summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_icache.h
AgeCommit message (Collapse)AuthorFilesLines
2023-09-11xfs: use per-mount cpumask to track nonempty percpu inodegc listsDarrick J. Wong1-1/+0
Directly track which CPUs have contributed to the inodegc percpu lists instead of trusting the cpu online mask. This eliminates a theoretical problem where the inodegc flush functions might fail to flush a CPU's inodes if that CPU happened to be dying at exactly the same time. Most likely nobody's noticed this because the CPU dead hook moves the percpu inodegc list to another CPU and schedules that worker immediately. But it's quite possible that this is a subtle race leading to UAF if the inodegc flush were part of an unmount. Further benefits: This reduces the overhead of the inodegc flush code slightly by allowing us to ignore CPUs that have empty lists. Better yet, it reduces our dependence on the cpu online masks, which have been the cause of confusion and drama lately. Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-08-10xfs: hide xfs_inode_is_allocated in scrub common codeDarrick J. Wong1-4/+0
This function is only used by online fsck, so let's move it there. In the next patch, we'll fix it to work properly and to require that the caller hold the AGI buffer locked. No major changes aside from adjusting the signature a bit. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-06-05xfs: collect errors from inodegc for unlinked inode recoveryDave Chinner1-2/+2
Unlinked list recovery requires errors removing the inode the from the unlinked list get fed back to the main recovery loop. Now that we offload the unlinking to the inodegc work, we don't get errors being fed back when we trip over a corruption that prevents the inode from being removed from the unlinked list. This means we never clear the corrupt unlinked list bucket, resulting in runtime operations eventually tripping over it and shutting down. Fix this by collecting inodegc worker errors and feed them back to the flush caller. This is largely best effort - the only context that really cares is log recovery, and it only flushes a single inode at a time so we don't need complex synchronised handling. Essentially the inodegc workers will capture the first error that occurs and the next flush will gather them and clear them. The flush itself will only report the first gathered error. In the cases where callers can return errors, propagate the collected inodegc flush error up the error handling chain. In the case of inode unlinked list recovery, there are several superfluous calls to flush queued unlinked inodes - xlog_recover_iunlink_bucket() guarantees that it has flushed the inodegc and collected errors before it returns. Hence nothing in the calling path needs to run a flush, even when an error is returned. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com>
2023-04-12xfs: fix an inode lookup race in xchk_get_inodeDarrick J. Wong1-4/+7
In commit d658e, we tried to improve the robustnes of xchk_get_inode in the face of EINVAL returns from iget by calling xfs_imap to see if the inobt itself thinks that the inode is allocated. Unfortunately, that commit didn't consider the possibility that the inode gets allocated after iget but before imap. In this case, the imap call will succeed, but we turn that into a corruption error and tell userspace the inode is corrupt. Avoid this false corruption report by grabbing the AGI header and retrying the iget before calling imap. If the iget succeeds, we can proceed with the usual scrub-by-handle code. Fix all the incorrect comments too, since unreadable/corrupt inodes no longer result in EINVAL returns. Fixes: d658e72b4a09 ("xfs: distinguish between corrupt inode and invalid inum in xfs_scrub_get_inode") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-06-23xfs: introduce xfs_inodegc_push()Dave Chinner1-0/+1
The current blocking mechanism for pushing the inodegc queue out to disk can result in systems becoming unusable when there is a long running inodegc operation. This is because the statfs() implementation currently issues a blocking flush of the inodegc queue and a significant number of common system utilities will call statfs() to discover something about the underlying filesystem. This can result in userspace operations getting stuck on inodegc progress, and when trying to remove a heavily reflinked file on slow storage with a full journal, this can result in delays measuring in hours. Avoid this problem by adding "push" function that expedites the flushing of the inodegc queue, but doesn't wait for it to complete. Convert xfs_fs_statfs() and xfs_qm_scall_getquota() to use this mechanism so they don't block but still ensure that queued operations are expedited. Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues") Reported-by: Chris Dunlop <chris@onthe.net.au> Signed-off-by: Dave Chinner <dchinner@redhat.com> [djwong: fix _getquota_next to use _inodegc_push too] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09xfs: throttle inode inactivation queuing on memory reclaimDarrick J. Wong1-0/+1
Now that we defer inode inactivation, we've decoupled the process of unlinking or closing an inode from the process of inactivating it. In theory this should lead to better throughput since we now inactivate the queued inodes in batches instead of one at a time. Unfortunately, one of the primary risks with this decoupling is the loss of rate control feedback between the frontend and background threads. In other words, a rm -rf /* thread can run the system out of memory if it can queue inodes for inactivation and jump to a new CPU faster than the background threads can actually clear the deferred work. The workers can get scheduled off the CPU if they have to do IO, etc. To solve this problem, we configure a shrinker so that it will activate the /second/ time the shrinkers are called. The custom shrinker will queue all percpu deferred inactivation workers immediately and set a flag to force frontend callers who are releasing a vfs inode to wait for the inactivation workers. On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve most of the OOMing problem when deleting 10 million inodes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: use background worker pool when transactions can't get free spaceDarrick J. Wong1-0/+1
In xfs_trans_alloc, if the block reservation call returns ENOSPC, we call xfs_blockgc_free_space with a NULL icwalk structure to try to free space. Each frontend thread that encounters this situation starts its own walk of the inode cache to see if it can find anything, which is wasteful since we don't have any additional selection criteria. For this one common case, create a function that reschedules all pending background work immediately and flushes the workqueue so that the scan can run in parallel. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-06xfs: per-cpu deferred inode inactivation queuesDave Chinner1-0/+6
Move inode inactivation to background work contexts so that it no longer runs in the context that releases the final reference to an inode. This will allow process work that ends up blocking on inactivation to continue doing work while the filesytem processes the inactivation in the background. A typical demonstration of this is unlinking an inode with lots of extents. The extents are removed during inactivation, so this blocks the process that unlinked the inode from the directory structure. By moving the inactivation to the background process, the userspace applicaiton can keep working (e.g. unlinking the next inode in the directory) while the inactivation work on the previous inode is done by a different CPU. The implementation of the queue is relatively simple. We use a per-cpu lockless linked list (llist) to queue inodes for inactivation without requiring serialisation mechanisms, and a work item to allow the queue to be processed by a CPU bound worker thread. We also keep a count of the queue depth so that we can trigger work after a number of deferred inactivations have been queued. The use of a bound workqueue with a single work depth allows the workqueue to run one work item per CPU. We queue the work item on the CPU we are currently running on, and so this essentially gives us affine per-cpu worker threads for the per-cpu queues. THis maintains the effective CPU affinity that occurs within XFS at the AG level due to all objects in a directory being local to an AG. Hence inactivation work tends to run on the same CPU that last accessed all the objects that inactivation accesses and this maintains hot CPU caches for unlink workloads. A depth of 32 inodes was chosen to match the number of inodes in an inode cluster buffer. This hopefully allows sequential allocation/unlink behaviours to defering inactivation of all the inodes in a single cluster buffer at a time, further helping maintain hot CPU and buffer cache accesses while running inactivations. A hard per-cpu queue throttle of 256 inode has been set to avoid runaway queuing when inodes that take a long to time inactivate are being processed. For example, when unlinking inodes with large numbers of extents that can take a lot of processing to free. Signed-off-by: Dave Chinner <dchinner@redhat.com> [djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06xfs: remove xfs_dqrele_all_inodesChristoph Hellwig1-6/+0
xfs_dqrele_all_inodes is unused now, remove it and all supporting code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-21xfs: fix type mismatches in the inode reclaim functionsDarrick J. Wong1-3/+3
It's currently unlikely that we will ever end up with more than 4 billion inodes waiting for reclamation, but the fs object code uses long int for object counts and we're certainly capable of generating that many. Instead of truncating the internal counters, widen them and report the object counts correctly. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-08xfs: rename struct xfs_eofblocks to xfs_icwalkDarrick J. Wong1-7/+7
The xfs_eofblocks structure is no longer well-named -- nowadays it provides optional filtering criteria to any walk of the incore inode cache. Only one of the cache walk goals has anything to do with clearing of speculative post-EOF preallocations, so change the name to be more appropriate. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-08xfs: change the prefix of XFS_EOF_FLAGS_* to XFS_ICWALK_FLAG_Darrick J. Wong1-2/+15
In preparation for renaming struct xfs_eofblocks to struct xfs_icwalk, change the prefix of the existing XFS_EOF_FLAGS_* flags to XFS_ICWALK_FLAG_ and convert all the existing users. This adds a degree of interface separation between the ioctl definitions and the incore parameters. Since FLAGS_UNION is only used in xfs_icache.c, move it there as a private flag. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
2021-06-04xfs: refactor per-AG inode tagging functionsDarrick J. Wong1-1/+1
In preparation for adding another incore inode tree tag, refactor the code that sets and clears tags from the per-AG inode tree and the tree of per-AG structures, and remove the open-coded versions used by the blockgc code. Note: For reclaim, we now rely on the radix tree tags instead of the reclaimable inode count more heavily than we used to. The conversion should be fine, but the logic isn't 100% identical. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-04xfs: merge xfs_reclaim_inodes_ag into xfs_inode_walk_agDarrick J. Wong1-0/+1
Merge these two inode walk loops together, since they're pretty similar now. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-04xfs: remove iter_flags parameter from xfs_inode_walk_*Darrick J. Wong1-5/+0
The sole iter_flags is XFS_INODE_WALK_INEW_WAIT, and there are no users. Remove the flag, and the parameter, and all the code that used it. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-04xfs: pass the goal of the incore inode walk to xfs_inode_walk()Darrick J. Wong1-9/+0
As part of removing the indirect calls and radix tag implementation details from the incore inode walk loop, create an enum to represent the goal of the inode iteration. More immediately, this separate removes the need for the "ICI_NOTAG" define which makes little sense. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-06-04xfs: move the quotaoff dqrele inode walk into xfs_icache.cDarrick J. Wong1-3/+5
The only external caller of xfs_inode_walk* happens in quotaoff, when we want to walk all the incore inodes to detach the dquots. Move this code to xfs_icache.c so that we can hide xfs_inode_walk as the starting step in more cleanups of inode walks. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-02-03xfs: rename block gc start and stop functionsDarrick J. Wong1-2/+2
Shorten the names of the two functions that start and stop block preallocation garbage collection and move them up to the other blockgc functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: consolidate the eofblocks and cowblocks workersDarrick J. Wong1-4/+2
Remove the separate cowblocks work items and knob so that we can control and run everything from a single blockgc work queue. Note that the speculative_prealloc_lifetime sysfs knob retains its historical name even though the functions move to prefix xfs_blockgc_*. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: consolidate incore inode radix tree posteof/cowblocks tagsDarrick J. Wong1-2/+2
The clearing of posteof blocks and cowblocks serve the same purpose: removing speculative block preallocations from inactive files. We don't need to burn two radix tree tags on this, so combine them into one. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: hide xfs_icache_free_cowblocksDarrick J. Wong1-1/+0
Change the one remaining caller of xfs_icache_free_cowblocks to use our new combined blockgc scan function instead, since we will soon be combining the two scans. This introduces a slight behavior change, since a readonly remount now clears out post-EOF preallocations and not just CoW staging extents. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: hide xfs_icache_free_eofblocksDarrick J. Wong1-1/+0
Change the one remaining caller of xfs_icache_free_eofblocks to use our new combined blockgc scan function instead, since we will soon be combining the two scans. This introduces a slight behavior change, since the XFS_IOC_FREE_EOFBLOCKS now clears out speculative CoW reservations in addition to post-eof blocks. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: refactor xfs_icache_free_{eof,cow}blocks call sitesDarrick J. Wong1-0/+1
In anticipation of more restructuring of the eof/cowblocks gc code, refactor calling of those two functions into a single internal helper function, then present a new standard interface to purge speculative block preallocations and start shifting higher level code to use that. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-02-03xfs: flush eof/cowblocks if we can't reserve quota for inode creationDarrick J. Wong1-0/+3
If an inode creation is unable to reserve enough quota to handle the modification, try clearing whatever space the filesystem might have been hanging onto in the hopes of speeding up the filesystem. The flushing behavior will become particularly important when we add deferred inode inactivation because that will increase the amount of space that isn't actively tied to user data. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-02-03xfs: pass flags and return gc errors from xfs_blockgc_free_quotaDarrick J. Wong1-1/+1
Change the signature of xfs_blockgc_free_quota in preparation for the next few patches. Callers can now pass EOF_FLAGS into the function to control scan parameters; and the function will now pass back any corruption errors seen while scanning, though for our retry loops we'll just try again unconditionally. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-02-03xfs: move and rename xfs_inode_free_quota_blocks to avoid conflictsDarrick J. Wong1-1/+1
Move this function further down in the file so that later cleanups won't have to declare static functions. Change the name because we're about to rework all the code that performs garbage collection of speculatively allocated file blocks. No functional changes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2021-02-03xfs: trigger all block gc scans when low on quota spaceDarrick J. Wong1-2/+2
The functions to run an eof/cowblocks scan to try to reduce quota usage are kind of a mess -- the logic repeatedly initializes an eofb structure and there are logic bugs in the code that result in the cowblocks scan never actually happening. Replace all three functions with a single function that fills out an eofb and runs both eof and cowblocks scans. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-07-14xfs: remove SYNC_WAIT and SYNC_TRYLOCKChristoph Hellwig1-3/+0
These two definitions are unused now. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
2020-07-07xfs: remove SYNC_WAIT from xfs_reclaim_inodes()Dave Chinner1-1/+1
Clean up xfs_reclaim_inodes() callers. Most callers want blocking behaviour, so just make the existing SYNC_WAIT behaviour the default. For the xfs_reclaim_worker(), just call xfs_reclaim_inodes_ag() directly because we just want optimistic clean inode reclaim to be done in the background. For xfs_quiesce_attr() we can just remove the inode reclaim calls as they are a historic relic that was required to flush dirty inodes that contained unlogged changes. We now log all changes to the inodes, so the sync AIL push from xfs_log_quiesce() called by xfs_quiesce_attr() will do all the required inode writeback for freeze. Seeing as we now want to loop until all reclaimable inodes have been reclaimed, make xfs_reclaim_inodes() loop on the XFS_ICI_RECLAIM_TAG tag rather than having xfs_reclaim_inodes_ag() tell it that inodes were skipped. This is much more reliable and will always loop until all reclaimable inodes are reclaimed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-27xfs: straighten out all the naming around incore inode tree walksDarrick J. Wong1-3/+3
We're not very consistent about function names for the incore inode iteration function. Turn them all into xfs_inode_walk* variants. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-27xfs: remove flags argument from xfs_inode_ag_walkDarrick J. Wong1-2/+2
The incore inode walk code passes a flags argument and a pointer from the xfs_inode_ag_iterator caller all the way to the iteration function. We can reduce the function complexity by passing flags through the private pointer. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-05-27xfs: remove xfs_inode_ag_iterator_flagsDarrick J. Wong1-4/+1
Combine xfs_inode_ag_iterator_flags and xfs_inode_ag_iterator_tag into a single wrapper function since there's only one caller of the _flags variant. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-05-27xfs: remove unused xfs_inode_ag_iterator functionDarrick J. Wong1-3/+0
Not used by anyone, so get rid of it. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-05-27xfs: move eofblocks conversion function to xfs_ioctl.cDarrick J. Wong1-35/+0
Move xfs_fs_eofblocks_from_user into the only file that actually uses it, so that we don't have this function cluttering up the header file. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-04-26xfs: rename the speculative block allocation reclaim toggle functionsDarrick J. Wong1-2/+2
"reclaim" is used throughout the icache code to mean reclamation of incore inode structures. It's also used for two helper functions that toggle background deletion of speculative preallocations. Separate the second of the two uses to make things less confusing. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2018-06-07xfs: convert to SPDX license tagsDave Chinner1-13/+1
Remove the verbose license text from XFS files and replace them with SPDX tags. This does not change the license of any of the code, merely refers to the common, up-to-date license files in LICENSES/ This change was mostly scripted. fs/xfs/Makefile and fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected and modified by the following command: for f in `git grep -l "GNU General" fs/xfs/` ; do echo $f cat $f | awk -f hdr.awk > $f.new mv -f $f.new $f done And the hdr.awk script that did the modification (including detecting the difference between GPL-2.0 and GPL-2.0+ licenses) is as follows: $ cat hdr.awk BEGIN { hdr = 1.0 tag = "GPL-2.0" str = "" } /^ \* This program is free software/ { hdr = 2.0; next } /any later version./ { tag = "GPL-2.0+" next } /^ \*\// { if (hdr > 0.0) { print "// SPDX-License-Identifier: " tag print str print $0 str="" hdr = 0.0 next } print $0 next } /^ \* / { if (hdr > 1.0) next if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 next } /^ \*/ { if (hdr > 0.0) next print $0 next } // { if (hdr > 0.0) { if (str != "") str = str "\n" str = str $0 next } print $0 } END { } $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-05-16xfs: halt auto-reclamation activities while rebuilding rmapDarrick J. Wong1-0/+3
Rebuilding the reverse-mapping tree requires us to quiesce all inodes in the filesystem, so we must stop background reclamation of post-EOF and CoW prealloc blocks. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2017-12-21xfs: remove leftover CoW reservations when remounting roDarrick J. Wong1-0/+1
When we're remounting the filesystem readonly, remove all CoW preallocations prior to going ro. If the fs goes down after the ro remount, we never clean up the staging extents, which means xfs_check will trip over them on a subsequent run. Practically speaking, the next mount will clean them up too, so this is unlikely to be seen. Since we shut down the cowblocks cleaner on remount-ro, we also have to make sure we start it back up if/when we remount-rw. Found by adding clonerange to fsstress and running xfs/017. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2017-06-20xfs: check if an inode is cached and allocatedDarrick J. Wong1-0/+4
Check the inode cache for a particular inode number. If it's in the cache, check that it's not currently being reclaimed. If it's not being reclaimed, return zero if the inode is allocated. This function will be used by various scrubbers to decide if the cache is more up to date than the disk in terms of checking if an inode is allocated. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2017-04-28xfs: update ag iterator to support wait on new inodesBrian Foster1-0/+8
The AG inode iterator currently skips new inodes as such inodes are inserted into the inode radix tree before they are fully constructed. Certain contexts require the ability to wait on the construction of new inodes, however. The fs-wide dquot release from the quotaoff sequence is an example of this. Update the AG inode iterator to support the ability to wait on inodes flagged with XFS_INEW upon request. Create a new xfs_inode_ag_iterator_flags() interface and support a set of iteration flags to modify the iteration behavior. When the XFS_AGITER_INEW_WAIT flag is set, include XFS_INEW flags in the radix tree inode lookup and wait on them before the callback is executed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2017-01-31xfs: sync eofblocks scans under iolock are livelock proneBrian Foster1-2/+0
The xfs_eofblocks.eof_scan_owner field is an internal field to facilitate invoking eofb scans from the kernel while under the iolock. This is necessary because the eofb scan acquires the iolock of each inode. Synchronous scans are invoked on certain buffered write failures while under iolock. In such cases, the scan owner indicates that the context for the scan already owns the particular iolock and prevents a double lock deadlock. eofblocks scans while under iolock are still livelock prone in the event of multiple parallel scans, however. If multiple buffered writes to different inodes fail and invoke eofblocks scans at the same time, each scan avoids a deadlock with its own inode by virtue of the eof_scan_owner field, but will never be able to acquire the iolock of the inode from the parallel scan. Because the low free space scans are invoked with SYNC_WAIT, the scan will not return until it has processed every tagged inode and thus both scans will spin indefinitely on the iolock being held across the opposite scan. This problem can be reproduced reliably by generic/224 on systems with higher cpu counts (x16). To avoid this problem, simplify the semantics of eofblocks scans to never invoke a scan while under iolock. This means that the buffered write context must drop the iolock before the scan. It must reacquire the lock before the write retry and also repeat the initial write checks, as the original state might no longer be valid once the iolock was dropped. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2016-10-06xfs: garbage collect old cowextsz reservationsDarrick J. Wong1-0/+7
Trim CoW reservations made on behalf of a cowextsz hint if they get too old or we run low on quota, so long as we don't have dirty data awaiting writeback or directio operations in progress. Garbage collection of the cowextsize extents are kept separate from prealloc extent reaping because setting the CoW prealloc lifetime to a (much) higher value than the regular prealloc extent lifetime has been useful for combatting CoW fragmentation on VM hosts where the VMs experience bursty write behaviors and we can keep the utilization ratios low enough that we don't start to run out of space. IOWs, it benefits us to keep the CoW fork reservations around for as long as we can unless we run out of blocks or hit inode reclaim. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2016-06-21xfs: cancel eofblocks background trimming on remount read-onlyBrian Foster1-0/+1
The filesystem quiesce sequence performs the operations necessary to drain all background work, push pending transactions through the log infrastructure and wait on I/O resulting from the final AIL push. We have had reports of remount,ro hangs in xfs_log_quiesce() -> xfs_wait_buftarg(), however, and some instrumentation code to detect transaction commits at this point in the quiesce sequence has inculpated the eofblocks background scanner as a cause. While higher level remount code generally prevents user modifications by the time the filesystem has made it to xfs_log_quiesce(), the background scanner may still be alive and can perform pending work at any time. If this occurs between the xfs_log_force() and xfs_wait_buftarg() calls within xfs_log_quiesce(), this can lead to an indefinite lockup in xfs_wait_buftarg(). To prevent this problem, cancel the background eofblocks scan worker during the remount read-only quiesce sequence. This suspends background trimming when a filesystem is remounted read-only. This is only done in the remount path because the freeze codepath has already locked out new transactions by the time the filesystem attempts to quiesce (and thus waiting on an active work item could deadlock). Kick the eofblocks worker to pick up where it left off once an fs is remounted back to read-write. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-11-28xfs: merge xfs_ag.h into xfs_format.hChristoph Hellwig1-0/+8
More on-disk format consolidation. A few declarations that weren't on-disk format related move into better suitable spots. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-07-24xfs: run an eofblocks scan on ENOSPC/EDQUOTBrian Foster1-0/+1
From: Brian Foster <bfoster@redhat.com> Speculative preallocation and and the associated throttling metrics assume we're working with large files on large filesystems. Users have reported inefficiencies in these mechanisms when we happen to be dealing with large files on smaller filesystems. This can occur because while prealloc throttling is aggressive under low free space conditions, it is not active until we reach 5% free space or less. For example, a 40GB filesystem has enough space for several files large enough to have multi-GB preallocations at any given time. If those files are slow growing, they might reserve preallocation for long periods of time as well as avoid the background scanner due to frequent modification. If a new file is written under these conditions, said file has no access to this already reserved space and premature ENOSPC is imminent. To handle this scenario, modify the buffered write ENOSPC handling and retry sequence to invoke an eofblocks scan. In the smaller filesystem scenario, the eofblocks scan resets the usage of preallocation such that when the 5% free space threshold is met, throttling effectively takes over to provide fair and efficient preallocation until legitimate ENOSPC. The eofblocks scan is selective based on the nature of the failure. For example, an EDQUOT failure in a particular quota will use a filtered scan for that quota. Because we don't know which quota might have caused an allocation failure at any given time, we include each applicable quota determined to be under low free space conditions in the scan. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-07-24xfs: add scan owner field to xfs_eofblocksBrian Foster1-0/+2
From: Brian Foster <bfoster@redhat.com> The scan owner field represents an optional inode number that is responsible for the current scan. The purpose is to identify that an inode is under iolock and as such, the iolock shouldn't be attempted when trimming eofblocks. This is an internal only field. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-06-25xfs: global error sign conversionDave Chinner1-5/+5
Convert all the errors the core XFs code to negative error signs like the rest of the kernel and remove all the sign conversion we do in the interface layers. Errors for conversion (and comparison) found via searches like: $ git grep " E" fs/xfs $ git grep "return E" fs/xfs $ git grep " E[A-Z].*;$" fs/xfs Negation points found via searches like: $ git grep "= -[a-z,A-Z]" fs/xfs $ git grep "return -[a-z,A-D,F-Z]" fs/xfs $ git grep " -[a-z].*;" fs/xfs [ with some bits I missed from Brian Foster ] Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2014-04-14xfs: remove unused pag ptr arg from iterator execute functionsEric Sandeen1-4/+2
Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2013-09-13Merge tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfsLinus Torvalds1-0/+4
Pull xfs update #2 from Ben Myers: "Here we have defrag support for v5 superblock, a number of bugfixes and a cleanup or two. - defrag support for CRC filesystems - fix endian worning in xlog_recover_get_buf_lsn - fixes for sparse warnings - fix for assert in xfs_dir3_leaf_hdr_from_disk - fix for log recovery of remote symlinks - fix for log recovery of btree root splits - fixes formemory allocation failures with ACLs - fix for assert in xfs_buf_item_relse - fix for assert in xfs_inode_buf_verify - fix an assignment in an assert that should be a test in xfs_bmbt_change_owner - remove dead code in xlog_recover_inode_pass2" * tag 'xfs-for-linus-v3.12-rc1-2' of git://oss.sgi.com/xfs/xfs: xfs: remove dead code from xlog_recover_inode_pass2 xfs: = vs == typo in ASSERT() xfs: don't assert fail on bad inode numbers xfs: aborted buf items can be in the AIL. xfs: factor all the kmalloc-or-vmalloc fallback allocations xfs: fix memory allocation failures with ACLs xfs: ensure we copy buffer type in da btree root splits xfs: set remote symlink buffer type for recovery xfs: recovery of swap extents operations for CRC filesystems xfs: swap extents operations for CRC filesystems xfs: check magic numbers in dir3 leaf verifier first xfs: fix some minor sparse warnings xfs: fix endian warning in xlog_recover_get_buf_lsn()
2013-09-11shrinker: convert superblock shrinkers to new APIDave Chinner1-1/+1
Convert superblock shrinker to use the new count/scan API, and propagate the API changes through to the filesystem callouts. The filesystem callouts already use a count/scan API, so it's just changing counters to longs to match the VM API. This requires the dentry and inode shrinker callouts to be converted to the count/scan API. This is mainly a mechanical change. [glommer@openvz.org: use mult_frac for fractional proportions, build fixes] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>