Age | Commit message (Collapse) | Author | Files | Lines |
|
The current implementation of xlog_assign_tail_lsn() assumes that
when the AIL is empty, the log tail matches the LSN of the last
written commit record. This is recorded in xlog_state_set_callback()
as log->l_last_sync_lsn when the iclog state changes to
XLOG_STATE_CALLBACK. This change is then immediately followed by
running the callbacks on the iclog which then insert the log items
into the AIL at the "commit lsn" of that checkpoint.
The AIL tracks log items via the start record LSN of the checkpoint,
not the commit record LSN. This is because we can pipeline multiple
checkpoints, and so the start record of checkpoint N+1 can be
written before the commit record of checkpoint N. i.e:
start N commit N
+-------------+------------+----------------+
start N+1 commit N+1
The tail of the log cannot be moved to the LSN of commit N when all
the items of that checkpoint are written back, because then the
start record for N+1 is no longer in the active portion of the log
and recovery will fail/corrupt the filesystem.
Hence when all the log items in checkpoint N are written back, the
tail of the log most now only move as far forwards as the start LSN
of checkpoint N+1.
Hence we cannot use the maximum start record LSN the AIL sees as a
replacement the pointer to the current head of the on-disk log
records. However, we currently only use the l_last_sync_lsn when the
AIL is empty - when there is no start LSN remaining, the tail of the
log moves to the LSN of the last commit record as this is where
recovery needs to start searching for recoverable records. THe next
checkpoint will have a start record LSN that is higher than
l_last_sync_lsn, and so everything still works correctly when new
checkpoints are written to an otherwise empty log.
l_last_sync_lsn is an atomic variable because it is currently
updated when an iclog with callbacks attached moves to the CALLBACK
state. While we hold the icloglock at this point, we don't hold the
AIL lock. When we assign the log tail, we hold the AIL lock, not the
icloglock because we have to look up the AIL. Hence it is an atomic
variable so it's not bound to a specific lock context.
However, the iclog callbacks are only used for CIL checkpoints. We
don't use callbacks with unmount record writes, so the
l_last_sync_lsn variable only gets updated when we are processing
CIL checkpoint callbacks. And those callbacks run under AIL lock
contexts, not icloglock context. The CIL checkpoint already knows
what the LSN of the iclog the commit record was written to (obtained
when written into the iclog before submission) and so we can update
the l_last_sync_lsn under the AIL lock in this callback. No other
iclog callbacks will run until the currently executing one
completes, and hence we can update the l_last_sync_lsn under the AIL
lock safely.
This means l_last_sync_lsn can move to the AIL as the "ail_head_lsn"
and it can be used to replace the atomic l_last_sync_lsn in the
iclog code. This makes tracking the log tail belong entirely to the
AIL, rather than being smeared across log, iclog and AIL state and
locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Currently the AIL attempts to keep 25% of the "log space" free,
where the current used space is tracked by the reserve grant head.
That is, it tracks both physical space used plus the amount reserved
by transactions in progress.
When we start tail pushing, we are trying to make space for new
reservations by writing back older metadata and the log is generally
physically full of dirty metadata, and reservations for modifications
in flight take up whatever space the AIL can physically free up.
Hence we don't really need to take into account the reservation
space that has been used - we just need to keep the log tail moving
as fast as we can to free up space for more reservations to be made.
We know exactly how much physical space the journal is consuming in
the AIL (i.e. max LSN - min LSN) so we can base push thresholds
directly on this state rather than have to look at grant head
reservations to determine how much to physically push out of the
log.
This also allows code that needs to know if log items in the current
transaction need to be pushed or re-logged to simply sample the
current target - they don't need to calculate the current target
themselves. This avoids the need for any locking when doing such
checks.
Further, moving to a physical target means we don't need "push all
until empty semantics" like were introduced in the previous patch.
We can now test and clear the "push all" as a one-shot command to
set the target to the current head of the AIL. This allows the
xfsaild to maximise the use of log space right up to the point where
conditions indicate that the xfsaild is not keeping up with load and
it needs to work harder, and as soon as those constraints go away
(i.e. external code no longer needs everything pushed) the xfsaild
will return to maintaining the normal 25% free space thresholds.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
We have a mechanism that checks the amount of log space remaining
available every time we make a transaction reservation. If the
amount of space is below a threshold (25% free) we push on the AIL
to tell it to do more work. To do this, we end up calculating the
LSN that the AIL needs to push to on every reservation and updating
the push target for the AIL with that new target LSN.
This is silly and expensive. The AIL is perfectly capable of
calculating the push target itself, and it will always be running
when the AIL contains objects.
What the target does is determine if the AIL needs to do
any work before it goes back to sleep. If we haven't run out of
reservation space or memory (or some other push all trigger), it
will simply go back to sleep for a while if there is more than 25%
of the journal space free without doing anything.
If there are items in the AIL at a lower LSN than the target, it
will try to push up to the target or to the point of getting stuck
before going back to sleep and trying again soon after.`
Hence we can modify the AIL to calculate it's own 25% push target
before it starts a push using the same reserve grant head based
calculation as is currently used, and remove all the places where we
ask the AIL to push to a new 25% free target. We can also drop the
minimum free space size of 256BBs from the calculation because the
25% of a minimum sized log is *always going to be larger than
256BBs.
This does still require a manual push in certain circumstances.
These circumstances arise when the AIL is not full, but the
reservation grants consume the entire of the free space in the log.
In this case, we still need to push on the AIL to free up space, so
when we hit this condition (i.e. reservation going to sleep to wait
on log space) we do a single push to tell the AIL it should empty
itself. This will keep the AIL moving as new reservations come in
and want more space, rather than keep queuing them and having to
push the AIL repeatedly.
The reason for using the "push all" when grant space runs out is
that we can run out of grant space when there is more than 25% of
the log free. Small logs are notorious for this, and we have a hack
in the log callback code (xlog_state_set_callback()) where we push
the AIL because the *head* moved) to ensure that we kick the AIL
when we consume space in it because that can push us over the "less
than 25% available" available that starts tail pushing back up
again.
Hence when we run out of grant space and are going to sleep, we have
to consider that the grant space may be consuming almost all the log
space and there is almost nothing in the AIL. In this situation, the
AIL pins the tail and moving the tail forwards is the only way the
grant space will come available, so we have to force the AIL to push
everything to guarantee grant space will eventually be returned.
Hence triggering a "push all" just before sleeping removes all the
nasty corner cases we have in other parts of the code that work
around the "we didn't ask the AIL to push enough to free grant
space" condition that leads to log space hangs...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Ever since the CIL and delayed logging was introduced,
xfs_trans_committed_bulk() has been a purely CIL checkpoint
completion function and not a transaction commit completion
function. Now that we are adding log specific updates to this
function, it really does not have anything to do with the
transaction subsystem - it is really log and log item level
functionality.
This should be part of the CIL code as it is the callback
that moves log items from the CIL checkpoint to the AIL. Move it
and rename it to xlog_cil_ail_insert().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Because the next change is going to require sorting log vectors, and
that requires arbitrary rearrangement of the list which cannot be
done easily with a single linked list.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
The AIL operates purely on log items, so it is a log centric
subsystem. Divorce it from the xfs_mount and instead have it pass
around xlog pointers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
During recovery, every intent that we recover from the log has to be
added to the AIL. Replace the open-coded addition with a helper.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
|
|
Now that the functions and callers of
xfs_trans_ail_[remove|delete]() have been fixed up appropriately,
the only difference between the two is the shutdown behavior. There
are only a few callers of the _remove() variant, so make the
shutdown conditional on the parameter and combine the two functions.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The shutdown parameter of xfs_trans_ail_remove() is no longer used.
The remaining callers use it for items that legitimately might not
be in the AIL or from contexts where AIL state has already been
checked. Remove the unnecessary parameter and fix up the callers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Several callers acquire the lock just prior to the call. Callers
that require ->ail_lock for other purposes already check IN_AIL
state and thus don't require the additional shutdown check in the
helper. Push the lock down into xfs_trans_ail_delete(), open code
the instances that still acquire it, and remove the unnecessary ailp
parameter.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
We currently wake anything waiting on the log tail to move whenever
the log item at the tail of the log is removed. Historically this
was fine behaviour because there were very few items at any given
LSN. But with delayed logging, there may be thousands of items at
any given LSN, and we can't move the tail until they are all gone.
Hence if we are removing them in near tail-first order, we might be
waking up processes waiting on the tail LSN to change (e.g. log
space waiters) repeatedly without them being able to make progress.
This also occurs with the new sync push waiters, and can result in
thousands of spurious wakeups every second when under heavy direct
reclaim pressure.
To fix this, check that the tail LSN has actually changed on the
AIL before triggering wakeups. This will reduce the number of
spurious wakeups when doing bulk AIL removal and make this code much
more efficient.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Factor the common AIL deletion code that does all the wakeups into a
helper so we only have one copy of this somewhat tricky code to
interface with all the wakeups necessary when the LSN of the log
tail changes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
While commiting items looks very similar to freeing them on error it is
a different operation, and they will diverge a bit soon.
Split out the commit case from xfs_trans_free_items, inline it into
xfs_log_commit_cil and give it a separate trace point.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Just pass a straight bool aborted instead of abusing XFS_LI_ABORTED as a
flag in function parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
It's just a connector between a transaction and a log item. There's
a 1:1 relationship between a log item descriptor and a log item,
and a 1:1 relationship between a log item descriptor and a
transaction. Both relationships are created and terminated at the
same time, so why do we even have the descriptor?
Replace it with a specific list_head in the log item and a new
log item dirtied flag to replace the XFS_LID_DIRTY flag.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[darrick: fix up deferred agfl intent finish_item use of LID_DIRTY]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The log item flags contain a field that is protected by the AIL
lock - the XFS_LI_IN_AIL flag. We use non-atomic RMW operations to
set and clear these flags, but most of the updates and checks are
not done with the AIL lock held and so are susceptible to update
races.
Fix this by changing the log item flags to use atomic bitops rather
than be reliant on the AIL lock for update serialisation.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
This is a simple rename, except that xa_ail becomes ail_head.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When a buffer has been failed during writeback, the inode items into it
are kept flush locked, and are never resubmitted due the flush lock, so,
if any buffer fails to be written, the items in AIL are never written to
disk and never unlocked.
This causes unmount operation to hang due these items flush locked in AIL,
but this also causes the items in AIL to never be written back, even when
the IO device comes back to normal.
I've been testing this patch with a DM-thin device, creating a
filesystem larger than the real device.
When writing enough data to fill the DM-thin device, XFS receives ENOSPC
errors from the device, and keep spinning on xfsaild (when 'retry
forever' configuration is set).
At this point, the filesystem can not be unmounted because of the flush locked
items in AIL, but worse, the items in AIL are never retried at all
(once xfs_inode_item_push() will skip the items that are flush locked),
even if the underlying DM-thin device is expanded to the proper size.
This patch fixes both cases, retrying any item that has been failed
previously, using the infra-structure provided by the previous patch.
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
xfs_iflush_done uses an on-stack variable length array to pass the log
items to be deleted to xfs_trans_ail_delete_bulk. On-stack VLAs are a
nasty gcc extension that can lead to unbounded stack allocations, but
fortunately we can easily avoid them by simply open coding
xfs_trans_ail_delete_bulk in xfs_iflush_done, which is the only caller
of it except for the single-item xfs_trans_ail_delete.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Several areas of code duplicate a pattern where we take the AIL lock,
check whether an item is in the AIL and remove it if so. Create a new
helper for this pattern and use it where appropriate.
Signed-off-by: Brian Foster <bfoster@redhat.com>
|
|
The flags value always was 0 or XFS_TRANS_ABORT. Switch to a bool
parameter to allow further cleanups.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
At xfs_ail_min(), we do check if the AIL list is empty or not before
returning the first item in it with list_empty() and list_first_entry().
This can be simplified a bit with a new list operation routine that is
the list_first_entry_or_null() which has been introduced by:
commit 6d7581e62f8be462440d7b22c6361f7c9fa4902b
list: introduce list_first_entry_or_null
v2: make xfs_ail_min() as a static inline function and move it to
xfs_trans_priv.h as per Dave Chinner's comments.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Little things like exported functions, __KERNEL__ protections, and
so on that ensure user and kernel shared headers are identical.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfsaild idle mode logic currently leads to a couple hangs:
1.) If xfsaild is rescheduled in during an incremental scan
(i.e., tout != 0) and the target has been updated since
the previous run, we can hit the new target and go into
idle mode with a still populated ail.
2.) A wake up is only issued when the target is pushed forward.
The wake up can race with xfsaild if it is currently in the
process of entering idle mode, causing future wake up
events to be lost.
These hangs have been reproduced and verified as fixed by
running xfstests 273 in a loop on a slightly modified upstream
kernel. The kernel is modified to re-enable idle mode as
previously implemented (when count == 0) and with a revert of
commit 670ce93f, which includes performance improvements that
make this harder to reproduce.
The solution, the algorithm for which has been outlined by
Dave Chinner, is to modify xfsaild to enter idle mode only when
the ail is empty and the push target has not been moved forward
since the last push.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_trans_ail_delete_bulk() can be called from different contexts so
if the item is not in the AIL we need different shutdown for each
context. Pass in the shutdown method needed so the correct action
can be taken.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Now that we write back all metadata either synchronously or through
the AIL we can simply implement metadata freezing in terms of
emptying the AIL.
The implementation for this is fairly simply and straight-forward:
A new routine is added that asks the xfsaild to push the AIL to the
end and waits for it to complete and send a wakeup. The routine will
then loop if the AIL is not actually empty, and continue to do so
until the AIL is compeltely empty.
We keep an inode reclaim pass in the freeze process to avoid having
memory pressure have to reclaim inodes that require dirtying the
filesystem to be reclaimed after the freeze has completed. This
means we can also treat unmount in the exact same way as freeze.
As an upside we can now remove the radix tree based inode writeback
and xfs_unmountfs_writesb.
[ Dave Chinner:
- Cleaned up commit message.
- Added inode reclaim passes back into freeze.
- Cleaned up wakeup mechanism to avoid the use of a new
sleep counter variable. ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Provide a variant of xlog_assign_tail_lsn that has the AIL lock already
held. By doing so we do an additional atomic_read + atomic_set under
the lock, which comes down to two instructions.
Switch xfs_trans_ail_update_bulk and xfs_trans_ail_delete_bulk to the
new version to reduce the number of lock roundtrips, and prepare for
a new addition that would require a third lock roundtrip in
xfs_trans_ail_delete_bulk. This addition is also the reason for
slightly rearranging the conditionals and relying on xfs_log_space_wake
for checking that the filesystem has been shut down internally.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
There is no reason to wake up log space waiters when unlocking inodes or
dquots, and the commit log has no explanation for this function either.
Given that we now have exact log space wakeups everywhere we can assume
the reason for this function was to paper over log space races in earlier
XFS versions.
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux
Resolved conflicts:
fs/xfs/xfs_trans_priv.h:
- deleted struct xfs_ail field xa_flags
- kept field xa_log_flush in struct xfs_ail
fs/xfs/xfs_trans_ail.c:
- in xfsaild_push(), in XFS_ITEM_PUSHBUF case, replaced
"flush_log = 1" with "ailp->xa_log_flush++"
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
The AIL push code will issue a log force on ever single push loop
that it exits and has encountered pinned items. It doesn't rescan
these pinned items until it revisits the AIL from the start. Hence
we only need to force the log once per walk from the start of the
AIL to the target LSN.
This results in numbers like this:
xs_push_ail_flush..... 1456
xs_log_force......... 1485
For an 8-way 50M inode create workload - almost all the log forces
are coming from the AIL pushing code.
Reduce the number of log forces by only forcing the log if the
previous walk found pinned buffers. This reduces the numbers to:
xs_push_ail_flush..... 665
xs_log_force......... 682
For the same test.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Currently we have a few issues with the way the workqueue code is used to
implement AIL pushing:
- it accidentally uses the same workqueue as the syncer action, and thus
can be prevented from running if there are enough sync actions active
in the system.
- it doesn't use the HIGHPRI flag to queue at the head of the queue of
work items
At this point I'm not confident enough in getting all the workqueue flags and
tweaks right to provide a perfectly reliable execution context for AIL
pushing, which is the most important piece in XFS to make forward progress
when the log fills.
Revert back to use a kthread per filesystem which fixes all the above issues
at the cost of having a task struct and stack around for each mounted
filesystem. In addition this also gives us much better ways to diagnose
any issues involving hung AIL pushing and removes a small amount of code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
The list of active AIL cursors uses a roll-your-own linked list with
special casing for the AIL push cursor. Simplify this code by
replacing the list with standard struct list_head lists, and use a
separate list_head to track the active cursors. This allows us to
treat the AIL push cursor as a generic cursor rather than as a
special case, further simplifying the code.
Further, fix the duplicate push cursor initialisation that the
special case handling was hiding, and clean up all the comments
around the active cursor list handling.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Delayed logging can insert tens of thousands of log items into the
AIL at the same LSN. When the committing of log commit records
occur, we can get insertions occurring at an LSN that is not at the
end of the AIL. If there are thousands of items in the AIL on the
tail LSN, each insertion has to walk the AIL to find the correct
place to insert the new item into the AIL. This can consume large
amounts of CPU time and block other operations from occurring while
the traversals are in progress.
To avoid this repeated walk, use a AIL cursor to record
where we should be inserting the new items into the AIL without
having to repeat the walk. The cursor infrastructure already
provides this functionality for push walks, so is a simple extension
of existing code. While this will not avoid the initial walk, it
will avoid repeating it tens of thousands of times during a single
checkpoint commit.
This version includes logic improvements from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
When we are short on memory, we want to expedite the cleaning of
dirty objects. Hence when we run short on memory, we need to kick
the AIL flushing into action to clean as many dirty objects as
quickly as possible. To implement this, sample the lsn of the log
item at the head of the AIL and use that as the push target for the
AIL flush.
Further, we keep items in the AIL that are dirty that are not
tracked any other way, so we can get objects sitting in the AIL that
don't get written back until the AIL is pushed. Hence to get the
filesystem to the idle state, we might need to push the AIL to flush
out any remaining dirty objects sitting in the AIL. This requires
the same push mechanism as the reclaim push.
This patch also renames xfs_trans_ail_tail() to xfs_ail_min_lsn() to
match the new xfs_ail_max_lsn() function introduced in this patch.
Similarly for xfs_trans_ail_push -> xfs_ail_push.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
Similar to the xfssyncd, the per-filesystem xfsaild threads can be
converted to a global workqueue and run periodically by delayed
works. This makes sense for the AIL pushing because it uses
variable timeouts depending on the work that needs to be done.
By removing the xfsaild, we simplify the AIL pushing code and
remove the need to spread the code to implement the threading
and pushing across multiple files.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
|
|
We now have two copies of AIL delete operations that are mostly
duplicate functionality. The single log item deletes can be
implemented via the bulk updates by turning xfs_trans_ail_delete()
into a simple wrapper. This removes all the duplicate delete
functionality and associated helpers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
We now have two copies of AIL insert operations that are mostly
duplicate functionality. The single log item updates can be
implemented via the bulk updates by turning xfs_trans_ail_update()
into a simple wrapper. This removes all the duplicate insert
functionality and associated helpers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
When inode buffer IO completes, usually all of the inodes are removed from the
AIL. This involves processing them one at a time and taking the AIL lock once
for every inode. When all CPUs are processing inode IO completions, this causes
excessive amount sof contention on the AIL lock.
Instead, change the way we process inode IO completion in the buffer
IO done callback. Allow the inode IO done callback to walk the list
of IO done callbacks and pull all the inodes off the buffer in one
go and then process them as a batch.
Once all the inodes for removal are collected, take the AIL lock
once and do a bulk removal operation to minimise traffic on the AIL
lock.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
When inserting items into the AIL from the transaction committed
callbacks, we take the AIL lock for every single item that is to be
inserted. For a CIL checkpoint commit, this can be tens of thousands
of individual inserts, yet almost all of the items will be inserted
at the same point in the AIL because they have the same index.
To reduce the overhead and contention on the AIL lock for such
operations, introduce a "bulk insert" operation which allows a list
of log items with the same LSN to be inserted in a single operation
via a list splice. To do this, we need to pre-sort the log items
being committed into a temporary list for insertion.
The complexity is that not every log item will end up with the same
LSN, and not every item is actually inserted into the AIL. Items
that don't match the commit LSN will be inserted and unpinned as per
the current one-at-a-time method (relatively rare), while items that
are not to be inserted will be unpinned and freed immediately. Items
that are to be inserted at the given commit lsn are placed in a
temporary array and inserted into the AIL in bulk each time the
array fills up.
As a result of this, we trade off AIL hold time for a significant
reduction in traffic. lock_stat output shows that the worst case
hold time is unchanged, but contention from AIL inserts drops by an
order of magnitude and the number of lock traversal decreases
significantly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
When we commit a transaction using delayed logging, we need to
unlock the items in the transaciton before we unlock the CIL context
and allow it to be checkpointed. If we unlock them after we release
the CIl context lock, the CIL can checkpoint and complete before
we free the log items. This breaks stale buffer item unlock and
unpin processing as there is an implicit assumption that the unlock
will occur before the unpin.
Also, some log items need to store the LSN of the transaction commit
in the item (inodes and EFIs) and so can race with other transaction
completions if we don't prevent the CIL from checkpointing before
the unlock occurs.
Cc: <stable@kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Currently we track log item descriptor belonging to a transaction using a
complex opencoded chunk allocator. This code has been there since day one
and seems to work around the lack of an efficient slab allocator.
This patch replaces it with dynamically allocated log item descriptors
from a dedicated slab pool, linked to the transaction by a linked list.
This allows to greatly simplify the log item descriptor tracking to the
point where it's just a couple hundred lines in xfs_trans.c instead of
a separate file. The external API has also been simplified while we're
at it - the xfs_trans_add_item and xfs_trans_del_item functions to add/
delete items from a transaction have been simplified to the bare minium,
and the xfs_trans_find_item function is replaced with a direct dereference
of the li_desc field. All debug code walking the list of log items in
a transaction is down to a simple list_for_each_entry.
Note that we could easily use a singly linked list here instead of the
double linked list from list.h as the fastpath only does deletion from
sequential traversal. But given that we don't have one available as
a library function yet I use the list.h functions for simplicity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
When we free a metadata extent, we record it in the per-AG busy
extent array so that it is not re-used before the freeing
transaction hits the disk. This array is fixed size, so when it
overflows we make further allocation transactions synchronous
because we cannot track more freed extents until those transactions
hit the disk and are completed. Under heavy mixed allocation and
freeing workloads with large log buffers, we can overflow this array
quite easily.
Further, the array is sparsely populated, which means that inserts
need to search for a free slot, and array searches often have to
search many more slots that are actually used to check all the
busy extents. Quite inefficient, really.
To enable this aspect of extent freeing to scale better, we need
a structure that can grow dynamically. While in other areas of
XFS we have used radix trees, the extents being freed are at random
locations on disk so are better suited to being indexed by an rbtree.
So, use a per-AG rbtree indexed by block number to track busy
extents. This incures a memory allocation when marking an extent
busy, but should not occur too often in low memory situations. This
should scale to an arbitrary number of extents so should not be a
limitation for features such as in-memory aggregation of
transactions.
However, there are still situations where we can't avoid allocating
busy extents (such as allocation from the AGFL). To minimise the
overhead of such occurences, we need to avoid doing a synchronous
log force while holding the AGF locked to ensure that the previous
transactions are safely on disk before we use the extent. We can do
this by marking the transaction doing the allocation as synchronous
rather issuing a log force.
Because of the locking involved and the ordering of transactions,
the synchronous transaction provides the same guarantees as a
synchronous log force because it ensures that all the prior
transactions are already on disk when the synchronous transaction
hits the disk. i.e. it preserves the free->allocate order of the
extent correctly in recovery.
By doing this, we avoid holding the AGF locked while log writes are
in progress, hence reducing the length of time the lock is held and
therefore we increase the rate at which we can allocate and free
from the allocation group, thereby increasing overall throughput.
The only problem with this approach is that when a metadata buffer is
marked stale (e.g. a directory block is removed), then buffer remains
pinned and locked until the log goes to disk. The issue here is that
if that stale buffer is reallocated in a subsequent transaction, the
attempt to lock that buffer in the transaction will hang waiting
the log to go to disk to unlock and unpin the buffer. Hence if
someone tries to lock a pinned, stale, locked buffer we need to
push on the log to get it unlocked ASAP. Effectively we are trading
off a guaranteed log force for a much less common trigger for log
force to occur.
Ideally we should not reallocate busy extents. That is a much more
complex fix to the problem as it involves direct intervention in the
allocation btree searches in many places. This is left to a future
set of modifications.
Finally, now that we track busy extents in allocated memory, we
don't need the descriptors in the transaction structure to point to
them. We can replace the complex busy chunk infrastructure with a
simple linked list of busy extents. This allows us to remove a large
chunk of code, making the overall change a net reduction in code
size.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|
|
Change all the remaining AIL API functions that are passed struct
xfs_mount pointers to pass pointers directly to the struct xfs_ail being
used. With this conversion, all external access to the AIL is via the
struct xfs_ail. Hence the operation and referencing of the AIL is almost
entirely independent of the xfs_mount that is using it - it is now much
more tightly tied to the log and the items it is tracking in the log than
it is tied to the xfs_mount.
SGI-PV: 988143
SGI-Modid: xfs-linux-melb:xfs-kern:32353a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|
|
Bring the ail lock inside the struct xfs_ail. This means the AIL can be
entirely manipulated via the struct xfs_ail rather than needing both the
struct xfs_mount and the struct xfs_ail.
SGI-PV: 988143
SGI-Modid: xfs-linux-melb:xfs-kern:32350a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|
|
When copying lsn's from the log item to the inode or dquot flush lsn, we
currently grab the AIL lock. We do this because the LSN is a 64 bit
quantity and it needs to be read atomically. The lock is used to guarantee
atomicity for 32 bit platforms.
Make the LSN copying a small function, and make the function used
conditional on BITS_PER_LONG so that 64 bit machines don't need to take
the AIL lock in these places.
SGI-PV: 988143
SGI-Modid: xfs-linux-melb:xfs-kern:32349a
Signed-off-by: David Chinner <david@fromorbit.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
|