Age | Commit message (Collapse) | Author | Files | Lines |
|
Dave Airlie reported the following lockdep complaint:
> ======================================================
> WARNING: possible circular locking dependency detected
> 5.7.0-0.rc5.20200515git1ae7efb38854.1.fc33.x86_64 #1 Not tainted
> ------------------------------------------------------
> kswapd0/159 is trying to acquire lock:
> ffff9b38d01a4470 (&xfs_nondir_ilock_class){++++}-{3:3},
> at: xfs_ilock+0xde/0x2c0 [xfs]
>
> but task is already holding lock:
> ffffffffbbb8bd00 (fs_reclaim){+.+.}-{0:0}, at:
> __fs_reclaim_acquire+0x5/0x30
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #1 (fs_reclaim){+.+.}-{0:0}:
> fs_reclaim_acquire+0x34/0x40
> __kmalloc+0x4f/0x270
> kmem_alloc+0x93/0x1d0 [xfs]
> kmem_alloc_large+0x4c/0x130 [xfs]
> xfs_attr_copy_value+0x74/0xa0 [xfs]
> xfs_attr_get+0x9d/0xc0 [xfs]
> xfs_get_acl+0xb6/0x200 [xfs]
> get_acl+0x81/0x160
> posix_acl_xattr_get+0x3f/0xd0
> vfs_getxattr+0x148/0x170
> getxattr+0xa7/0x240
> path_getxattr+0x52/0x80
> do_syscall_64+0x5c/0xa0
> entry_SYSCALL_64_after_hwframe+0x49/0xb3
>
> -> #0 (&xfs_nondir_ilock_class){++++}-{3:3}:
> __lock_acquire+0x1257/0x20d0
> lock_acquire+0xb0/0x310
> down_write_nested+0x49/0x120
> xfs_ilock+0xde/0x2c0 [xfs]
> xfs_reclaim_inode+0x3f/0x400 [xfs]
> xfs_reclaim_inodes_ag+0x20b/0x410 [xfs]
> xfs_reclaim_inodes_nr+0x31/0x40 [xfs]
> super_cache_scan+0x190/0x1e0
> do_shrink_slab+0x184/0x420
> shrink_slab+0x182/0x290
> shrink_node+0x174/0x680
> balance_pgdat+0x2d0/0x5f0
> kswapd+0x21f/0x510
> kthread+0x131/0x150
> ret_from_fork+0x3a/0x50
>
> other info that might help us debug this:
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(fs_reclaim);
> lock(&xfs_nondir_ilock_class);
> lock(fs_reclaim);
> lock(&xfs_nondir_ilock_class);
>
> *** DEADLOCK ***
>
> 4 locks held by kswapd0/159:
> #0: ffffffffbbb8bd00 (fs_reclaim){+.+.}-{0:0}, at:
> __fs_reclaim_acquire+0x5/0x30
> #1: ffffffffbbb7cef8 (shrinker_rwsem){++++}-{3:3}, at:
> shrink_slab+0x115/0x290
> #2: ffff9b39f07a50e8
> (&type->s_umount_key#56){++++}-{3:3}, at: super_cache_scan+0x38/0x1e0
> #3: ffff9b39f077f258
> (&pag->pag_ici_reclaim_lock){+.+.}-{3:3}, at:
> xfs_reclaim_inodes_ag+0x82/0x410 [xfs]
This is a known false positive because inodes cannot simultaneously be
getting reclaimed and the target of a getxattr operation, but lockdep
doesn't know that. We can (selectively) shut up lockdep until either
it gets smarter or we change inode reclaim not to require the ILOCK by
applying a stupid GFP_NOLOCKDEP bandaid.
Reported-by: Dave Airlie <airlied@gmail.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Tested-by: Dave Airlie <airlied@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
This patch corrects the SPDX License Identifier style in header files
related to XFS File System support. For C header files
Documentation/process/license-rules.rst mandates C-like comments.
(opposed to C source files where C++ style should be used).
Changes made by using a script provided by Joe Perches here:
https://lkml.org/lkml/2019/2/7/46.
Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
We can remove it now, without needing to rework the KM_ flags.
Use kmem_cache_free() directly.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Use kmem_cache_destroy directly
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Remove kmem_zone_init() and kmem_zone_init_flags() together with their
specific KM_* to SLAB_* flag wrappers.
Use kmem_cache_create() directly.
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Memory we use to submit for IO needs strict alignment to the
underlying driver contraints. Worst case, this is 512 bytes. Given
that all allocations for IO are always a power of 2 multiple of 512
bytes, the kernel heap provides natural alignment for objects of
these sizes and that suffices.
Until, of course, memory debugging of some kind is turned on (e.g.
red zones, poisoning, KASAN) and then the alignment of the heap
objects is thrown out the window. Then we get weird IO errors and
data corruption problems because drivers don't validate alignment
and do the wrong thing when passed unaligned memory buffers in bios.
TO fix this, introduce kmem_alloc_io(), which will guaranteeat least
512 byte alignment of buffers for IO, even if memory debugging
options are turned on. It is assumed that the minimum allocation
size will be 512 bytes, and that sizes will be power of 2 mulitples
of 512 bytes.
Use this everywhere we allocate buffers for IO.
This no longer fails with log recovery errors when KASAN is enabled
due to the brd driver not handling unaligned memory buffers:
# mkfs.xfs -f /dev/ram0 ; mount /dev/ram0 /mnt/test
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Rename the function to kmem_to_page and move it to kmem.h together
with our kmem_large allocator that may either return kmalloced or
vmalloc pages.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When using large directory blocks, we regularly see memory
allocations of >64k being made for the shadow log vector buffer.
When we are under memory pressure, kmalloc() may not be able to find
contiguous memory chunks large enough to satisfy these allocations
easily, and if memory is fragmented we can potentially stall here.
TO avoid this problem, switch the log vector buffer allocation to
use kmem_alloc_large(). This will allow failed allocations to fall
back to vmalloc and so remove the dependency on large contiguous
regions of memory being available. This should prevent slowdowns
and potential stalls when memory is low and/or fragmented.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).
SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.
Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kmem_cache_destroy already checks for null values.
Signed-off-by: Tim Hansen <devtimhansen@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
KM_MAYFAIL didn't have any suitable GFP_FOO counterpart until recently
so it relied on the default page allocator behavior for the given set of
flags. This means that small allocations actually never failed.
Now that we have __GFP_RETRY_MAYFAIL flag which works independently on
the allocation request size we can map KM_MAYFAIL to it. The allocator
will try as hard as it can to fulfill the request but fails eventually
if the progress cannot be made. It does so without triggering the OOM
killer which can be seen as an improvement because KM_MAYFAIL users
should be able to deal with allocation failures.
Link: http://lkml.kernel.org/r/20170623085345.11304-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
GFP_NOFS context is used for the following 5 reasons currently:
- to prevent from deadlocks when the lock held by the allocation
context would be needed during the memory reclaim
- to prevent from stack overflows during the reclaim because the
allocation is performed from a deep context already
- to prevent lockups when the allocation context depends on other
reclaimers to make a forward progress indirectly
- just in case because this would be safe from the fs POV
- silence lockdep false positives
Unfortunately overuse of this allocation context brings some problems to
the MM. Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.
In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily. We would like to get rid of
those as much as possible. One way to do that is to use the flag in
scopes rather than isolated cases. Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.
Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.
Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context. This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO. The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.
PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO. memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts. Xfs code paths preserve
their semantic. kmem_flags_convert() doesn't need to evaluate the flag
anymore.
This patch shouldn't introduce any functional changes.
Let's hope that filesystems will drop direct GFP_NOFS (resp. ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.
[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite
some time ago. We would like to make this concept more generic and use
it for other filesystems as well. Let's start by giving the flag a more
generic name PF_MEMALLOC_NOFS which is in line with an exiting
PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO
contexts. Replace all PF_FSTRANS usage from the xfs code in the first
step before we introduce a full API for it as xfs uses the flag directly
anyway.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The sole remaining caller of kmem_zalloc_greedy is bulkstat, which uses
it to grab 1-4 pages for staging of inobt records. The infinite loop in
the greedy allocation function is causing hangs[1] in generic/269, so
just get rid of the greedy allocator in favor of kmem_zalloc_large.
This makes bulkstat somewhat more likely to ENOMEM if there's really no
pages to spare, but eliminates a source of hangs.
[1] http://lkml.kernel.org/r/20170301044634.rgidgdqqiiwsmfpj%40XZHOUW.usersys.redhat.com
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
---
v2: remove single-page fallback
|
|
Use krealloc to implement our realloc function. This helps to avoid
new allocations if we are still in the slab bucket. At least for the
bmap btree root that's actually the common case.
This also allows removing the now unused oldsize argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change kmem_free to use kvfree() generic function, remove the
duplicated code.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Introduce flag KM_ZERO which is used to alloc zeroed entry, and convert
kmem_{zone_}zalloc to call kmem_{zone_}alloc() with KM_ZERO directly,
in order to avoid the setting to zero step.
And following Dave's suggestion, make kmem_{zone_}zalloc static inline
into kmem.h as they're now just a simple wrapper.
V2:
Make kmem_{zone_}zalloc static inline into kmem.h as Dave suggested.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We have quite a few places now where we do:
x = kmem_zalloc(large size)
if (!x)
x = kmem_zalloc_large(large size)
and do a similar dance when freeing the memory. kmem_free() already
does the correct freeing dance, and kmem_zalloc_large() is only ever
called in these constructs, so just factor it all into
kmem_zalloc_large() and kmem_free().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Stop reusing dquots from the freelist when allocating new ones directly, and
implement a shrinker that actually follows the specifications for the
interface. The shrinker implementation is still highly suboptimal at this
point, but we can gradually work on it.
This also fixes an bug in the previous lock ordering, where we would take
the hash and dqlist locks inside of the freelist lock against the normal
lock ordering. This is only solvable by introducing the dispose list,
and thus not when using direct reclaim of unused dquots for new allocations.
As a side-effect the quota upper bound and used to free ratio values in
/proc/fs/xfs/xqm are set to 0 as these values don't make any sense in the
new world order.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Fast-forward merge with Linus to be able to merge patches
based on more recent version of the tree.
|
|
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|