summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_trace.h
AgeCommit message (Collapse)AuthorFilesLines
2016-10-06xfs: implement swapext for rmap filesystemsDarrick J. Wong1-0/+5
Implement swapext for filesystems that have reverse mapping. Back in the reflink patches, we augmented the bmap code with a 'REMAP' flag that updates only the bmbt and doesn't touch the allocator and implemented log redo items for those two operations. Now we can rewrite extent swapping as a (looong) series of remap operations. This is far less efficient than the fork swapping method implemented in the past, so we only switch this on for rmap. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-06xfs: use interval query for rmap alloc operations on shared filesDarrick J. Wong1-0/+5
When it's possible for reverse mappings to overlap (data fork extents of files on reflink filesystems), use the interval query function to find the left neighbor of an extent we're trying to add; and be careful to use the lookup functions to update the neighbors and/or add new extents. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-06xfs: garbage collect old cowextsz reservationsDarrick J. Wong1-0/+5
Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-06xfs: store in-progress CoW allocations in the refcount btreeDarrick J. Wong1-0/+4
Due to the way the CoW algorithm in XFS works, there's an interval during which blocks allocated to handle a CoW can be lost -- if the FS goes down after the blocks are allocated but before the block remapping takes place. This is exacerbated by the cowextsz hint -- allocated reservations can sit around for a while, waiting to get used. Since the refcount btree doesn't normally store records with refcount of 1, we can use it to record these in-progress extents. In-progress blocks cannot be shared because they're not user-visible, so there shouldn't be any conflicts with other programs. This is a better solution than holding EFIs during writeback because (a) EFIs can't be relogged currently, (b) even if they could, EFIs are bound by available log space, which puts an unnecessary upper bound on how much CoW we can have in flight, and (c) we already have a mechanism to track blocks. At mount time, read the refcount records and free anything we find with a refcount of 1 because those were in-progress when the FS went down. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-06xfs: implement CoW for directio writesDarrick J. Wong1-1/+0
For O_DIRECT writes to shared blocks, we have to CoW them just like we would with buffered writes. For writes that are not block-aligned, just bounce them to the page cache. For block-aligned writes, however, we can do better than that. Use the same mechanisms that we employ for buffered CoW to set up a delalloc reservation, allocate all the blocks at once, issue the writes against the new blocks and use the same ioend functions to remap the blocks after the write. This should be fairly performant. Christoph discovered that xfs_reflink_allocate_cow_range may stumble over invalid entries in the extent array given that it drops the ilock but still expects the index to be stable. Simple fixing it to a new lookup for every iteration still isn't correct given that xfs_bmapi_allocate will trigger a BUG_ON() if hitting a hole, and there is nothing preventing a xfs_bunmapi_cow call removing extents once we dropped the ilock either. This patch duplicates the inner loop of xfs_bmapi_allocate into a helper for xfs_reflink_allocate_cow_range so that it can be done under the same ilock critical section as our CoW fork delayed allocation. The directio CoW warts will be revisited in a later patch. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2016-10-05xfs: support bmapping delalloc extents in the CoW forkDarrick J. Wong1-3/+3
Allow the creation of delayed allocation extents in the CoW fork. In a subsequent patch we'll wire up iomap_begin to actually do this via reflink helper functions. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-05xfs: introduce the CoW forkDarrick J. Wong1-2/+2
Introduce a new in-core fork for storing copy-on-write delalloc reservations and allocated extents that are in the process of being written out. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-05xfs: define tracepoints for reflink activitiesDarrick J. Wong1-0/+333
Define all the tracepoints we need to inspect the runtime operation of reflink/dedupe/copy-on-write. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04xfs: implement deferred bmbt map/unmap operationsDarrick J. Wong1-0/+5
Implement deferred versions of the inode block map/unmap functions. These will be used in subsequent patches to make reflink operations atomic. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-04xfs: map an inode's offset to an exact physical blockDarrick J. Wong1-0/+54
Teach the bmap routine to know how to map a range of file blocks to a specific range of physical blocks, instead of simply allocating fresh blocks. This enables reflink to map a file to blocks that are already in use. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: connect refcount adjust functions to upper layersDarrick J. Wong1-0/+3
Plumb in the upper level interface to schedule and finish deferred refcount operations via the deferred ops mechanism. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: log refcount intent itemsDarrick J. Wong1-0/+33
Provide a mechanism for higher levels to create CUI/CUD items, submit them to the log, and a stub function to deal with recovered CUI items. These parts will be connected to the refcountbt in a later patch. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: define the on-disk refcount btree formatDarrick J. Wong1-10/+1
Start constructing the refcount btree implementation by establishing the on-disk format and everything needed to read, write, and manipulate the refcount btree blocks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03xfs: define tracepoints for refcount btree activitiesDarrick J. Wong1-0/+301
Define all the tracepoints we need to inspect the refcount btree runtime operation. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-10-03Merge branch 'xfs-4.9-log-recovery-fixes' into for-nextDave Chinner1-6/+33
2016-09-26xfs: log recovery tracepoints to track current lsn and buffer submissionBrian Foster1-2/+29
Log recovery has particular rules around buffer submission along with tricky corner cases where independent transactions can share an LSN. As such, it can be difficult to follow when/why buffers are submitted during recovery. Add a couple tracepoints to post the current LSN of a record when a new record is being processed and when a buffer is being skipped due to LSN ordering. Also, update the recover item class to include the LSN of the current transaction for the item being processed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-26xfs: remote attribute blocks aren't really userdataDave Chinner1-4/+4
When adding a new remote attribute, we write the attribute to the new extent before the allocation transaction is committed. This means we cannot reuse busy extents as that violates crash consistency semantics. Hence we currently treat remote attribute extent allocation like userdata because it has the same overwrite ordering constraints as userdata. Unfortunately, this also allows the allocator to incorrectly apply extent size hints to the remote attribute extent allocation. This results in interesting failures, such as transaction block reservation overruns and in-memory inode attribute fork corruption. To fix this, we need to separate the busy extent reuse configuration from the userdata configuration. This changes the definition of XFS_BMAPI_METADATA slightly - it now means that allocation is metadata and reuse of busy extents is acceptible due to the metadata ordering semantics of the journal. If this flag is not set, it means the allocation is that has unordered data writeback, and hence busy extent reuse is not allowed. It no longer implies the allocation is for user data, just that the data write will not be strictly ordered. This matches the semantics for both user data and remote attribute block allocation. As such, This patch changes the "userdata" field to a "datatype" field, and adds a "no busy reuse" flag to the field. When we detect an unordered data extent allocation, we immediately set the no reuse flag. We then set the "user data" flags based on the inode fork we are allocating the extent to. Hence we only set userdata flags on data fork allocations now and consider attribute fork remote extents to be an unordered metadata extent. The result is that remote attribute extents now have the expected allocation semantics, and the data fork allocation behaviour is completely unchanged. It should be noted that there may be other ways to fix this (e.g. use ordered metadata buffers for the remote attribute extent data write) but they are more invasive and difficult to validate both from a design and implementation POV. Hence this patch takes the simple, obvious route to fixing the problem... Reported-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-09-19xfs: set up per-AG free space reservationsDarrick J. Wong1-10/+65
One unfortunate quirk of the reference count and reverse mapping btrees -- they can expand in size when blocks are written to *other* allocation groups if, say, one large extent becomes a lot of tiny extents. Since we don't want to start throwing errors in the middle of CoWing, we need to reserve some blocks to handle future expansion. The transaction block reservation counters aren't sufficient here because we have to have a reserve of blocks in every AG, not just somewhere in the filesystem. Therefore, create two per-AG block reservation pools. One feeds the AGFL so that rmapbt expansion always succeeds, and the other feeds all other metadata so that refcountbt expansion never fails. Use the count of how many reserved blocks we need to have on hand to create a virtual reservation in the AG. Through selective clamping of the maximum length of allocation requests and of the length of the longest free extent, we can make it look like there's less free space in the AG unless the reservation owner is asking for blocks. In other words, play some accounting tricks in-core to make sure that we always have blocks available. On the plus side, there's nothing to clean up if we crash, which is contrast to the strategy that the rough draft used (actually removing extents from the freespace btrees). Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-30xfs: track log done items directly in the deferred pending work itemDarrick J. Wong1-1/+1
Christoph reports slab corruption when a deferred refcount update aborts during _defer_finish(). The cause of this was broken log item state tracking in xfs_defer_pending -- upon an abort, _defer_trans_abort() will call abort_intent on all intent items, including the ones that have already had a done item attached. This is incorrect because each intent item has 2 refcount: the first is released when the intent item is committed to the log; and the second is released when the _done_ item is committed to the log, or by the intent creator if there is no done item. In other words, once we log the done item, responsibility for releasing the intent item's second refcount is transferred to the done item and /must not/ be performed by anything else. The dfp_committed flag should have been tracking whether or not we had a done item so that _defer_trans_abort could decide if it needs to abort the intent item, but due to a thinko this was not the case. Rip it out and track the done item directly so that we do the right thing w.r.t. intent item freeing. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reported-by: Christoph Hellwig <hch@infradead.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-17xfs: simplify xfs_file_iomap_beginChristoph Hellwig1-1/+0
We'll never get nimap == 0 for a successful return from xfs_bmapi_read, so don't try to handle it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: convert unwritten status of reverse mappingsDarrick J. Wong1-0/+5
Provide a function to convert an unwritten rmap extent to a real one and vice versa. [ dchinner: Note that this algorithm and code was derived from the existing bmapbt unwritten extent conversion code in xfs_bmap_add_extent_unwritten_real(). ] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: add an extent to the rmap btreeDarrick J. Wong1-0/+2
Originally-From: Dave Chinner <dchinner@redhat.com> Now all the btree, free space and transaction infrastructure is in place, we can finally add the code to insert reverse mappings to the rmap btree. Freeing will be done in a separate patch, so just the addition operation can be focussed on here. [darrick: handle owner offsets when adding rmaps] [dchinner: remove remaining debug printk statements] [darrick: move unwritten bit to rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: add tracepoints for the rmap functionsDarrick J. Wong1-2/+49
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: add rmap btree operationsDarrick J. Wong1-0/+3
Originally-From: Dave Chinner <dchinner@redhat.com> Implement the generic btree operations needed to manipulate rmap btree blocks. This is very similar to the per-ag freespace btree implementation, and uses the AGFL for allocation and freeing of blocks. Adapt the rmap btree to store owner offsets within each rmap record, and to handle the primary key being redefined as the tuple [agblk, owner, offset]. The expansion of the primary key is crucial to allowing multiple owners per extent. [darrick: adapt the btree ops to deal with offsets] [darrick: remove init_rec_from_key] [darrick: move unwritten bit to rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: define the on-disk rmap btree formatDarrick J. Wong1-0/+2
Originally-From: Dave Chinner <dchinner@redhat.com> Now we have all the surrounding call infrastructure in place, we can start filling out the rmap btree implementation. Start with the on-disk btree format; add everything needed to read, write and manipulate rmap btree blocks. This prepares the way for adding the btree operations implementation. [darrick: record owner and offset info in rmap btree] [darrick: fork, bmbt and unwritten state in rmap btree] [darrick: flags are a separate field in xfs_rmap_irec] [darrick: calculate maxlevels separately] [darrick: move the 'unwritten' bit into unused parts of rm_offset] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: introduce rmap extent operation stubsDarrick J. Wong1-0/+77
Originally-From: Dave Chinner <dchinner@redhat.com> Add the stubs into the extent allocation and freeing paths that the rmap btree implementation will hook into. While doing this, add the trace points that will be used to track rmap btree extent manipulations. [darrick.wong@oracle.com: Extend the stubs to take full owner info.] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: add tracepoints and error injection for deferred extent freeingDarrick J. Wong1-1/+4
Add a couple of tracepoints for the deferred extent free operation and a site for injecting errors while finishing the operation. This makes it easier to debug deferred ops and test log redo. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: add tracepoints for the deferred ops mechanismDarrick J. Wong1-0/+198
Add tracepoints for the internals of the deferred ops mechanism and tracepoint classes for clients of the dops, to make debugging easier. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: introduce interval queries on btreesDarrick J. Wong1-0/+1
Create a function to enable querying of btree records mapping to a range of keys. This will be used in subsequent patches to allow querying the reverse mapping btree to find the extents mapped to a range of physical blocks, though the generic code can be used for any range query. The overlapped query range function needs to use the btree get_block helper because the root block could be an inode, in which case bc_bufs[nlevels-1] will be NULL. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-08-03xfs: support btrees with overlapping intervals for keysDarrick J. Wong1-0/+36
On a filesystem with both reflink and reverse mapping enabled, it's possible to have multiple rmap records referring to the same blocks on disk. When overlapping intervals are possible, querying a classic btree to find all records intersecting a given interval is inefficient because we cannot use the left side of the search interval to filter out non-matching records the same way that we can use the existing btree key to filter out records coming after the right side of the search interval. This will become important once we want to use the rmap btree to rebuild BMBTs, or implement the (future) fsmap ioctl. (For the non-overlapping case, we can perform such queries trivially by starting at the left side of the interval and walking the tree until we pass the right side.) Therefore, extend the btree code to come closer to supporting intervals as a first-class record attribute. This involves widening the btree node's key space to store both the lowest key reachable via the node pointer (as the btree does now) and the highest key reachable via the same pointer and teaching the btree modifying functions to keep the highest-key records up to date. This behavior can be turned on via a new btree ops flag so that btrees that cannot store overlapping intervals don't pay the overhead costs in terms of extra code and disk format changes. When we're deleting a record in a btree that supports overlapped interval records and the deletion results in two btree blocks being joined, we defer updating the high/low keys until after all possible joining (at higher levels in the tree) have finished. At this point, the btree pointers at all levels have been updated to remove the empty blocks and we can update the low and high keys. When we're doing this, we must be careful to update the keys of all node pointers up to the root instead of stopping at the first set of keys that don't need updating. This is because it's possible for a single deletion to cause joining of multiple levels of tree, and so we need to update everything going back to the root. The diff_two_keys functions return < 0, 0, or > 0 if key1 is less than, equal to, or greater than key2, respectively. This is consistent with the rest of the kernel and the C library. In btree_updkeys(), we need to evaluate the force_all parameter before running the key diff to avoid reading uninitialized memory when we're forcing a key update. This happens when we've allocated an empty slot at level N + 1 to point to a new block at level N and we're in the process of filling out the new keys. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-07-20Merge branch 'xfs-4.8-split-dax-dio' into for-nextDave Chinner1-11/+10
2016-07-20xfs: split direct I/O and DAX pathChristoph Hellwig1-0/+2
So far the DAX code overloaded the direct I/O code path. There is very little in common between the two, and untangling them allows to clean up both variants. As a side effect we also get separate trace points for both I/O types. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-07-20xfs: kill ioflagsChristoph Hellwig1-11/+8
Now that we have the direct I/O kiocb flag there is no real need to sample the value inside of XFS, and the invis flag was always just partially used and isn't worth keeping this infrastructure around for. This also splits the read tracepoint into buffered vs direct as we've done for writes a long time ago. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21Merge branch 'xfs-4.8-misc-fixes-2' into for-nextDave Chinner1-0/+1
2016-06-21xfs: enable buffer deadlock postmortem diagnosis via ftraceDarrick J. Wong1-0/+1
Create a second buf_trylock tracepoint so that we can distinguish between a successful and a failed trylock. With this piece, we can use a script to look at the ftrace output to detect buffer deadlocks. [dchinner: update to if/else as per hch's suggestion] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-06-21xfs: implement iomap based buffered write pathChristoph Hellwig1-0/+3
Convert XFS to use the new iomap based multipage write path. This involves implementing the ->iomap_begin and ->iomap_end methods, and switching the buffered file write, page_mkwrite and xfs_iozero paths to the new iomap helpers. With this change __xfs_get_blocks will never be used for buffered writes, and the code handling them can be removed. Based on earlier code from Dave Chinner. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Bob Peterson <rpeterso@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-05-20Merge branch 'xfs-4.7-error-cfg' into for-nextDave Chinner1-1/+0
2016-05-20Merge branch 'xfs-4.7-misc-fixes' into for-nextDave Chinner1-4/+6
2016-05-18xfs: add configurable error support to metadata buffersCarlos Maiolino1-1/+0
With the error configuration handle for async metadata write errors in place, we can now add initial support to the IO error processing in xfs_buf_iodone_error(). Add an infrastructure function to look up the configuration handle, and rearrange the error handling to prepare the way for different error handling conigurations to be used. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: Add caller function output to xfs_log_force tracepointCarlos Maiolino1-4/+6
I had sent this patch yesterday, but for some reason it didn't reach xfs list, sending again. Output the caller of xfs_log_force might be useful when tracing log checkpoint problems without the need to build kernel with DEBUG. Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-04-06xfs: remove transaction typesChristoph Hellwig1-4/+1
These aren't used for CIL-style logging and can be dropped. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2016-02-08xfs: don't use ioends for direct write completionsChristoph Hellwig1-5/+4
We only need to communicate two bits of information to the direct I/O completion handler: (1) do we need to convert any unwritten extents in the range (2) do we need to check if we need to update the inode size based on the range passed to the completion handler We can use the private data passed to the get_block handler and the completion handler as a simple bitmask to communicate this information instead of the current complicated infrastructure reusing the ioends from the buffer I/O path, and thus avoiding a memory allocation and a context switch for any non-trivial direct write. As a nice side effect we also decouple the direct I/O path implementation from that of the buffered I/O path. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2016-01-08xfs: add tracepoints to readpage callsDave Chinner1-0/+26
This allows us to see page cache driven readahead in action as it passes through XFS. This helps to understand buffered read throughput problems such as readahead IO IO sizes being too small for the underlying device to reach max throughput. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-11-03Merge branch 'xfs-dax-updates' into for-nextDave Chinner1-0/+1
2015-11-03xfs: add ->pfn_mkwrite support for DAXDave Chinner1-0/+1
->pfn_mkwrite support is needed so that when a page with allocated backing store takes a write fault we can check that the fault has not raced with a truncate and is pointing to a region beyond the current end of file. This also allows us to update the timestamp on the inode, too, which fixes a generic/080 failure. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-10-12xfs: add an xfs_zero_eof() tracepointBrian Foster1-0/+1
Add a tracepoint in xfs_zero_eof() to facilitate tracking and debugging EOF zeroing events. This has proven useful in the context of other direct I/O tracepoints to ensure EOF zeroing occurs within appropriate file ranges. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-09-09xfs: huge page fault supportMatthew Wilcox1-0/+1
Use DAX to provide support for huge pages. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-19xfs: icreate log item recovery and cancellation tracepointsBrian Foster1-0/+34
Various log items have recovery tracepoints to identify whether a particular log item is recovered or cancelled. Add the equivalent tracepoints for the icreate transaction. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: allocate sparse inode chunks on full chunk allocation failureBrian Foster1-0/+47
xfs_ialloc_ag_alloc() makes several attempts to allocate a full inode chunk. If all else fails, reduce the allocation to the sparse length and alignment and attempt to allocate a sparse inode chunk. If sparse chunk allocation succeeds, check whether an inobt record already exists that can track the chunk. If so, inherit and update the existing record. Otherwise, insert a new record for the sparse chunk. Create helpers to align sparse chunk inode records and insert or update existing records in the inode btrees. The xfs_inobt_insert_sprec() helper implements the merge or update semantics required for sparse inode records with respect to both the inobt and finobt. To update the inobt, either insert a new record or merge with an existing record. To update the finobt, use the updated inobt record to either insert or replace an existing record. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-04-16Merge branch 'xfs-dio-extend-fix' into for-nextDave Chinner1-0/+5
Conflicts: fs/xfs/xfs_file.c