summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_inode.c
AgeCommit message (Collapse)AuthorFilesLines
2023-12-29xfs: make if_data a void pointerChristoph Hellwig1-3/+3
The xfs_ifork structure currently has a union of the if_root void pointer and the if_data char pointer. In either case it is an opaque pointer that depends on the fork format. Replace the union with a single if_data void pointer as that is what almost all callers want. Only the symlink NULL termination code in xfs_init_local_fork actually needs a new local variable now. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-15xfs: create a new inode fork block unmap helperDarrick J. Wong1-20/+4
Create a new helper to unmap blocks from an inode's fork. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-12-15xfs: set inode sick state flags when we zap either ondisk forkDarrick J. Wong1-0/+35
In a few patches, we'll add some online repair code that tries to massage the ondisk inode record just enough to get it to pass the inode verifiers so that we can continue with more file repairs. Part of that massaging can include zapping the ondisk forks to clear errors. After that point, the bmap fork repair functions will rebuild the zapped forks. Christoph asked for stronger protections against online repair zapping a fork to get the inode to load vs. other threads trying to access the partially repaired file. Do this by adding a special "[DA]FORK_ZAPPED" inode health flag whenever repair zaps a fork, and sprinkling checks for that flag into the various file operations for things that don't like handling an unexpected zero-extents fork. In practice xfs_scrub will scrub and fix the forks almost immediately after zapping them, so the window is very small. However, if a crash or unmount should occur, we can still detect these zapped inode forks by looking for a zero-extents fork when data was expected. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-11-09Merge tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds1-0/+24
Pull xfs updates from Chandan Babu: - Realtime device subsystem: - Cleanup usage of xfs_rtblock_t and xfs_fsblock_t data types - Replace open coded conversions between rt blocks and rt extents with calls to static inline helpers - Replace open coded realtime geometry compuation and macros with helper functions - CPU usage optimizations for realtime allocator - Misc bug fixes associated with Realtime device - Allow read operations to execute while an FICLONE ioctl is being serviced - Misc bug fixes: - Alert user when xfs_droplink() encounters an inode with a link count of zero - Handle the case where the allocator could return zero extents when servicing an fallocate request * tag 'xfs-6.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (40 commits) xfs: allow read IO and FICLONE to run concurrently xfs: handle nimaps=0 from xfs_bmapi_write in xfs_alloc_file_space xfs: introduce protection for drop nlink xfs: don't look for end of extent further than necessary in xfs_rtallocate_extent_near() xfs: don't try redundant allocations in xfs_rtallocate_extent_near() xfs: limit maxlen based on available space in xfs_rtallocate_extent_near() xfs: return maximum free size from xfs_rtany_summary() xfs: invert the realtime summary cache xfs: simplify rt bitmap/summary block accessor functions xfs: simplify xfs_rtbuf_get calling conventions xfs: cache last bitmap block in realtime allocator xfs: use accessor functions for summary info words xfs: consolidate realtime allocation arguments xfs: create helpers for rtsummary block/wordcount computations xfs: use accessor functions for bitmap words xfs: create helpers for rtbitmap block/wordcount computations xfs: create a helper to handle logging parts of rt bitmap/summary blocks xfs: convert rt summary macros to helpers xfs: convert open-coded xfs_rtword_t pointer accesses to helper xfs: remove XFS_BLOCKWSIZE and XFS_BLOCKWMASK macros ...
2023-10-23xfs: allow read IO and FICLONE to run concurrentlyCatherine Hoang1-0/+17
One of our VM cluster management products needs to snapshot KVM image files so that they can be restored in case of failure. Snapshotting is done by redirecting VM disk writes to a sidecar file and using reflink on the disk image, specifically the FICLONE ioctl as used by "cp --reflink". Reflink locks the source and destination files while it operates, which means that reads from the main vm disk image are blocked, causing the vm to stall. When an image file is heavily fragmented, the copy process could take several minutes. Some of the vm image files have 50-100 million extent records, and duplicating that much metadata locks the file for 30 minutes or more. Having activities suspended for such a long time in a cluster node could result in node eviction. Clone operations and read IO do not change any data in the source file, so they should be able to run concurrently. Demote the exclusive locks taken by FICLONE to shared locks to allow reads while cloning. While a clone is in progress, writes will take the IOLOCK_EXCL, so they block until the clone completes. Link: https://lore.kernel.org/linux-xfs/8911B94D-DD29-4D6E-B5BC-32EAF1866245@oracle.com/ Signed-off-by: Catherine Hoang <catherine.hoang@oracle.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-10-23xfs: introduce protection for drop nlinkCheng Lin1-0/+7
When abnormal drop_nlink are detected on the inode, return error, to avoid corruption propagation. Signed-off-by: Cheng Lin <cheng.lin130@zte.com.cn> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-10-18xfs: convert to new timestamp accessorsJeff Layton1-2/+2
Convert to using the new inode timestamp accessor functions. Signed-off-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20231004185347.80880-75-jlayton@kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-09-25xfs: fix reloading entire unlinked bucket listsDarrick J. Wong1-13/+35
During review of the patcheset that provided reloading of the incore iunlink list, Dave made a few suggestions, and I updated the copy in my dev tree. Unfortunately, I then got distracted by ... who even knows what ... and forgot to backport those changes from my dev tree to my release candidate branch. I then sent multiple pull requests with stale patches, and that's what was merged into -rc3. So. This patch re-adds the use of an unlocked iunlink list check to determine if we want to allocate the resources to recreate the incore list. Since lost iunlinked inodes are supposed to be rare, this change helps us avoid paying the transaction and AGF locking costs every time we open any inode. This also re-adds the shutdowns on failure, and re-applies the restructuring of the inner loop in xfs_inode_reload_unlinked_bucket, and re-adds a requested comment about the quotachecking code. Retain the original RVB tag from Dave since there's no code change from the last submission. Fixes: 68b957f64fca1 ("xfs: load uncached unlinked inodes into memory on demand") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12xfs: make inode unlinked bucket recovery work with quotacheckDarrick J. Wong1-3/+9
Teach quotacheck to reload the unlinked inode lists when walking the inode table. This requires extra state handling, since it's possible that a reloaded inode will get inactivated before quotacheck tries to scan it; in this case, we need to ensure that the reloaded inode does not have dquots attached when it is freed. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-09-12xfs: reload entire unlinked bucket listsDarrick J. Wong1-0/+100
The previous patch to reload unrecovered unlinked inodes when adding a newly created inode to the unlinked list is missing a key piece of functionality. It doesn't handle the case that someone calls xfs_iget on an inode that is not the last item in the incore list. For example, if at mount time the ondisk iunlink bucket looks like this: AGI -> 7 -> 22 -> 3 -> NULL None of these three inodes are cached in memory. Now let's say that someone tries to open inode 3 by handle. We need to walk the list to make sure that inodes 7 and 22 get loaded cold, and that the i_prev_unlinked of inode 3 gets set to 22. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-09-12xfs: use i_prev_unlinked to distinguish inodes that are not on the unlinked listDarrick J. Wong1-1/+2
Alter the definition of i_prev_unlinked slightly to make it more obvious when an inode with 0 link count is not part of the iunlink bucket lists rooted in the AGI. This distinction is necessary because it is not sufficient to check inode.i_nlink to decide if an inode is on the unlinked list. Updates to i_nlink can happen while holding only ILOCK_EXCL, but updates to an inode's position in the AGI unlinked list (which happen after the nlink update) requires both ILOCK_EXCL and the AGI buffer lock. The next few patches will make it possible to reload an entire unlinked bucket list when we're walking the inode table or performing handle operations and need more than the ability to iget the last inode in the chain. The upcoming directory repair code also needs to be able to make this distinction to decide if a zero link count directory should be moved to the orphanage or allowed to inactivate. An upcoming enhancement to the online AGI fsck code will need this distinction to check and rebuild the AGI unlinked buckets. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-09-12xfs: load uncached unlinked inodes into memory on demandDarrick J. Wong1-5/+75
shrikanth hegde reports that filesystems fail shortly after mount with the following failure: WARNING: CPU: 56 PID: 12450 at fs/xfs/xfs_inode.c:1839 xfs_iunlink_lookup+0x58/0x80 [xfs] This of course is the WARN_ON_ONCE in xfs_iunlink_lookup: ip = radix_tree_lookup(&pag->pag_ici_root, agino); if (WARN_ON_ONCE(!ip || !ip->i_ino)) { ... } From diagnostic data collected by the bug reporters, it would appear that we cleanly mounted a filesystem that contained unlinked inodes. Unlinked inodes are only processed as a final step of log recovery, which means that clean mounts do not process the unlinked list at all. Prior to the introduction of the incore unlinked lists, this wasn't a problem because the unlink code would (very expensively) traverse the entire ondisk metadata iunlink chain to keep things up to date. However, the incore unlinked list code complains when it realizes that it is out of sync with the ondisk metadata and shuts down the fs, which is bad. Ritesh proposed to solve this problem by unconditionally parsing the unlinked lists at mount time, but this imposes a mount time cost for every filesystem to catch something that should be very infrequent. Instead, let's target the places where we can encounter a next_unlinked pointer that refers to an inode that is not in cache, and load it into cache. Note: This patch does not address the problem of iget loading an inode from the middle of the iunlink list and needing to set i_prev_unlinked correctly. Reported-by: shrikanth hegde <sshegde@linux.vnet.ibm.com> Triaged-by: Ritesh Harjani <ritesh.list@gmail.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12xfs: allow inode inactivation during a ro mount log recoveryDarrick J. Wong1-4/+10
In the next patch, we're going to prohibit log recovery if the primary superblock contains an unrecognized rocompat feature bit even on readonly mounts. This requires removing all the code in the log mounting process that temporarily disables the readonly state. Unfortunately, inode inactivation disables itself on readonly mounts. Clearing the iunlinked lists after log recovery needs inactivation to run to free the unreferenced inodes, which (AFAICT) is the only reason why log mounting plays games with the readonly state in the first place. Therefore, change the inactivation predicates to allow inactivation during log recovery of a readonly mount. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-07-24xfs: convert to ctime accessor functionsJeff Layton1-2/+1
In later patches, we're going to change how the inode's ctime field is used. Switch to using accessor functions instead of raw accesses of inode->i_ctime. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Message-Id: <20230705190309.579783-80-jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-06-05xfs: collect errors from inodegc for unlinked inode recoveryDave Chinner1-14/+6
Unlinked list recovery requires errors removing the inode the from the unlinked list get fed back to the main recovery loop. Now that we offload the unlinking to the inodegc work, we don't get errors being fed back when we trip over a corruption that prevents the inode from being removed from the unlinked list. This means we never clear the corrupt unlinked list bucket, resulting in runtime operations eventually tripping over it and shutting down. Fix this by collecting inodegc worker errors and feed them back to the flush caller. This is largely best effort - the only context that really cares is log recovery, and it only flushes a single inode at a time so we don't need complex synchronised handling. Essentially the inodegc workers will capture the first error that occurs and the next flush will gather them and clear them. The flush itself will only report the first gathered error. In the cases where callers can return errors, propagate the collected inodegc flush error up the error handling chain. In the case of inode unlinked list recovery, there are several superfluous calls to flush queued unlinked inodes - xlog_recover_iunlink_bucket() guarantees that it has flushed the inodegc and collected errors before it returns. Hence nothing in the calling path needs to run a flush, even when an error is returned. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-03-01Merge tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds1-1/+1
Pull moar xfs updates from Darrick Wong: "This contains a fix for a deadlock in the allocator. It continues the slow march towards being able to offline AGs, and it refactors the interface to the xfs allocator to be less indirection happy. Summary: - Fix a deadlock in the free space allocator due to the AG-walking algorithm forgetting to follow AG-order locking rules - Make the inode allocator prefer existing free inodes instead of failing to allocate new inode chunks when free space is low - Set minleft correctly when setting allocator parameters for bmap changes - Fix uninitialized variable access in the getfsmap code - Make a distinction between active and passive per-AG structure references. For now, active references are taken to perform some work in an AG on behalf of a high level operation; passive references are used by lower level code to finish operations started by other threads. Eventually this will become part of online shrink - Split out all the different allocator strategies into separate functions to move us away from design antipattern of filling out a huge structure for various differentish things and issuing a single function multiplexing call - Various cleanups in the filestreams allocator code, which we might very well want to deprecate instead of continuing - Fix a bug with the agi rotor code that was introduced earlier in this series" * tag 'xfs-6.3-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (44 commits) xfs: restore old agirotor behavior xfs: fix uninitialized variable access xfs: refactor the filestreams allocator pick functions xfs: return a referenced perag from filestreams allocator xfs: pass perag to filestreams tracing xfs: use for_each_perag_wrap in xfs_filestream_pick_ag xfs: track an active perag reference in filestreams xfs: factor out MRU hit case in xfs_filestream_select_ag xfs: remove xfs_filestream_select_ag() longest extent check xfs: merge new filestream AG selection into xfs_filestream_select_ag() xfs: merge filestream AG lookup into xfs_filestream_select_ag() xfs: move xfs_bmap_btalloc_filestreams() to xfs_filestreams.c xfs: use xfs_bmap_longest_free_extent() in filestreams xfs: get rid of notinit from xfs_bmap_longest_free_extent xfs: factor out filestreams from xfs_bmap_btalloc_nullfb xfs: convert trim to use for_each_perag_range xfs: convert xfs_alloc_vextent_iterate_ags() to use perag walker xfs: move the minimum agno checks into xfs_alloc_vextent_check_args xfs: fold xfs_alloc_ag_vextent() into callers xfs: move allocation accounting to xfs_alloc_vextent_set_fsbno() ...
2023-02-10xfs: t_firstblock is tracking AGs not blocksDave Chinner1-1/+1
The tp->t_firstblock field is now raelly tracking the highest AG we have locked, not the block number of the highest allocation we've made. It's purpose is to prevent AGF locking deadlocks, so rename it to "highest AG" and simplify the implementation to just track the agno rather than a fsbno. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2023-01-19fs: port fs{g,u}id helpers to mnt_idmapChristian Brauner1-8/+5
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmapChristian Brauner1-1/+1
Convert to struct mnt_idmap. Remove legacy file_mnt_user_ns() and mnt_user_ns(). Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19fs: port inode_init_owner() to mnt_idmapChristian Brauner1-10/+13
Convert to struct mnt_idmap. Last cycle we merged the necessary infrastructure in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). This is just the conversion to struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevent on the mount level. Especially for non-vfs developers without detailed knowledge in this area this can be a potential source for bugs. Once the conversion to struct mnt_idmap is done all helpers down to the really low-level helpers will take a struct mnt_idmap argument instead of two namespace arguments. This way it becomes impossible to conflate the two eliminating the possibility of any bugs. All of the vfs and all filesystems only operate on struct mnt_idmap. Acked-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2022-11-17xfs: fix incorrect error-out in xfs_removeDarrick J. Wong1-1/+1
Clean up resources if resetting the dotdot entry doesn't succeed. Observed through code inspection. Fixes: 5838d0356bb3 ("xfs: reset child dir '..' entry when unlinking child") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Andrey Albershteyn <aalbersh@redhat.com>
2022-10-26xfs: increase rename inode reservationAllison Henderson1-1/+1
xfs_rename can update up to 5 inodes: src_dp, target_dp, src_ip, target_ip and wip. So we need to increase the inode reservation to match. Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-09-18xfs: port to vfs{g,u}id_t and associated helpersChristian Brauner1-3/+2
A while ago we introduced a dedicated vfs{g,u}id_t type in commit 1e5267cd0895 ("mnt_idmapping: add vfs{g,u}id_t"). We already switched over a good part of the VFS. Ultimately we will remove all legacy idmapped mount helpers that operate only on k{g,u}id_t in favor of the new type safe helpers that operate on vfs{g,u}id_t. Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-09-18xfs: clean up "%Ld/%Lu" which doesn't meet C standardZeng Heng1-4/+4
The "%Ld" specifier, which represents long long unsigned, doesn't meet C language standard, and even more, it makes people easily mistake with "%ld", which represent long unsigned. So replace "%Ld" with "lld". Do the same with "%Lu". Signed-off-by: Zeng Heng <zengheng4@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-08-06Merge tag 'mm-stable-2022-08-03' of ↵Linus Torvalds1-4/+65
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ...
2022-07-18xfs: add dax dedupe supportShiyang Ruan1-4/+65
Introduce xfs_mmaplock_two_inodes_and_break_dax_layout() for dax files who are going to be deduped. After that, call compare range function only when files are both DAX or not. Link: https://lkml.kernel.org/r/20220603053738.1218681-15-ruansy.fnst@fujitsu.com Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.wiliams@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.com> Cc: Goldwyn Rodrigues <rgoldwyn@suse.de> Cc: Jane Chu <jane.chu@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-14Merge tag 'make-attr-fork-permanent-5.20_2022-07-14' of ↵Darrick J. Wong1-12/+12
git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB xfs: make attr forks permanent This series fixes a use-after-free bug that syzbot uncovered. The UAF itself is a result of a race condition between getxattr and removexattr because callers to getxattr do not necessarily take any sort of locks before calling into the filesystem. Although the race condition itself can be fixed through clever use of a memory barrier, further consideration of the use cases of extended attributes shows that most files always have at least one attribute, so we might as well make them permanent. v2: Minor tweaks suggested by Dave, and convert some more macros to helper functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux: xfs: replace inode fork size macros with functions xfs: replace XFS_IFORK_Q with a proper predicate function xfs: use XFS_IFORK_Q to determine the presence of an xattr fork xfs: make inode attribute forks a permanent part of struct xfs_inode xfs: convert XFS_IFORK_PTR to a static inline helper
2022-07-14Merge tag 'xfs-iunlink-item-5.20' of ↵Darrick J. Wong1-445/+125
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB xfs: introduce in-memory inode unlink log items To facilitate future improvements in inode logging and improving inode cluster buffer locking order consistency, we need a new mechanism for defering inode cluster buffer modifications during unlinked list modifications. The unlinked inode list buffer locking is complex. The unlinked list is unordered - we add to the tail, remove from where-ever the inode is in the list. Hence we might need to lock two inode buffers here (previous inode in list and the one being removed). While we can order the locking of these buffers correctly within the confines of the unlinked list, there may be other inodes that need buffer locking in the same transaction. e.g. O_TMPFILE being linked into a directory also modifies the directory inode. Hence we need a mechanism for defering unlinked inode list updates until a point where we know that all modifications have been made and all that remains is to lock and modify the cluster buffers. We can do this by first observing that we serialise unlinked list modifications by holding the AGI buffer lock. IOWs, the AGI is going to be locked until the transaction commits any time we modify the unlinked list. Hence it doesn't matter when in the unlink transactions that we actually load, lock and modify the inode cluster buffer. We add an in-memory unlinked inode log item to defer the inode cluster buffer update to transaction commit time where it can be ordered with all the other inode cluster operations that need to be done. Essentially all we need to do is record the inodes that need to have their unlinked list pointer updated in a new log item that we attached to the transaction. This log item exists purely for the purpose of delaying the update of the unlinked list pointer until the inode cluster buffer can be locked in the correct order around the other inode cluster buffers. It plays no part in the actual commit, and there's no change to anything that is written to the log. i.e. the inode cluster buffers still have to be fully logged here (not just ordered) as log recovery depedends on this to replay mods to the unlinked inode list. Hence if we add a "precommit" hook into xfs_trans_commit() to run a "precommit" operation on these iunlink log items, we can delay the locking, modification and logging of the inode cluster buffer until after all other modifications have been made. The precommit hook reuires us to sort the items that are going to be run so that we can lock precommit items in the correct order as we perform the modifications they describe. To make this unlinked inode list processing simpler and easier to implement as a log item, we need to change the way we track the unlinked list in memory. Starting from the observation that an inode on the unlinked list is pinned in memory by the VFS, we can use the xfs_inode itself to track the unlinked list. To do this efficiently, we want the unlinked list to be a double linked list. The problem here is that we need a list per AGI unlinked list, and there are 64 of these per AGI. The approach taken in this patchset is to shadow the AGI unlinked list heads in the perag, and link inodes by agino, hence requiring only 8 extra bytes per inode to track this state. We can then use the agino pointers for lockless inode cache lookups to retreive the inode. The aginos in the inode are modified only under the AGI lock, just like the cluster buffer pointers, so we don't need any extra locking here. The i_next_unlinked field tracks the on-disk value of the unlinked list, and the i_prev_unlinked is a purely in-memory pointer that enables us to efficiently remove inodes from the middle of the list. This results in moving a lot of the unlink modification work into the precommit operations on the unlink log item. Tracking all the unlinked inodes in the inodes themselves also gets rid of the unlinked list reference hash table that is used to track this back pointer relationship. This greatly simplifies the the unlinked list modification code, and removes memory allocations in this hot path to track back pointers. This, overall, slightly reduces the CPU overhead of the unlink path. The result of this log item means that we move all the actual manipulation of objects to be logged out of the iunlink path and into the iunlink item. This allows for future optimisation of this mechanism without needing changes to high level unlink path, as well as making the unlink lock ordering predictable and synchronised with other operations that may require inode cluster locking. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: add in-memory iunlink log item xfs: add log item precommit operation xfs: combine iunlink inode update functions xfs: clean up xfs_iunlink_update_inode() xfs: double link the unlinked inode list xfs: introduce xfs_iunlink_lookup xfs: refactor xlog_recover_process_iunlinks() xfs: track the iunlink list pointer in the xfs_inode xfs: factor the xfs_iunlink functions xfs: flush inode gc workqueue before clearing agi bucket
2022-07-14xfs: add in-memory iunlink log itemDave Chinner1-63/+1
Now that we have a clean operation to update the di_next_unlinked field of inode cluster buffers, we can easily defer this operation to transaction commit time so we can order the inode cluster buffer locking consistently. To do this, we introduce a new in-memory log item to track the unlinked list item modification that we are going to make. This follows the same observations as the in-memory double linked list used to track unlinked inodes in that the inodes on the list are pinned in memory and cannot go away, and hence we can simply reference them for the duration of the transaction without needing to take active references or pin them or look them up. This allows us to pass the xfs_inode to the transaction commit code along with the modification to be made, and then order the logged modifications via the ->iop_sort and ->iop_precommit operations for the new log item type. As this is an in-memory log item, it doesn't have formatting, CIL or AIL operational hooks - it exists purely to run the inode unlink modifications and is then removed from the transaction item list and freed once the precommit operation has run. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14xfs: combine iunlink inode update functionsDave Chinner1-36/+16
Combine the logging of the inode unlink list update into the calling function that looks up the buffer we end up logging. These do not need to be separate functions as they are both short, simple operations and there's only a single call path through them. This new function will end up being the core of the iunlink log item processing... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-14xfs: clean up xfs_iunlink_update_inode()Dave Chinner1-13/+5
We no longer need to have this function return the previous next agino value from the on-disk inode as we have it in the in-core inode now. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-14xfs: double link the unlinked inode listDave Chinner1-286/+58
Now we have forwards traversal via the incore inode in place, we now need to add back pointers to the incore inode to entirely replace the back reference cache. We use the same lookup semantics and constraints as for the forwards pointer lookups during unlinks, and so we can look up any inode in the unlinked list directly and update the list pointers, forwards or backwards, at any time. The only wrinkle in converting the unlinked list manipulations to use in-core previous pointers is that log recovery doesn't have the incore inode state built up so it can't just read in an inode and release it to finish off the unlink. Hence we need to modify the traversal in recovery to read one inode ahead before we release the inode at the head of the list. This populates the next->prev relationship sufficient to be able to replay the unlinked list and hence greatly simplify the runtime code. This recovery algorithm also requires that we actually remove inodes from the unlinked list one at a time as background inode inactivation will result in unlinked list removal racing with the building of the in-memory unlinked list state. We could serialise this by holding the AGI buffer lock when constructing the in memory state, but all that does is lockstep background processing with list building. It is much simpler to flush the inodegc immediately after releasing the inode so that it is unlinked immediately and there is no races present at all. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14xfs: introduce xfs_iunlink_lookupDave Chinner1-95/+66
When an inode is on an unlinked list during normal operation, it is guaranteed to be pinned in memory as it is either referenced by the current unlink operation or it has a open file descriptor that references it and has it pinned in memory. Hence to look up an inode on the unlinked list, we can do a direct inode cache lookup and always expect the lookup to succeed. Add a function to do this lookup based on the agino that we use to link the chain of unlinked inodes together so we can begin the conversion the unlinked list manipulations to use in-memory inodes rather than inode cluster buffers and remove the backref cache. Use this lookup function to replace the on-disk inode buffer walk when removing inodes from the unlinked list with an in-core inode unlinked list walk. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-14xfs: track the iunlink list pointer in the xfs_inodeDave Chinner1-1/+4
Having direct access to the i_next_unlinked pointer in unlinked inodes greatly simplifies the processing of inodes on the unlinked list. We no longer need to look up the inode buffer just to find next inode in the list if the xfs_inode is in memory. These improvements will be realised over upcoming patches as other dependencies on the inode buffer for unlinked list processing are removed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14xfs: factor the xfs_iunlink functionsDave Chinner1-42/+66
Prep work that separates the locking that protects the unlinked list from the actual operations being performed. This also helps document the fact they are performing list insert and remove operations. No functional code change. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-12xfs: replace XFS_IFORK_Q with a proper predicate functionDarrick J. Wong1-5/+5
Replace this shouty macro with a real C function that has a more descriptive name. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-10xfs: use XFS_IFORK_Q to determine the presence of an xattr forkDarrick J. Wong1-3/+2
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the attribute fork but i_forkoff is zero. This eliminates the ambiguity between i_forkoff and i_af.if_present, which should make it easier to understand the lifetime of attr forks. While we're at it, remove the if_present checks around calls to xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr forks that have already been torn down. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-10xfs: make inode attribute forks a permanent part of struct xfs_inodeDarrick J. Wong1-6/+7
Syzkaller reported a UAF bug a while back: ================================================================== BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958 CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted 5.15.0-0.30.3-20220406_1406 #3 Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106 print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256 __kasan_report mm/kasan/report.c:442 [inline] kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459 xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127 xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159 xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36 __vfs_getxattr+0xdf/0x13d fs/xattr.c:399 cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300 security_inode_need_killpriv+0x4c/0x97 security/security.c:1408 dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912 dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908 do_truncate+0xc3/0x1e0 fs/open.c:56 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 RIP: 0033:0x7f7ef4bb753d Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0 RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0 </TASK> Allocated by task 2953: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:254 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3213 [inline] slab_alloc mm/slub.c:3221 [inline] kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226 kmem_cache_zalloc include/linux/slab.h:711 [inline] xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287 xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098 xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_setxattr+0x11b/0x177 fs/xattr.c:180 __vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214 __vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275 vfs_setxattr+0x154/0x33d fs/xattr.c:301 setxattr+0x216/0x29f fs/xattr.c:575 __do_sys_fsetxattr fs/xattr.c:632 [inline] __se_sys_fsetxattr fs/xattr.c:621 [inline] __x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 Freed by task 2949: kasan_save_stack+0x19/0x38 mm/kasan/common.c:38 kasan_set_track+0x1c/0x21 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:1700 [inline] slab_free_freelist_hook mm/slub.c:1726 [inline] slab_free mm/slub.c:3492 [inline] kmem_cache_free+0xdc/0x3ce mm/slub.c:3508 xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773 xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822 xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413 xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684 xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802 xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59 __vfs_removexattr+0x106/0x16a fs/xattr.c:468 cap_inode_killpriv+0x24/0x47 security/commoncap.c:324 security_inode_killpriv+0x54/0xa1 security/security.c:1414 setattr_prepare+0x1a6/0x897 fs/attr.c:146 xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682 xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065 xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093 notify_change+0xae5/0x10a1 fs/attr.c:410 do_truncate+0x134/0x1e0 fs/open.c:64 handle_truncate fs/namei.c:3084 [inline] do_open fs/namei.c:3432 [inline] path_openat+0x30ab/0x396d fs/namei.c:3561 do_filp_open+0x1c4/0x290 fs/namei.c:3588 do_sys_openat2+0x60d/0x98c fs/open.c:1212 do_sys_open+0xcf/0x13c fs/open.c:1228 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0x0 The buggy address belongs to the object at ffff88802cec9188 which belongs to the cache xfs_ifork of size 40 The buggy address is located 20 bytes inside of 40-byte region [ffff88802cec9188, ffff88802cec91b0) The buggy address belongs to the page: page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x2cec9 flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff) raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80 raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc >ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb ^ ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb ================================================================== The root cause of this bug is the unlocked access to xfs_inode.i_afp from the getxattr code paths while trying to determine which ILOCK mode to use to stabilize the xattr data. Unfortunately, the VFS does not acquire i_rwsem when vfs_getxattr (or listxattr) call into the filesystem, which means that getxattr can race with a removexattr that's tearing down the attr fork and crash: xfs_attr_set: xfs_attr_get: xfs_attr_fork_remove: xfs_ilock_attr_map_shared: xfs_idestroy_fork(ip->i_afp); kmem_cache_free(xfs_ifork_cache, ip->i_afp); if (ip->i_afp && ip->i_afp = NULL; xfs_need_iread_extents(ip->i_afp)) <KABOOM> ip->i_forkoff = 0; Regrettably, the VFS is much more lax about i_rwsem and getxattr than is immediately obvious -- not only does it not guarantee that we hold i_rwsem, it actually doesn't guarantee that we *don't* hold it either. The getxattr system call won't acquire the lock before calling XFS, but the file capabilities code calls getxattr with and without i_rwsem held to determine if the "security.capabilities" xattr is set on the file. Fixing the VFS locking requires a treewide investigation into every code path that could touch an xattr and what i_rwsem state it expects or sets up. That could take years or even prove impossible; fortunately, we can fix this UAF problem inside XFS. An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to ensure that i_forkoff is always zeroed before i_afp is set to null and changed the read paths to use smp_rmb before accessing i_forkoff and i_afp, which avoided these UAF problems. However, the patch author was too busy dealing with other problems in the meantime, and by the time he came back to this issue, the situation had changed a bit. On a modern system with selinux, each inode will always have at least one xattr for the selinux label, so it doesn't make much sense to keep incurring the extra pointer dereference. Furthermore, Allison's upcoming parent pointer patchset will also cause nearly every inode in the filesystem to have extended attributes. Therefore, make the inode attribute fork structure part of struct xfs_inode, at a cost of 40 more bytes. This patch adds a clunky if_present field where necessary to maintain the existing logic of xattr fork null pointer testing in the existing codebase. The next patch switches the logic over to XFS_IFORK_Q and it all goes away. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-10xfs: convert XFS_IFORK_PTR to a static inline helperDarrick J. Wong1-3/+3
We're about to make this logic do a bit more, so convert the macro to a static inline function for better typechecking and fewer shouty macros. No functional changes here. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-07-09xfs: add selinux labels to whiteout inodesEric Sandeen1-1/+13
We got a report that "renameat2() with flags=RENAME_WHITEOUT doesn't apply an SELinux label on xfs" as it does on other filesystems (for example, ext4 and tmpfs.) While I'm not quite sure how labels may interact w/ whiteout files, leaving them as unlabeled seems inconsistent at best. Now that xfs_init_security is not static, rename it to xfs_inode_init_security per dchinner's suggestion. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07xfs: Pre-calculate per-AG agino geometryDave Chinner1-7/+7
There is a lot of overhead in functions like xfs_verify_agino() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agino(), we now always have a perag context handy, so we can store the minimum and maximum agino values in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. xfs_verify_agino_or_null() gets the same perag treatment. xfs_agino_range() is moved to xfs_ag.c as it's not really a type function, and it's use is largely restricted as the first and last aginos can be grabbed straight from the perag in most cases. Note that we leave the original xfs_verify_agino in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agino() to indicate it takes both an agno and an agino to differentiate it from new function. $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1482185 329588 572 1812345 1ba779 (TOTALS) after 1481937 329588 572 1812097 1ba681 (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-07xfs: pass perag to xfs_read_agiDave Chinner1-6/+8
We have the perag in most palces we call xfs_read_agi, so pass the perag instead of a mount/agno pair. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-06-27xfs: use invalidate_lock to check the state of mmap_lockKaixu Xia1-2/+2
We should use invalidate_lock and XFS_MMAPLOCK_SHARED to check the state of mmap_lock rw_semaphore in xfs_isilocked(), rather than i_rwsem and XFS_IOLOCK_SHARED. Fixes: 2433480a7e1d ("xfs: Convert to use invalidate_lock") Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-27xfs: factor out the common lock flags assertKaixu Xia1-37/+23
There are similar lock flags assert in xfs_ilock(), xfs_ilock_nowait(), xfs_iunlock(), thus we can factor it out into a helper that is clear. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-05-30xfs: fix xfs_ifree() error handling to not leak perag refBrian Foster1-1/+1
For some reason commit 9a5280b312e2e ("xfs: reorder iunlink remove operation in xfs_ifree") replaced a jump to the exit path in the event of an xfs_difree() error with a direct return, which skips releasing the perag reference acquired at the top of the function. Restore the original code to drop the reference on error. Fixes: 9a5280b312e2e ("xfs: reorder iunlink remove operation in xfs_ifree") Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21Merge tag 'large-extent-counters-v9' of https://github.com/chandanr/linux ↵Dave Chinner1-55/+4
into xfs-5.19-for-next xfs: Large extent counters The commit xfs: fix inode fork extent count overflow (3f8a4f1d876d3e3e49e50b0396eaffcc4ba71b08) mentions that 10 billion data fork extents should be possible to create. However the corresponding on-disk field has a signed 32-bit type. Hence this patchset extends the per-inode data fork extent counter to 64 bits (out of which 48 bits are used to store the extent count). Also, XFS has an attribute fork extent counter which is 16 bits wide. A workload that, 1. Creates 1 million 255-byte sized xattrs, 2. Deletes 50% of these xattrs in an alternating manner, 3. Tries to insert 400,000 new 255-byte sized xattrs causes the xattr extent counter to overflow. Dave tells me that there are instances where a single file has more than 100 million hardlinks. With parent pointers being stored in xattrs, we will overflow the signed 16-bits wide attribute extent counter when large number of hardlinks are created. Hence this patchset extends the on-disk field to 32-bits. The following changes are made to accomplish this, 1. A 64-bit inode field is carved out of existing di_pad and di_flushiter fields to hold the 64-bit data fork extent counter. 2. The existing 32-bit inode data fork extent counter will be used to hold the attribute fork extent counter. 3. A new incompat superblock flag to prevent older kernels from mounting the filesystem. Signed-off-by: Chandan Babu R <chandan.babu@oracle.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21Merge branch 'guilt/xfs-unsigned-flags-5.18' into xfs-5.19-for-nextDave Chinner1-9/+12
2022-04-21xfs: convert inode lock flags to unsigned.Dave Chinner1-9/+12
5.18 w/ std=gnu11 compiled with gcc-5 wants flags stored in unsigned fields to be unsigned. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21xfs: reorder iunlink remove operation in xfs_ifreeDave Chinner1-11/+13
The O_TMPFILE creation implementation creates a specific order of operations for inode allocation/freeing and unlinked list modification. Currently both are serialised by the AGI, so the order doesn't strictly matter as long as the are both in the same transaction. However, if we want to move the unlinked list insertions largely out from under the AGI lock, then we have to be concerned about the order in which we do unlinked list modification operations. O_TMPFILE creation tells us this order is inode allocation/free, then unlinked list modification. Change xfs_ifree() to use this same ordering on unlinked list removal. This way we always guarantee that when we enter the iunlinked list removal code from this path, we already have the AGI locked and we don't have to worry about lock nesting AGI reads inside unlink list locks because it's already locked and attached to the transaction. We can do this safely as the inode freeing and unlinked list removal are done in the same transaction and hence are atomic operations with respect to log recovery. Reported-by: Frank Hofmann <fhofmann@cloudflare.com> Fixes: 298f7bec503f ("xfs: pin inode backing buffer to the inode log item") Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-13xfs: Directory's data fork extent counter can never overflowChandan Babu R1-53/+2
The maximum file size that can be represented by the data fork extent counter in the worst case occurs when all extents are 1 block in length and each block is 1KB in size. With XFS_MAX_EXTCNT_DATA_FORK_SMALL representing maximum extent count and with 1KB sized blocks, a file can reach upto, (2^31) * 1KB = 2TB This is much larger than the theoretical maximum size of a directory i.e. XFS_DIR2_SPACE_SIZE * 3 = ~96GB. Since a directory's inode can never overflow its data fork extent counter, this commit removes all the overflow checks associated with it. xfs_dinode_verify() now performs a rough check to verify if a diretory's data fork is larger than 96GB. Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>