Age | Commit message (Collapse) | Author | Files | Lines |
|
This simple implementation just checks for no ACLs on the inode, and
if so, then the rcu-walk may proceed, otherwise fail it.
This could easily be extended to put acls under RCU and check them
under seqlock, if need be. But this implementation is enough to show
the rcu-walk aware permissions code for path lookups is working, and
will handle cases where there are no ACLs or ACLs in just the final
element.
This patch implicity converts tmpfs to rcu-aware permission check.
Subsequent patches onvert ext*, xfs, and, btrfs. Each of these uses
acl/permission code in a different way, so convert them all to provide
templates and proof of concept.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
|
|
generic_acl_set didn't update the ctime of the file when its permission was
changed.
Steps to reproduce:
# touch aaa
# stat -c %Z aaa
1275289822
# setfacl -m 'u::x,g::x,o::x' aaa
# stat -c %Z aaa
1275289822 <- unchanged
But, according to the spec of the ctime, vfs must update it.
Port of ext3 patch by Miao Xie <miaox@cn.fujitsu.com>.
CC: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The entries in xattr handler table should be immutable (ie const)
like other operation tables.
Later patches convert common filesystems. Uncoverted filesystems
will still work, but will generate a compiler warning.
Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
Now that we cache the ACL pointers in the generic inode all the generic_acl
cruft can go away and generic_acl.c can directly implement xattr handlers
dealing with the full Posix ACL semantics for in-memory filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
current->fs->umask is what most of fs_struct users are doing.
Put that into a helper function.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Introduce is_owner_or_cap() macro in fs.h, and convert over relevant
users to it. This is done because we want to avoid bugs in the future
where we check for only effective fsuid of the current task against a
file's owning uid, without simultaneously checking for CAP_FOWNER as
well, thus violating its semantics.
[ XFS uses special macros and structures, and in general looked ...
untouchable, so we leave it alone -- but it has been looked over. ]
The (current->fsuid != inode->i_uid) check in generic_permission() and
exec_permission_lite() is left alone, because those operations are
covered by CAP_DAC_OVERRIDE and CAP_DAC_READ_SEARCH. Similarly operations
falling under the purview of CAP_CHOWN and CAP_LEASE are also left alone.
Signed-off-by: Satyam Sharma <ssatyam@cse.iitk.ac.in>
Cc: Al Viro <viro@ftp.linux.org.uk>
Acked-by: Serge E. Hallyn <serge@hallyn.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The patches solve the following problem: We want to grant access to devices
based on who is logged in from where, etc. This includes switching back and
forth between multiple user sessions, etc.
Using ACLs to define device access for logged-in users gives us all the
flexibility we need in order to fully solve the problem.
Device special files nowadays usually live on tmpfs, hence tmpfs ACLs.
Different distros have come up with solutions that solve the problem to
different degrees: SUSE uses a resource manager which tracks login sessions
and sets ACLs on device inodes as appropriate. RedHat uses pam_console, which
changes the primary file ownership to the logged-in user. Others use a set of
groups that users must be in in order to be granted the appropriate accesses.
The freedesktop.org project plans to implement a combination of a
console-tracker and a HAL-device-list based solution to grant access to
devices to users, and more distros will likely follow this approach.
These patches have first been posted here on 2 February 2005, and again
on 8 January 2006. We have been shipping them in SLES9 and SLES10 with
no problems reported. The previous submission is archived here:
http://lkml.org/lkml/2006/1/8/229
http://lkml.org/lkml/2006/1/8/230
http://lkml.org/lkml/2006/1/8/231
This patch:
Add some infrastructure for access control lists on in-memory
filesystems such as tmpfs.
Signed-off-by: Andreas Gruenbacher <agruen@suse.de>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|