.wang@huawei.com
Fixes: 78fefd04c123 ("mm: memory: convert clear_huge_page() to folio_zero_user()")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 66e0c4f91461d17d48071695271c824620bed4ef upstream.
The bvecs array which is allocated in iter_get_bvecs_alloc() is leaked
and pages remain pinned if ceph_alloc_sparse_ext_map() fails.
There is no need to delay the allocation of sparse_ext map until after
the bvecs array is set up, so fix this by moving sparse_ext allocation
a bit earlier. Also, make a similar adjustment in __ceph_sync_read()
for consistency (a leak of the same kind in __ceph_sync_read() has been
addressed differently).
Cc: stable@vger.kernel.org
Fixes: 03bc06c7b0bd ("ceph: add new mount option to enable sparse reads")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Alex Markuze <amarkuze@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d6fd6f8280f0257ba93f16900a0d3d3912f32c79 upstream.
In two `break` statements, the call to ceph_release_page_vector() was
missing, leaking the allocation from ceph_alloc_page_vector().
Instead of adding the missing ceph_release_page_vector() calls, the
Ceph maintainers preferred to transfer page ownership to the
`ceph_osd_request` by passing `own_pages=true` to
osd_req_op_extent_osd_data_pages(). This requires postponing the
ceph_osdc_put_request() call until after the block that accesses the
`pages`.
Cc: stable@vger.kernel.org
Fixes: 03bc06c7b0bd ("ceph: add new mount option to enable sparse reads")
Fixes: f0fe1e54cfcf ("ceph: plumb in decryption during reads")
Signed-off-by: Max Kellermann <max.kellermann@ionos.com>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9abee475803fab6ad59d4f4fc59c6a75374a7d9d upstream.
This patch refines the read logic in __ceph_sync_read() to ensure more
predictable and efficient behavior in various edge cases.
- Return early if the requested read length is zero or if the file size
(`i_size`) is zero.
- Initialize the index variable (`idx`) where needed and reorder some
code to ensure it is always set before use.
- Improve error handling by checking for negative return values earlier.
- Remove redundant encrypted file checks after failures. Only attempt
filesystem-level decryption if the read succeeded.
- Simplify leftover calculations to correctly handle cases where the
read extends beyond the end of the file or stops short. This can be
hit by continuously reading a file while, on another client, we keep
truncating and writing new data into it.
- This resolves multiple issues caused by integer and consequent buffer
overflow (`pages` array being accessed beyond `num_pages`):
- https://tracker.ceph.com/issues/67524
- https://tracker.ceph.com/issues/68980
- https://tracker.ceph.com/issues/68981
Cc: stable@vger.kernel.org
Fixes: 1065da21e5df ("ceph: stop copying to iter at EOF on sync reads")
Reported-by: Luis Henriques (SUSE) <luis.henriques@linux.dev>
Signed-off-by: Alex Markuze <amarkuze@redhat.com>
Reviewed-by: Viacheslav Dubeyko <Slava.Dubeyko@ibm.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 12eb22a5a609421b380c3c6ca887474fb2089b2c upstream.
It becomes a path component, so it shouldn't exceed NAME_MAX
characters. This was hardened in commit c152737be22b ("ceph: Use
strscpy() instead of strcpy() in __get_snap_name()"), but no actual
check was put in place.
Cc: stable@vger.kernel.org
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Alex Markuze <amarkuze@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 550f7ca98ee028a606aa75705a7e77b1bd11720f upstream.
If the full path to be built by ceph_mdsc_build_path() happens to be
longer than PATH_MAX, then this function will enter an endless (retry)
loop, effectively blocking the whole task. Most of the machine
becomes unusable, making this a very simple and effective DoS
vulnerability.
I cannot imagine why this retry was ever implemented, but it seems
rather useless and harmful to me. Let's remove it and fail with
ENAMETOOLONG instead.
Cc: stable@vger.kernel.org
Reported-by: Dario Weißer <dario@cure53.de>
Signed-off-by: Max Kellermann <max.kellermann@ionos.com>
Reviewed-by: Alex Markuze <amarkuze@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 901ce9705fbb9f330ff1f19600e5daf9770b0175 upstream.
syzbot reported a WARNING in nilfs_rmdir. [1]
Because the inode bitmap is corrupted, an inode with an inode number that
should exist as a ".nilfs" file was reassigned by nilfs_mkdir for "file0",
causing an inode duplication during execution. And this causes an
underflow of i_nlink in rmdir operations.
The inode is used twice by the same task to unmount and remove directories
".nilfs" and "file0", it trigger warning in nilfs_rmdir.
Avoid to this issue, check i_nlink in nilfs_iget(), if it is 0, it means
that this inode has been deleted, and iput is executed to reclaim it.
[1]
WARNING: CPU: 1 PID: 5824 at fs/inode.c:407 drop_nlink+0xc4/0x110 fs/inode.c:407
...
Call Trace:
<TASK>
nilfs_rmdir+0x1b0/0x250 fs/nilfs2/namei.c:342
vfs_rmdir+0x3a3/0x510 fs/namei.c:4394
do_rmdir+0x3b5/0x580 fs/namei.c:4453
__do_sys_rmdir fs/namei.c:4472 [inline]
__se_sys_rmdir fs/namei.c:4470 [inline]
__x64_sys_rmdir+0x47/0x50 fs/namei.c:4470
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Link: https://lkml.kernel.org/r/20241209065759.6781-1-konishi.ryusuke@gmail.com
Fixes: d25006523d0b ("nilfs2: pathname operations")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+9260555647a5132edd48@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=9260555647a5132edd48
Tested-by: syzbot+9260555647a5132edd48@syzkaller.appspotmail.com
Signed-off-by: Edward Adam Davis <eadavis@qq.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6309b8ce98e9a18390b9fd8f03fc412f3c17aee9 upstream.
When block_invalidatepage was converted to block_invalidate_folio, the
fallback to block_invalidatepage in folio_invalidate() if the
address_space_operations method invalidatepage (currently
invalidate_folio) was not set, was removed.
Unfortunately, some pseudo-inodes in nilfs2 use empty_aops set by
inode_init_always_gfp() as is, or explicitly set it to
address_space_operations. Therefore, with this change,
block_invalidatepage() is no longer called from folio_invalidate(), and as
a result, the buffer_head structures attached to these pages/folios are no
longer freed via try_to_free_buffers().
Thus, these buffer heads are now leaked by truncate_inode_pages(), which
cleans up the page cache from inode evict(), etc.
Three types of caches use empty_aops: gc inode caches and the DAT shadow
inode used by GC, and b-tree node caches. Of these, b-tree node caches
explicitly call invalidate_mapping_pages() during cleanup, which involves
calling try_to_free_buffers(), so the leak was not visible during normal
operation but worsened when GC was performed.
Fix this issue by using address_space_operations with invalidate_folio set
to block_invalidate_folio instead of empty_aops, which will ensure the
same behavior as before.
Link: https://lkml.kernel.org/r/20241212164556.21338-1-konishi.ryusuke@gmail.com
Fixes: 7ba13abbd31e ("fs: Turn block_invalidatepage into block_invalidate_folio")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org> [5.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7782e3b3b004e8cb94a88621a22cc3c2f33e5b90 upstream.
Commit 30dd3478c3cd ("ocfs2: correctly use ocfs2_find_next_zero_bit()")
introduced an issue, the ocfs2_sync_local_to_main() ignores the last
contiguous free bits, which causes an OCFS2 volume to lose the last free
clusters of LA window during the release routine.
Please note, because commit dfe6c5692fb5 ("ocfs2: fix the la space leak
when unmounting an ocfs2 volume") was reverted, this commit is a
replacement fix for commit dfe6c5692fb5.
Link: https://lkml.kernel.org/r/20241205104835.18223-3-heming.zhao@suse.com
Fixes: 30dd3478c3cd ("ocfs2: correctly use ocfs2_find_next_zero_bit()")
Signed-off-by: Heming Zhao <heming.zhao@suse.com>
Suggested-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 62e2a47ceab8f3f7d2e3f0e03fdd1c5e0059fd8b upstream.
When the server is recalling a layout, we should ignore the count of
outstanding layoutget calls, since the server is expected to return
either NFS4ERR_RECALLCONFLICT or NFS4ERR_RETURNCONFLICT for as long as
the recall is outstanding.
Currently, we may end up livelocking, causing the layout to eventually
be forcibly revoked.
Fixes: bf0291dd2267 ("pNFS: Ensure LAYOUTGET and LAYOUTRETURN are properly serialised")
Cc: stable@vger.kernel.org
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e9f2517a3e18a54a3943c098d2226b245d488801 upstream.
Commit ef7134c7fc48 ("smb: client: Fix use-after-free of network namespace.")
fixed a netns UAF by manually enabled socket refcounting
(sk->sk_net_refcnt=1 and sock_inuse_add(net, 1)).
The reason the patch worked for that bug was because we now hold
references to the netns (get_net_track() gets a ref internally)
and they're properly released (internally, on __sk_destruct()),
but only because sk->sk_net_refcnt was set.
Problem:
(this happens regardless of CONFIG_NET_NS_REFCNT_TRACKER and regardless
if init_net or other)
Setting sk->sk_net_refcnt=1 *manually* and *after* socket creation is not
only out of cifs scope, but also technically wrong -- it's set conditionally
based on user (=1) vs kernel (=0) sockets. And net/ implementations
seem to base their user vs kernel space operations on it.
e.g. upon TCP socket close, the TCP timers are not cleared because
sk->sk_net_refcnt=1:
(cf. commit 151c9c724d05 ("tcp: properly terminate timers for kernel sockets"))
net/ipv4/tcp.c:
void tcp_close(struct sock *sk, long timeout)
{
lock_sock(sk);
__tcp_close(sk, timeout);
release_sock(sk);
if (!sk->sk_net_refcnt)
inet_csk_clear_xmit_timers_sync(sk);
sock_put(sk);
}
Which will throw a lockdep warning and then, as expected, deadlock on
tcp_write_timer().
A way to reproduce this is by running the reproducer from ef7134c7fc48
and then 'rmmod cifs'. A few seconds later, the deadlock/lockdep
warning shows up.
Fix:
We shouldn't mess with socket internals ourselves, so do not set
sk_net_refcnt manually.
Also change __sock_create() to sock_create_kern() for explicitness.
As for non-init_net network namespaces, we deal with it the best way
we can -- hold an extra netns reference for server->ssocket and drop it
when it's released. This ensures that the netns still exists whenever
we need to create/destroy server->ssocket, but is not directly tied to
it.
Fixes: ef7134c7fc48 ("smb: client: Fix use-after-free of network namespace.")
Cc: stable@vger.kernel.org
Signed-off-by: Enzo Matsumiya <ematsumiya@suse.de>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dfb92681a19e1d5172420baa242806414b3eff6f upstream.
[BUG]
There is a bug report in the mailing list where btrfs_run_delayed_refs()
failed to drop the ref count for logical 25870311358464 num_bytes
2113536.
The involved leaf dump looks like this:
item 166 key (25870311358464 168 2113536) itemoff 10091 itemsize 50
extent refs 1 gen 84178 flags 1
ref#0: shared data backref parent 32399126528000 count 0 <<<
ref#1: shared data backref parent 31808973717504 count 1
Notice the count number is 0.
[CAUSE]
There is no concrete evidence yet, but considering 0 -> 1 is also a
single bit flipped, it's possible that hardware memory bitflip is
involved, causing the on-disk extent tree to be corrupted.
[FIX]
To prevent us reading such corrupted extent item, or writing such
damaged extent item back to disk, enhance the handling of
BTRFS_EXTENT_DATA_REF_KEY and BTRFS_SHARED_DATA_REF_KEY keys for both
inlined and key items, to detect such 0 ref count and reject them.
CC: stable@vger.kernel.org # 5.4+
Link: https://lore.kernel.org/linux-btrfs/7c69dd49-c346-4806-86e7-e6f863a66f48@app.fastmail.com/
Reported-by: Frankie Fisher <frankie@terrorise.me.uk>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d75d72a858f0c00ca8ae161b48cdb403807be4de upstream.
We have been using the following check
if (generation <= root->root_key.offset)
to make decisions about whether or not to visit a node during snapshot
delete. This is because for normal subvolumes this is set to 0, and for
snapshots it's set to the creation generation. The idea being that if
the generation of the node is less than or equal to our creation
generation then we don't need to visit that node, because it doesn't
belong to us, we can simply drop our reference and move on.
However reloc roots don't have their generation stored in
root->root_key.offset, instead that is the objectid of their
corresponding fs root. This means we can incorrectly not walk into
nodes that need to be dropped when deleting a reloc root.
There are a variety of consequences to making the wrong choice in two
distinct areas.
visit_node_for_delete()
1. False positive. We think we are newer than the block when we really
aren't. We don't visit the node and drop our reference to the node
and carry on. This would result in leaked space.
2. False negative. We do decide to walk down into a block that we
should have just dropped our reference to. However this means that
the child node will have refs > 1, so we will switch to
UPDATE_BACKREF, and then the subsequent walk_down_proc() will notice
that btrfs_header_owner(node) != root->root_key.objectid and it'll
break out of the loop, and then walk_up_proc() will drop our reference,
so this appears to be ok.
do_walk_down()
1. False positive. We are in UPDATE_BACKREF and incorrectly decide that
we are done and don't need to update the backref for our lower nodes.
This is another case that simply won't happen with relocation, as we
only have to do UPDATE_BACKREF if the node below us was shared and
didn't have FULL_BACKREF set, and since we don't own that node
because we're a reloc root we actually won't end up in this case.
2. False negative. Again this is tricky because as described above, we
simply wouldn't be here from relocation, because we don't own any of
the nodes because we never set btrfs_header_owner() to the reloc root
objectid, and we always use FULL_BACKREF, we never actually need to
set FULL_BACKREF on any children.
Having spent a lot of time stressing relocation/snapshot delete recently
I've not seen this pop in practice. But this is objectively incorrect,
so fix this to get the correct starting generation based on the root
we're dropping to keep me from thinking there's a problem here.
CC: stable@vger.kernel.org
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit be691b5e593f2cc8cef67bbc59c1fb91b74a86a9 upstream.
Btrfs like other file systems can't really deal with I/O not aligned to
it's internal block size (which strangely is called sector size in
btrfs, for historical reasons), but the block layer split helper doesn't
even know about that.
Round down the split boundary so that all I/Os are aligned.
Fixes: d5e4377d5051 ("btrfs: split zone append bios in btrfs_submit_bio")
CC: stable@vger.kernel.org # 6.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2ab0837cb91b7de507daa145d17b3b6b2efb3abf upstream.
When looking up a non-existent file, efivarfs returns -EINVAL if the
file does not conform to the NAME-GUID format and -ENOENT if it does.
This is caused by efivars_d_hash() returning -EINVAL if the name is not
formatted correctly. This error is returned before simple_lookup()
returns a negative dentry, and is the error value that the user sees.
Fix by removing this check. If the file does not exist, simple_lookup()
will return a negative dentry leading to -ENOENT and efivarfs_create()
already has a validity check before it creates an entry (and will
correctly return -EINVAL)
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: <stable@vger.kernel.org>
[ardb: make efivarfs_valid_name() static]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 43fb7bce8866e793275c4f9f25af6a37745f3416 ]
Since commit 0a77d947f599 ("ksmbd: check outstanding simultaneous SMB
operations"), ksmbd enforces a maximum number of simultaneous operations
for a connection. The problem is that reaching the limit causes ksmbd to
close the socket, and the client has no indication that it should have
slowed down.
This behaviour can be reproduced by setting "smb2 max credits = 128" (or
lower), and transferring a large file (25GB).
smbclient fails as below:
$ smbclient //192.168.1.254/testshare -U user%pass
smb: \> put file.bin
cli_push returned NT_STATUS_USER_SESSION_DELETED
putting file file.bin as \file.bin smb2cli_req_compound_submit:
Insufficient credits. 0 available, 1 needed
NT_STATUS_INTERNAL_ERROR closing remote file \file.bin
smb: \> smb2cli_req_compound_submit: Insufficient credits. 0 available,
1 needed
Windows clients fail with 0x8007003b (with smaller files even).
Fix this by delaying reading from the socket until there's room to
allocate a request. This effectively applies backpressure on the client,
so the transfer completes, albeit at a slower rate.
Fixes: 0a77d947f599 ("ksmbd: check outstanding simultaneous SMB operations")
Signed-off-by: Marios Makassikis <mmakassikis@freebox.fr>
Signed-off-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 83c47d9e0ce79b5d7c0b21b9f35402dbde0fa15c ]
This changes the semantics of req_running to count all in-flight
requests on a given connection, rather than the number of elements
in the conn->request list. The latter is used only in smb2_cancel,
and the counter is not used
Signed-off-by: Marios Makassikis <mmakassikis@freebox.fr>
Acked-by: Namjae Jeon <linkinjeon@kernel.org>
Signed-off-by: Steve French <stfrench@microsoft.com>
Stable-dep-of: 43fb7bce8866 ("ksmbd: fix broken transfers when exceeding max simultaneous operations")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit c004a793e0ec34047c3bd423bcd8966f5fac88dc upstream.
The logic to check that the region past the end of the superblock is all
zeroes is wrong -- we don't want to check only the bytes past the end of
the maximally sized ondisk superblock structure as currently defined in
xfs_format.h; we want to check the bytes beyond the end of the ondisk as
defined by the feature bits.
Port the superblock size logic from xfs_repair and then put it to use in
xfs_scrub.
Cc: <stable@vger.kernel.org> # v4.15
Fixes: 21fb4cb1981ef7 ("xfs: scrub the secondary superblocks")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 7f8a44f37229fc76bfcafa341a4b8862368ef44a upstream.
For a sparse inodes filesystem, mkfs.xfs computes the values of
sb_spino_align and sb_inoalignmt with the following code:
int cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
if (cfg->sb_feat.crcs_enabled)
cluster_size *= cfg->inodesize / XFS_DINODE_MIN_SIZE;
sbp->sb_spino_align = cluster_size >> cfg->blocklog;
sbp->sb_inoalignmt = XFS_INODES_PER_CHUNK *
cfg->inodesize >> cfg->blocklog;
On a V5 filesystem with 64k fsblocks and 512 byte inodes, this results
in cluster_size = 8192 * (512 / 256) = 16384. As a result,
sb_spino_align and sb_inoalignmt are both set to zero. Unfortunately,
this trips the new sb_spino_align check that was just added to
xfs_validate_sb_common, and the mkfs fails:
# mkfs.xfs -f -b size=64k, /dev/sda
meta-data=/dev/sda isize=512 agcount=4, agsize=81136 blks
= sectsz=512 attr=2, projid32bit=1
= crc=1 finobt=1, sparse=1, rmapbt=1
= reflink=1 bigtime=1 inobtcount=1 nrext64=1
= exchange=0 metadir=0
data = bsize=65536 blocks=324544, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsize=65536 ascii-ci=0, ftype=1, parent=0
log =internal log bsize=65536 blocks=5006, version=2
= sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=65536 blocks=0, rtextents=0
= rgcount=0 rgsize=0 extents
Discarding blocks...Sparse inode alignment (0) is invalid.
Metadata corruption detected at 0x560ac5a80bbe, xfs_sb block 0x0/0x200
libxfs_bwrite: write verifier failed on xfs_sb bno 0x0/0x1
mkfs.xfs: Releasing dirty buffer to free list!
found dirty buffer (bulk) on free list!
Sparse inode alignment (0) is invalid.
Metadata corruption detected at 0x560ac5a80bbe, xfs_sb block 0x0/0x200
libxfs_bwrite: write verifier failed on xfs_sb bno 0x0/0x1
mkfs.xfs: writing AG headers failed, err=22
Prior to commit 59e43f5479cce1 this all worked fine, even if "sparse"
inodes are somewhat meaningless when everything fits in a single
fsblock. Adjust the checks to handle existing filesystems.
Cc: <stable@vger.kernel.org> # v6.13-rc1
Fixes: 59e43f5479cce1 ("xfs: sb_spino_align is not verified")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a440a28ddbdcb861150987b4d6e828631656b92f upstream.
In commit ca6448aed4f10a, we created an "end_daddr" variable to fix
fsmap reporting when the end of the range requested falls in the middle
of an unknown (aka free on the rmapbt) region. Unfortunately, I didn't
notice that the the code sets end_daddr to the last sector of the device
but then uses that quantity to compute the length of the synthesized
mapping.
Zizhi Wo later observed that when end_daddr isn't set, we still don't
report the last fsblock on a device because in that case (aka when
info->last is true), the info->high mapping that we pass to
xfs_getfsmap_group_helper has a startblock that points to the last
fsblock. This is also wrong because the code uses startblock to
compute the length of the synthesized mapping.
Fix the second problem by setting end_daddr unconditionally, and fix the
first problem by setting start_daddr to one past the end of the range to
query.
Cc: <stable@vger.kernel.org> # v6.11
Fixes: ca6448aed4f10a ("xfs: Fix missing interval for missing_owner in xfs fsmap")
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reported-by: Zizhi Wo <wozizhi@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 13325333582d4820d39b9e8f63d6a54e745585d9 upstream.
The runt AG at the end of a filesystem is almost always smaller than
the mp->m_sb.sb_agblocks. Unfortunately, when setting the max_agbno
limit for the inode chunk allocation, we do not take this into
account. This means we can allocate a sparse inode chunk that
overlaps beyond the end of an AG. When we go to allocate an inode
from that sparse chunk, the irec fails validation because the
agbno of the start of the irec is beyond valid limits for the runt
AG.
Prevent this from happening by taking into account the size of the
runt AG when allocating inode chunks. Also convert the various
checks for valid inode chunk agbnos to use xfs_ag_block_count()
so that they will also catch such issues in the future.
Fixes: 56d1115c9bc7 ("xfs: allocate sparse inode chunks on full chunk allocation failure")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
[djwong: backport to stable because upstream maintainer ignored cc-stable]
Link: https://lore.kernel.org/linux-xfs/20241112231539.GG9438@frogsfrogsfrogs/
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 59e43f5479cce106d71c0b91a297c7ad1913176c upstream.
It's just read in from the superblock and used without doing any
validity checks at all on the value.
Fixes: fb4f2b4e5a82 ("xfs: add sparse inode chunk alignment superblock field")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
[djwong: actually tag for 6.12 because upstream maintainer ignored cc-stable tag]
Link: https://lore.kernel.org/linux-xfs/20241024165544.GI21853@frogsfrogsfrogs/
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6422cde1b0d5a31b206b263417c1c2b3c80fe82c ]
For many use cases (e.g. container images are just fetched from remote),
performance will be impacted if underlay page cache is up-to-date but
direct i/o flushes dirty pages first.
Instead, let's use buffered I/O by default to keep in sync with loop
devices and add a (re)mount option to explicitly give a try to use
direct I/O if supported by the underlying files.
The container startup time is improved as below:
[workload] docker.io/library/workpress:latest
unpack 1st run non-1st runs
EROFS snapshotter buffered I/O file 4.586404265s 0.308s 0.198s
EROFS snapshotter direct I/O file 4.581742849s 2.238s 0.222s
EROFS snapshotter loop 4.596023152s 0.346s 0.201s
Overlayfs snapshotter 5.382851037s 0.206s 0.214s
Fixes: fb176750266a ("erofs: add file-backed mount support")
Cc: Derek McGowan <derek@mcg.dev>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20241212134336.2059899-1-hsiangkao@linux.alibaba.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|