Age | Commit message (Collapse) | Author | Files | Lines |
|
Various places in the kernel - largely in filesystems - respond to a
memory allocation failure by looping around and re-trying. Some of
these cannot conveniently use __GFP_NOFAIL, for reasons such as:
- a GFP_ATOMIC allocation, which __GFP_NOFAIL doesn't work on
- a need to check for the process being signalled between failures
- the possibility that other recovery actions could be performed
- the allocation is quite deep in support code, and passing down an
extra flag to say if __GFP_NOFAIL is wanted would be clumsy.
Many of these currently use congestion_wait() which (in almost all
cases) simply waits the given timeout - congestion isn't tracked for
most devices.
It isn't clear what the best delay is for loops, but it is clear that
the various filesystems shouldn't be responsible for choosing a timeout.
This patch introduces memalloc_retry_wait() with takes on that
responsibility. Code that wants to retry a memory allocation can call
this function passing the GFP flags that were used. It will wait
however is appropriate.
For now, it only considers __GFP_NORETRY and whatever
gfpflags_allow_blocking() tests. If blocking is allowed without
__GFP_NORETRY, then alloc_page either made some reclaim progress, or
waited for a while, before failing. So there is no need for much
further waiting. memalloc_retry_wait() will wait until the current
jiffie ends. If this condition is not met, then alloc_page() won't have
waited much if at all. In that case memalloc_retry_wait() waits about
200ms. This is the delay that most current loops uses.
linux/sched/mm.h needs to be included in some files now,
but linux/backing-dev.h does not.
Link: https://lkml.kernel.org/r/163754371968.13692.1277530886009912421@noble.neil.brown.name
Signed-off-by: NeilBrown <neilb@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Chao Yu <chao@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Since commit 59bb47985c1d ("mm, sl[aou]b: guarantee natural alignment
for kmalloc(power-of-two)"), the core slab code now guarantees slab
alignment in all situations sufficient for IO purposes (i.e. minimum
of 512 byte alignment of >= 512 byte sized heap allocations) we no
longer need the workaround in the XFS code to provide this
guarantee.
Replace the use of kmem_alloc_io() with kmem_alloc() or
kmem_alloc_large() appropriately, and remove the kmem_alloc_io()
interface altogether.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Remove kmem_realloc() function and convert its users to use MM API
directly (krealloc())
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
All their users have been converted to use MM API directly, no need to
keep them around anymore.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The pgprot argument to __vmalloc is always PAGE_KERNEL now, so remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com> [hyperv]
Acked-by: Gao Xiang <xiang@kernel.org> [erofs]
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Wei Liu <wei.liu@kernel.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-22-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Just fix the typos checkpatch notices...
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Memory we use to submit for IO needs strict alignment to the
underlying driver contraints. Worst case, this is 512 bytes. Given
that all allocations for IO are always a power of 2 multiple of 512
bytes, the kernel heap provides natural alignment for objects of
these sizes and that suffices.
Until, of course, memory debugging of some kind is turned on (e.g.
red zones, poisoning, KASAN) and then the alignment of the heap
objects is thrown out the window. Then we get weird IO errors and
data corruption problems because drivers don't validate alignment
and do the wrong thing when passed unaligned memory buffers in bios.
TO fix this, introduce kmem_alloc_io(), which will guaranteeat least
512 byte alignment of buffers for IO, even if memory debugging
options are turned on. It is assumed that the minimum allocation
size will be 512 bytes, and that sizes will be power of 2 mulitples
of 512 bytes.
Use this everywhere we allocate buffers for IO.
This no longer fails with log recovery errors when KASAN is enabled
due to the brd driver not handling unaligned memory buffers:
# mkfs.xfs -f /dev/ram0 ; mount /dev/ram0 /mnt/test
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When trying to correlate XFS kernel allocations to memory reclaim
behaviour, it is useful to know what allocations XFS is actually
attempting. This information is not directly available from
tracepoints in the generic memory allocation and reclaim
tracepoints, so these new trace points provide a high level
indication of what the XFS memory demand actually is.
There is no per-filesystem context in this code, so we just trace
the type of allocation, the size and the allocation constraints.
The kmem code also doesn't include much of the common XFS headers,
so there are a few definitions that need to be added to the trace
headers and a couple of types that need to be made common to avoid
needing to include the whole world in the kmem code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP,
we can remove KM_NOSLEEP and replace KM_SLEEP with 0.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
When using large directory blocks, we regularly see memory
allocations of >64k being made for the shadow log vector buffer.
When we are under memory pressure, kmalloc() may not be able to find
contiguous memory chunks large enough to satisfy these allocations
easily, and if memory is fragmented we can potentially stall here.
TO avoid this problem, switch the log vector buffer allocation to
use kmem_alloc_large(). This will allow failed allocations to fall
back to vmalloc and so remove the dependency on large contiguous
regions of memory being available. This should prevent slowdowns
and potential stalls when memory is low and/or fragmented.
Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kmem_zalloc_large and _xfs_buf_map_pages use memalloc_noio_{save,restore}
API to prevent from reclaim recursion into the fs because vmalloc can
invoke unconditional GFP_KERNEL allocations and these functions might be
called from the NOFS contexts. The memalloc_noio_save will enforce
GFP_NOIO context which is even weaker than GFP_NOFS and that seems to be
unnecessary. Let's use memalloc_nofs_{save,restore} instead as it
should provide exactly what we need here - implicit GFP_NOFS context.
Link: http://lkml.kernel.org/r/20170306131408.9828-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
xfs has defined PF_FSTRANS to declare a scope GFP_NOFS semantic quite
some time ago. We would like to make this concept more generic and use
it for other filesystems as well. Let's start by giving the flag a more
generic name PF_MEMALLOC_NOFS which is in line with an exiting
PF_MEMALLOC_NOIO already used for the same purpose for GFP_NOIO
contexts. Replace all PF_FSTRANS usage from the xfs code in the first
step before we introduce a full API for it as xfs uses the flag directly
anyway.
This patch doesn't introduce any functional change.
Link: http://lkml.kernel.org/r/20170306131408.9828-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The sole remaining caller of kmem_zalloc_greedy is bulkstat, which uses
it to grab 1-4 pages for staging of inobt records. The infinite loop in
the greedy allocation function is causing hangs[1] in generic/269, so
just get rid of the greedy allocator in favor of kmem_zalloc_large.
This makes bulkstat somewhat more likely to ENOMEM if there's really no
pages to spare, but eliminates a source of hangs.
[1] http://lkml.kernel.org/r/20170301044634.rgidgdqqiiwsmfpj%40XZHOUW.usersys.redhat.com
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
---
v2: remove single-page fallback
|
|
Update the .c files that depend on these APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Use krealloc to implement our realloc function. This helps to avoid
new allocations if we are still in the slab bucket. At least for the
bmap btree root that's actually the common case.
This also allows removing the now unused oldsize argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
In an effort to get more useful out of "possible memory
allocation deadlock" messages, print the size of the
requested allocation, and dump the stack if the xfs error
level is tuned high.
The stack dump is implemented in define_xfs_printk_level()
for error levels >= LOGLEVEL_ERR, partly because it
seems generically useful, and also because kmem.c has
no knowledge of xfs error level tunables or other such bits,
it's very kmem-specific.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
This patch adds comm name and pid to warning messages printed by
kmem_alloc(), kmem_zone_alloc() and xfs_buf_allocate_memory().
This will help telling which memory allocations (e.g. kernel worker
threads, OOM victim tasks, neither) are stalling because these functions
are passing __GFP_NOWARN which suppresses not only backtrace but comm name
and pid.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Change kmem_free to use kvfree() generic function, remove the
duplicated code.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
The typedef for timespecs and nanotime() are completely unnecessary,
and delay() can be moved to fs/xfs/linux.h, which means this file
can go away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
When we map pages in the buffer cache, we can do so in GFP_NOFS
contexts. However, the vmap interfaces do not provide any method of
communicating this information to memory reclaim, and hence we get
lockdep complaining about it regularly and occassionally see hangs
that may be vmap related reclaim deadlocks. We can also see these
same problems from anywhere where we use vmalloc for a large buffer
(e.g. attribute code) inside a transaction context.
A typical lockdep report shows up as a reclaim state warning like so:
[14046.101458] =================================
[14046.102850] [ INFO: inconsistent lock state ]
[14046.102850] 3.14.0-rc4+ #2 Not tainted
[14046.102850] ---------------------------------
[14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
[14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes:
[14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a
[14046.102850] {RECLAIM_FS-ON-W} state was registered at:
[14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7
[14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4
[14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e
[14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6
[14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf
[14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f
[14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5
[14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d
[14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8
[14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74
[14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81
[14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68
[14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce
[14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92
[14046.102850] [<790e4ddd>] setxattr+0xcf/0x159
[14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb
[14046.102850] [<79268438>] sysenter_do_call+0x12/0x36
Now, we can't completely remove these traces - mainly because
vm_map_ram() will do GFP_KERNEL allocation and that generates the
above warning before we get into the reclaim code, but we can turn
them all into false positive warnings.
To do that, use the method that DM and other IO context code uses to
avoid this problem: there is a process flag to tell memory reclaim
not to do IO that we can set appropriately. That prevents GFP_KERNEL
context reclaim being done from deep inside the vmalloc code in
places we can't directly pass a GFP_NOFS context to. That interface
has a pair of wrapper functions: memalloc_noio_save() and
memalloc_noio_restore().
Adding them around vm_map_ram and the vzalloc call in
kmem_alloc_large() will prevent deadlocks and most lockdep reports
for this issue. Also, convert the vzalloc() call in
kmem_alloc_large() to use __vmalloc() so that we can pass the
correct gfp context to the data page allocation routine inside
__vmalloc() so that it is clear that GFP_NOFS context is important
to this vmalloc call.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Introduce flag KM_ZERO which is used to alloc zeroed entry, and convert
kmem_{zone_}zalloc to call kmem_{zone_}alloc() with KM_ZERO directly,
in order to avoid the setting to zero step.
And following Dave's suggestion, make kmem_{zone_}zalloc static inline
into kmem.h as they're now just a simple wrapper.
V2:
Make kmem_{zone_}zalloc static inline into kmem.h as Dave suggested.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
We have quite a few places now where we do:
x = kmem_zalloc(large size)
if (!x)
x = kmem_zalloc_large(large size)
and do a similar dance when freeing the memory. kmem_free() already
does the correct freeing dance, and kmem_zalloc_large() is only ever
called in these constructs, so just factor it all into
kmem_zalloc_large() and kmem_free().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|