Age | Commit message (Collapse) | Author | Files | Lines |
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of adding buffers to the delwri list as soon as they are logged,
even if they can't be written until commited because they are pinned
defer adding them to the delwri list until xfsaild pushes them. This
makes the code more similar to other log items and prepares for writing
buffers directly from xfsaild.
The complication here is that we need to fail buffers that were added
but not logged yet in xfs_buf_item_unpin, borrowing code from
xfs_bioerror.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of writing the buffer directly from inside xfs_qm_dqflush return it
to the caller and let the caller decide what to do with the buffer. Also
remove the pincount check in xfs_qm_dqflush that all non-blocking callers
already implement and the now unused flags parameter and the XFS_DQ_IS_DIRTY
check that all callers already perform.
[ Dave Chinner: fixed build error cause by missing '{'. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of writing the buffer directly from inside xfs_iflush return it to
the caller and let the caller decide what to do with the buffer. Also
remove the pincount check in xfs_iflush that all non-blocking callers already
implement and the now unused flags parameter.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We already flush dirty inodes throug the AIL regularly, there is no reason
to have second thread compete with it and disturb the I/O pattern. We still
do write inodes when doing a synchronous reclaim from the shrinker or during
unmount for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Now that we write back all metadata either synchronously or through
the AIL we can simply implement metadata freezing in terms of
emptying the AIL.
The implementation for this is fairly simply and straight-forward:
A new routine is added that asks the xfsaild to push the AIL to the
end and waits for it to complete and send a wakeup. The routine will
then loop if the AIL is not actually empty, and continue to do so
until the AIL is compeltely empty.
We keep an inode reclaim pass in the freeze process to avoid having
memory pressure have to reclaim inodes that require dirtying the
filesystem to be reclaimed after the freeze has completed. This
means we can also treat unmount in the exact same way as freeze.
As an upside we can now remove the radix tree based inode writeback
and xfs_unmountfs_writesb.
[ Dave Chinner:
- Cleaned up commit message.
- Added inode reclaim passes back into freeze.
- Cleaned up wakeup mechanism to avoid the use of a new
sleep counter variable. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Provide a variant of xlog_assign_tail_lsn that has the AIL lock already
held. By doing so we do an additional atomic_read + atomic_set under
the lock, which comes down to two instructions.
Switch xfs_trans_ail_update_bulk and xfs_trans_ail_delete_bulk to the
new version to reduce the number of lock roundtrips, and prepare for
a new addition that would require a third lock roundtrip in
xfs_trans_ail_delete_bulk. This addition is also the reason for
slightly rearranging the conditionals and relying on xfs_log_space_wake
for checking that the filesystem has been shut down internally.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
If a filesystem has been forced shutdown we are never going to write inodes
to disk, which means the inode items will stay in the AIL until we free
the inode. Currently that is not a problem, but a pending change requires us
to empty the AIL before shutting down the filesystem. In that case leaving
the inode in the AIL is lethal. Make sure to remove the log item from the AIL
to allow emptying the AIL on shutdown filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
If a filesystem has been forced shutdown we are never going to write dquots
to disk, which means the dquot items will stay in the AIL forever.
Currently that is not a problem, but a pending chance requires us to
empty the AIL before shutting down the filesystem, in which case this
behaviour is lethal. Make sure to remove the log item from the AIL
to allow emptying the AIL on shutdown filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Issuing a block device flush request in transaction context using GFP_KERNEL
directly can cause deadlocks due to memory reclaim recursion. Use GFP_NOFS to
avoid recursion from reclaim context.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
I've been seeing regular ASSERT failures in xfstests when running
fsstress based tests over the past month. xfs_getbmap() has been
failing this test:
XFS: Assertion failed: ((iflags & BMV_IF_DELALLOC) != 0) ||
(map[i].br_startblock != DELAYSTARTBLOCK), file: fs/xfs/xfs_bmap.c,
line: 5650
where it is encountering a delayed allocation extent after writing
all the dirty data to disk and then walking the extent map
atomically by holding the XFS_IOLOCK_SHARED to prevent new delayed
allocation extents from being created.
Test 083 on a 512 byte block size filesystem was used to reproduce
the problem, because it only had a 5s run timeand would usually fail
every 3-4 runs. This test is exercising ENOSPC behaviour by running
fsstress on a nearly full filesystem. The following trace extract
shows the final few events on the inode that tripped the assert:
xfs_ilock: flags ILOCK_EXCL caller xfs_setfilesize
xfs_setfilesize: isize 0x180000 disize 0x12d400 offset 0x17e200 count 7680
file size updated to 0x180000 by IO completion
xfs_ilock: flags ILOCK_EXCL caller xfs_iomap_write_delay
xfs_iext_insert: state idx 3 offset 3072 block 4503599627239432 count 1 flag 0 caller xfs_bmap_add_extent_hole_delay
xfs_get_blocks_alloc: size 0x180000 offset 0x180000 count 512 type startoff 0xc00 startblock -1 blockcount 0x1
xfs_ilock: flags ILOCK_EXCL caller __xfs_get_blocks
delalloc write, adding a single block at offset 0x180000
xfs_delalloc_enospc: isize 0x180000 disize 0x180000 offset 0x180200 count 512
ENOSPC trying to allocate a dellalloc block at offset 0x180200
xfs_ilock: flags ILOCK_EXCL caller xfs_iomap_write_delay
xfs_get_blocks_alloc: size 0x180000 offset 0x180200 count 512 type startoff 0xc00 startblock -1 blockcount 0x2
And succeeding on retry after flushing dirty inodes.
xfs_ilock: flags ILOCK_EXCL caller __xfs_get_blocks
xfs_delalloc_enospc: isize 0x180000 disize 0x180000 offset 0x180400 count 512
ENOSPC trying to allocate a dellalloc block at offset 0x180400
xfs_ilock: flags ILOCK_EXCL caller xfs_iomap_write_delay
xfs_delalloc_enospc: isize 0x180000 disize 0x180000 offset 0x180400 count 512
And failing the retry, giving a real ENOSPC error.
xfs_ilock: flags ILOCK_EXCL caller xfs_vm_write_failed
^^^^^^^^^^^^^^^^^^^
The smoking gun - the write being failed and cleaning up delalloc
blocks beyond EOF allocated by the failed write.
xfs_getattr:
xfs_ilock: flags IOLOCK_SHARED caller xfs_getbmap
xfs_ilock: flags ILOCK_SHARED caller xfs_ilock_map_shared
And that's where we died almost immediately afterwards.
xfs_bmapi_read() found delalloc extent beyond current file in memory
file size. Some debug I added to xfs_getbmap() showed the state just
before the assert failure:
ino 0x80e48: off 0xc00, fsb 0xffffffffffffffff, len 0x1, size 0x180000
start_fsb 0x106, end_fsb 0x638
ino flags 0x2 nex 0xd bmvcnt 0x555, len 0x3c58a6f23c0bf1, start 0xc00
ext 0: off 0x1fc, fsb 0x24782, len 0x254
ext 1: off 0x450, fsb 0x40851, len 0x30
ext 2: off 0x480, fsb 0xd99, len 0x1b8
ext 3: off 0x92f, fsb 0x4099a, len 0x3b
ext 4: off 0x96d, fsb 0x41844, len 0x98
ext 5: off 0xbf1, fsb 0x408ab, len 0xf
which shows that we found a single delalloc block beyond EOF (first
line of output) when we were returning the map for a length
somewhere around 10^16 bytes long (second line), and the on-disk
extents showed they didn't go past EOF (last lines).
Further debug added to xfs_vm_write_failed() showed this happened
when punching out delalloc blocks beyond the end of the file after
the failed write:
[ 132.606693] ino 0x80e48: vwf to 0x181000, sze 0x180000
[ 132.609573] start_fsb 0xc01, end_fsb 0xc08
It punched the range 0xc01 -> 0xc08, but the range we really need to
punch is 0xc00 -> 0xc07 (8 blocks from 0xc00) as this testing was
run on a 512 byte block size filesystem (8 blocks per page).
the punch from is 0xc00. So end_fsb is correct, but start_fsb is
wrong as we punch from start_fsb for (end_fsb - start_fsb) blocks.
Hence we are not punching the delalloc block beyond EOF in the case.
The fix is simple - it's a silly off-by-one mistake in calculating
the range. It's especially silly because the macro used to calculate
the start_fsb already takes into account the case where the inode
size is an exact multiple of the filesystem block size...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
For the direct IO write path, we only really need the ilock to be taken in
exclusive mode during IO submission if we need to do extent allocation
instead of all the time.
Change the block mapping code to take the ilock in shared mode for the
initial block mapping, and only retake it exclusively when we actually
have to perform extent allocations. We were already dropping the ilock
for the transaction allocation, so this doesn't introduce new race windows.
Based on an earlier patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of calling xfs_zero_eof with the ilock held only take it internally
for the minimall required critical section around xfs_bmapi_read. This
also requires changing the calling convention for xfs_zero_last_block
slightly. The actual zeroing operation is still serialized by the iolock,
which must be taken exclusively over the call to xfs_zero_eof.
We could in fact use a shared lock for the xfs_bmapi_read calls as long as
the extent list has been read in, but given that we already hold the iolock
exclusively there is little reason to micro optimize this further.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We do not need the ilock for most checks done in the beginning of
xfs_setattr_size. Replace the long critical section before starting the
transaction with a smaller one around xfs_zero_eof and an optional one
inside xfs_qm_dqattach that isn't entered unless using quotas. While
this isn't a big optimization for xfs_setattr_size itself it will allow
pushing the ilock into xfs_zero_eof itself later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
We do not need the ilock for generic_write_checks and the i_size_read,
which are protected by i_mutex and/or iolock, so reduce the ilock
critical section to just the call to xfs_zero_eof.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Check if we actually need to attach a dquot before taking the ilock in
xfs_qm_dqattach. This avoid superflous lock roundtrips for the common cases
of quota support compiled in but not activated on a filesystem and an
inode that already has the dquots attached.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Because the mount process can run a quotacheck and consume lots of
inodes, we need to be able to run periodic inode reclaim during the
mount process. This will prevent running the system out of memory
during quota checks.
This essentially reverts 2bcf6e97, but that is safe to do now that
the quota sync code that was causing problems during long quotacheck
executions is now gone.
The reclaim work is currently protected from running during the
unmount process by a check against MS_ACTIVE. Unfortunately, this
also means that the reclaim work cannot run during mount. The
unmount process should stop the reclaim cleanly before freeing
anything that the reclaim work depends on, so there is no need to
have this guard in place.
Also, the inode reclaim work is demand driven, so there is no need
to start it immediately during mount. It will be started the moment
an inode is queued for reclaim, so qutoacheck will trigger it just
fine.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
enabled.
Check if the project quota is running or not before performing
xfs_qm_statvfs(), just return if not. Otherwise the ASSERT
XFS_IS_QUOTA_RUNNING in xfs_qm_dqget will be popped.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system
Pull "Disintegrate and delete asm/system.h" from David Howells:
"Here are a bunch of patches to disintegrate asm/system.h into a set of
separate bits to relieve the problem of circular inclusion
dependencies.
I've built all the working defconfigs from all the arches that I can
and made sure that they don't break.
The reason for these patches is that I recently encountered a circular
dependency problem that came about when I produced some patches to
optimise get_order() by rewriting it to use ilog2().
This uses bitops - and on the SH arch asm/bitops.h drags in
asm-generic/get_order.h by a circuituous route involving asm/system.h.
The main difficulty seems to be asm/system.h. It holds a number of
low level bits with no/few dependencies that are commonly used (eg.
memory barriers) and a number of bits with more dependencies that
aren't used in many places (eg. switch_to()).
These patches break asm/system.h up into the following core pieces:
(1) asm/barrier.h
Move memory barriers here. This already done for MIPS and Alpha.
(2) asm/switch_to.h
Move switch_to() and related stuff here.
(3) asm/exec.h
Move arch_align_stack() here. Other process execution related bits
could perhaps go here from asm/processor.h.
(4) asm/cmpxchg.h
Move xchg() and cmpxchg() here as they're full word atomic ops and
frequently used by atomic_xchg() and atomic_cmpxchg().
(5) asm/bug.h
Move die() and related bits.
(6) asm/auxvec.h
Move AT_VECTOR_SIZE_ARCH here.
Other arch headers are created as needed on a per-arch basis."
Fixed up some conflicts from other header file cleanups and moving code
around that has happened in the meantime, so David's testing is somewhat
weakened by that. We'll find out anything that got broken and fix it..
* tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-asm_system: (38 commits)
Delete all instances of asm/system.h
Remove all #inclusions of asm/system.h
Add #includes needed to permit the removal of asm/system.h
Move all declarations of free_initmem() to linux/mm.h
Disintegrate asm/system.h for OpenRISC
Split arch_align_stack() out from asm-generic/system.h
Split the switch_to() wrapper out of asm-generic/system.h
Move the asm-generic/system.h xchg() implementation to asm-generic/cmpxchg.h
Create asm-generic/barrier.h
Make asm-generic/cmpxchg.h #include asm-generic/cmpxchg-local.h
Disintegrate asm/system.h for Xtensa
Disintegrate asm/system.h for Unicore32 [based on ver #3, changed by gxt]
Disintegrate asm/system.h for Tile
Disintegrate asm/system.h for Sparc
Disintegrate asm/system.h for SH
Disintegrate asm/system.h for Score
Disintegrate asm/system.h for S390
Disintegrate asm/system.h for PowerPC
Disintegrate asm/system.h for PA-RISC
Disintegrate asm/system.h for MN10300
...
|
|
Pull XFS update (part 2) from Ben Myers:
"Fixes for tracing of xfs_name strings, flag handling in
open_by_handle, a log space hang with freeze/unfreeze, fstrim offset
calculations, a section mismatch with xfs_qm_exit, an oops in
xlog_recover_process_iunlinks, and a deadlock in xfs_rtfree_extent.
There are also additional trace points for attributes, and the
addition of a workqueue for allocation to work around kernel stack
size limitations."
* 'for-linus' of git://oss.sgi.com/xfs/xfs:
xfs: add lots of attribute trace points
xfs: Fix oops on IO error during xlog_recover_process_iunlinks()
xfs: fix fstrim offset calculations
xfs: Account log unmount transaction correctly
xfs: don't cache inodes read through bulkstat
xfs: trace xfs_name strings correctly
xfs: introduce an allocation workqueue
xfs: Fix open flag handling in open_by_handle code
xfs: fix deadlock in xfs_rtfree_extent
fs: xfs: fix section mismatch in linux-next
|
|
Remove all #inclusions of asm/system.h preparatory to splitting and killing
it. Performed with the following command:
perl -p -i -e 's!^#\s*include\s*<asm/system[.]h>.*\n!!' `grep -Irl '^#\s*include\s*<asm/system[.]h>' *`
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When an IO error happens during inode deletion run from
xlog_recover_process_iunlinks() filesystem gets shutdown. Thus any subsequent
attempt to read buffers fails. Code in xlog_recover_process_iunlinks() does not
count with the fact that read of a buffer which was read a while ago can
really fail which results in the oops on
agi = XFS_BUF_TO_AGI(agibp);
Fix the problem by cleaning up the buffer handling in
xlog_recover_process_iunlinks() as suggested by Dave Chinner. We release buffer
lock but keep buffer reference to AG buffer. That is enough for buffer to stay
pinned in memory and we don't have to call xfs_read_agi() all the time.
CC: stable@kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_ioc_fstrim() doesn't treat the incoming offset and length
correctly. It treats them as a filesystem block address, rather than
a disk address. This is wrong because the range passed in is a
linear representation, while the filesystem block address notation
is a sparse representation. Hence we cannot convert the range direct
to filesystem block units and then use that for calculating the
range to trim.
While this sounds dangerous, the problem is limited to calculating
what AGs need to be trimmed. The code that calcuates the actual
ranges to trim gets the right result (i.e. only ever discards free
space), even though it uses the wrong ranges to limit what is
trimmed. Hence this is not a bug that endangers user data.
Fix this by treating the range as a disk address range and use the
appropriate functions to convert the range into the desired formats
for calculations.
Further, fix the first free extent lookup (the longest) to actually
find the largest free extent. Currently this lookup uses a <=
lookup, which results in finding the extent to the left of the
largest because we can never get an exact match on the largest
extent. This is due to the fact that while we know it's size, we
don't know it's location and so the exact match fails and we move
one record to the left to get the next largest extent. Instead, use
a >= search so that the lookup returns the largest extent regardless
of the fact we don't get an exact match on it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
There have been a few reports of this warning appearing recently:
XFS (dm-4): xlog_space_left: head behind tail
tail_cycle = 129, tail_bytes = 20163072
GH cycle = 129, GH bytes = 20162880
The common cause appears to be lots of freeze and unfreeze cycles,
and the output from the warnings indicates that we are leaking
around 8 bytes of log space per freeze/unfreeze cycle.
When we freeze the filesystem, we write an unmount record and that
uses xlog_write directly - a special type of transaction,
effectively. What it doesn't do, however, is correctly account for
the log space it uses. The unmount record writes an 8 byte structure
with a special magic number into the log, and the space this
consumes is not accounted for in the log ticket tracking the
operation. Hence we leak 8 bytes every unmount record that is
written.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When we read inodes via bulkstat, we generally only read them once
and then throw them away - they never get used again. If we retain
them in cache, then it simply causes the working set of inodes and
other cached items to be reclaimed just so the inode cache can grow.
Avoid this problem by marking inodes read by bulkstat not to be
cached and check this flag in .drop_inode to determine whether the
inode should be added to the VFS LRU or not. If the inode lookup
hits an already cached inode, then don't set the flag. If the inode
lookup hits an inode marked with no cache flag, remove the flag and
allow it to be cached once the current reference goes away.
Inodes marked as not cached will get cleaned up by the background
inode reclaim or via memory pressure, so they will still generate
some short term cache pressure. They will, however, be reclaimed
much sooner and in preference to cache hot inodes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Strings store in an xfs_name structure are often not NUL terminated,
print them using the correct printf specifiers that make use of the
string length store in the xfs_name structure.
Reported-by: Brian Candler <B.Candler@pobox.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Pull XFS updates from Ben Myers:
"Scalability improvements for dquots, log grant code cleanups, plus
bugfixes and cleanups large and small"
Fix up various trivial conflicts that were due to some of the earlier
patches already having been integrated into v3.3 as bugfixes, and then
there were development patches on top of those. Easily merged by just
taking the newer version from the pulled branch.
* 'for-linus' of git://oss.sgi.com/xfs/xfs: (45 commits)
xfs: fallback to vmalloc for large buffers in xfs_getbmap
xfs: fallback to vmalloc for large buffers in xfs_attrmulti_attr_get
xfs: remove remaining scraps of struct xfs_iomap
xfs: fix inode lookup race
xfs: clean up minor sparse warnings
xfs: remove the global xfs_Gqm structure
xfs: remove the per-filesystem list of dquots
xfs: use per-filesystem radix trees for dquot lookup
xfs: per-filesystem dquot LRU lists
xfs: use common code for quota statistics
xfs: reimplement fdatasync support
xfs: split in-core and on-disk inode log item fields
xfs: make xfs_inode_item_size idempotent
xfs: log timestamp updates
xfs: log file size updates at I/O completion time
xfs: log file size updates as part of unwritten extent conversion
xfs: do not require an ioend for new EOF calculation
xfs: use per-filesystem I/O completion workqueues
quota: make Q_XQUOTASYNC a noop
xfs: include reservations in quota reporting
...
|
|
We currently have significant issues with the amount of stack that
allocation in XFS uses, especially in the writeback path. We can
easily consume 4k of stack between mapping the page, manipulating
the bmap btree and allocating blocks from the free list. Not to
mention btree block readahead and other functionality that issues IO
in the allocation path.
As a result, we can no longer fit allocation in the writeback path
in the stack space provided on x86_64. To alleviate this problem,
introduce an allocation workqueue and move all allocations to a
seperate context. This can be easily added as an interposing layer
into xfs_alloc_vextent(), which takes a single argument structure
and does not return until the allocation is complete or has failed.
To do this, add a work structure and a completion to the allocation
args structure. This allows xfs_alloc_vextent to queue the args onto
the workqueue and wait for it to be completed by the worker. This
can be done completely transparently to the caller.
The worker function needs to ensure that it sets and clears the
PF_TRANS flag appropriately as it is being run in an active
transaction context. Work can also be queued in a memory reclaim
context, so a rescuer is needed for the workqueue.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Sparse identified some unsafe handling of open flags in the xfs open
by handle ioctl code. Update the code to use the correct access
macros to ensure that we handle the open flags correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
To fix the deadlock caused by repeatedly calling xfs_rtfree_extent
- removed xfs_ilock() and xfs_trans_ijoin() from xfs_rtfree_extent(),
instead added asserts that the inode is locked and has an inode_item
attached to it.
- in xfs_bunmapi() when dealing with an inode with the rt flag
call xfs_ilock() and xfs_trans_ijoin() so that the
reference count is bumped on the inode and attached it to the
transaction before calling into xfs_bmap_del_extent, similar to
what we do in xfs_bmap_rtalloc.
Signed-off-by: Kamal Dasu <kdasu.kdev@gmail.com>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_qm_exit() is called in init_xfs_fs().
Signed-off-by: Gerard Snitselaar <dev@snitselaar.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
New field of struct super_block - ->s_max_links. Maximal allowed
value of ->i_nlink or 0; in the latter case all checks still need
to be done in ->link/->mkdir/->rename instances. Note that this
limit applies both to directoris and to non-directories.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
xfs_getbmap uses for a large buffer for extents, which is kmalloc'd.
This can fail after the system has been running for some time as it
is a high order allocation. Add a fallback to vmalloc so that it
doesn't require contiguous memory and so won't randomly fail on
files with large extent lists.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfsdump uses for a large buffer for extended attributes, which has a
kmalloc'd shadow buffer in the kernel. This can fail after the
system has been running for some time as it is a high order
allocation. Add a fallback to vmalloc so that it doesn't require
contiguous memory and so won't randomly fail while xfsdump is
running.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When we get concurrent lookups of the same inode that is not in the
per-AG inode cache, there is a race condition that triggers warnings
in unlock_new_inode() indicating that we are initialising an inode
that isn't in a the correct state for a new inode.
When we do an inode lookup via a file handle or a bulkstat, we don't
serialise lookups at a higher level through the dentry cache (i.e.
pathless lookup), and so we can get concurrent lookups of the same
inode.
The race condition is between the insertion of the inode into the
cache in the case of a cache miss and a concurrently lookup:
Thread 1 Thread 2
xfs_iget()
xfs_iget_cache_miss()
xfs_iread()
lock radix tree
radix_tree_insert()
rcu_read_lock
radix_tree_lookup
lock inode flags
XFS_INEW not set
igrab()
unlock inode flags
rcu_read_unlock
use uninitialised inode
.....
lock inode flags
set XFS_INEW
unlock inode flags
unlock radix tree
xfs_setup_inode()
inode flags = I_NEW
unlock_new_inode()
WARNING as inode flags != I_NEW
This can lead to inode corruption, inode list corruption, etc, and
is generally a bad thing to occur.
Fix this by setting XFS_INEW before inserting the inode into the
radix tree. This will ensure any concurrent lookup will find the new
inode with XFS_INEW set and that forces the lookup to wait until the
XFS_INEW flag is removed before allowing the lookup to succeed.
cc: <stable@vger.kernel.org> # for 3.0.x, 3.2.x
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
If we initialize the slab caches for the quota code when XFS is loaded there
is no need for a global and reference counted quota manager structure. Drop
all this overhead and also fix the error handling during quota initialization.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Instead of keeping a separate per-filesystem list of dquots we can walk
the radix tree for the two places where we need to iterate all quota
structures.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Replace the global hash tables for looking up in-memory dquot structures
with per-filesystem radix trees to allow scaling to a large number of
in-memory dquot structures.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Replace the global dquot lru lists with a per-filesystem one.
Note that the shrinker isn't wire up to the per-superblock VFS shrinker
infrastructure as would have problems summing up and splitting the counts
for inodes and dquots. I don't think this is a major problem as the quota
cache isn't as interwinded with the inode cache as the dentry cache is,
because an inode that is dropped from the cache will generally release
a dquot reference, but most of the time it won't be the last one.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Switch the quota code over to use the generic XFS statistics infrastructure.
While the legacy /proc/fs/xfs/xqm and /proc/fs/xfs/xqmstats interfaces are
preserved for now the statistics that still have a meaning with the current
code are now also available from /proc/fs/xfs/stats.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add an in-memory only flag to say we logged timestamps only, and use it to
check if fdatasync can optimize away the log force.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Add a new ili_fields member to the inode log item to isolate the in-memory
flags from the ones that actually go to the log. This will allow tracking
timestamp-only updates for fdatasync and O_DSYNC in the next patch and
prepares for divorcing the on-disk log format from the in-memory log item
a little further down the road.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Move all code messing with the inode log item flags into xfs_inode_item_format
to make sure xfs_inode_item_size really only calculates the the number of
vectors, but doesn't modify any state of the inode item.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Do not use unlogged metadata updates and the VFS dirty bit for updating
the file size after writeback. In addition to causing various problems
with updates getting delayed for far too long this also drags in the
unscalable VFS dirty tracking, and is one of the few remaining unlogged
metadata updates.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|