summaryrefslogtreecommitdiff
path: root/fs/fat/cache.c
AgeCommit message (Collapse)AuthorFilesLines
2008-04-30fs: replace remaining __FUNCTION__ occurrencesHarvey Harrison1-3/+3
__FUNCTION__ is gcc-specific, use __func__ Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-17Slab API: remove useless ctor parameter and reorder parametersChristoph Lameter1-1/+1
Slab constructors currently have a flags parameter that is never used. And the order of the arguments is opposite to other slab functions. The object pointer is placed before the kmem_cache pointer. Convert ctor(void *object, struct kmem_cache *s, unsigned long flags) to ctor(struct kmem_cache *s, void *object) throughout the kernel [akpm@linux-foundation.org: coupla fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-20mm: Remove slab destructors from kmem_cache_create().Paul Mundt1-1/+1
Slab destructors were no longer supported after Christoph's c59def9f222d44bb7e2f0a559f2906191a0862d7 change. They've been BUGs for both slab and slub, and slob never supported them either. This rips out support for the dtor pointer from kmem_cache_create() completely and fixes up every single callsite in the kernel (there were about 224, not including the slab allocator definitions themselves, or the documentation references). Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-05-17Remove SLAB_CTOR_CONSTRUCTORChristoph Lameter1-2/+1
SLAB_CTOR_CONSTRUCTOR is always specified. No point in checking it. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: David Howells <dhowells@redhat.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Steven French <sfrench@us.ibm.com> Cc: Michael Halcrow <mhalcrow@us.ibm.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Dave Kleikamp <shaggy@austin.ibm.com> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Anton Altaparmakov <aia21@cantab.net> Cc: Mark Fasheh <mark.fasheh@oracle.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@ucw.cz> Cc: David Chinner <dgc@sgi.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_DEBUG_INITIAL flagChristoph Lameter1-2/+1
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by SLAB. I think its purpose was to have a callback after an object has been freed to verify that the state is the constructor state again? The callback is performed before each freeing of an object. I would think that it is much easier to check the object state manually before the free. That also places the check near the code object manipulation of the object. Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was compiled with SLAB debugging on. If there would be code in a constructor handling SLAB_DEBUG_INITIAL then it would have to be conditional on SLAB_DEBUG otherwise it would just be dead code. But there is no such code in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real use of, difficult to understand and there are easier ways to accomplish the same effect (i.e. add debug code before kfree). There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be clear in fs inode caches. Remove the pointless checks (they would even be pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors. This is the last slab flag that SLUB did not support. Remove the check for unimplemented flags from SLUB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-07[PATCH] slab: remove kmem_cache_tChristoph Lameter1-2/+2
Replace all uses of kmem_cache_t with struct kmem_cache. The patch was generated using the following script: #!/bin/sh # # Replace one string by another in all the kernel sources. # set -e for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do quilt add $file sed -e "1,\$s/$1/$2/g" $file >/tmp/$$ mv /tmp/$$ $file quilt refresh done The script was run like this sh replace kmem_cache_t "struct kmem_cache" Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_KERNELChristoph Lameter1-1/+1
SLAB_KERNEL is an alias of GFP_KERNEL. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-27[PATCH] Really ignore kmem_cache_destroy return valueAlexey Dobriyan1-2/+1
* Rougly half of callers already do it by not checking return value * Code in drivers/acpi/osl.c does the following to be sure: (void)kmem_cache_destroy(cache); * Those who check it printk something, however, slab_error already printed the name of failed cache. * XFS BUGs on failed kmem_cache_destroy which is not the decision low-level filesystem driver should make. Converted to ignore. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-24[PATCH] cpuset memory spread: slab cache filesystemsPaul Jackson1-1/+1
Mark file system inode and similar slab caches subject to SLAB_MEM_SPREAD memory spreading. If a slab cache is marked SLAB_MEM_SPREAD, then anytime that a task that's in a cpuset with the 'memory_spread_slab' option enabled goes to allocate from such a slab cache, the allocations are spread evenly over all the memory nodes (task->mems_allowed) allowed to that task, instead of favoring allocation on the node local to the current cpu. The following inode and similar caches are marked SLAB_MEM_SPREAD: file cache ==== ===== fs/adfs/super.c adfs_inode_cache fs/affs/super.c affs_inode_cache fs/befs/linuxvfs.c befs_inode_cache fs/bfs/inode.c bfs_inode_cache fs/block_dev.c bdev_cache fs/cifs/cifsfs.c cifs_inode_cache fs/coda/inode.c coda_inode_cache fs/dquot.c dquot fs/efs/super.c efs_inode_cache fs/ext2/super.c ext2_inode_cache fs/ext2/xattr.c (fs/mbcache.c) ext2_xattr fs/ext3/super.c ext3_inode_cache fs/ext3/xattr.c (fs/mbcache.c) ext3_xattr fs/fat/cache.c fat_cache fs/fat/inode.c fat_inode_cache fs/freevxfs/vxfs_super.c vxfs_inode fs/hpfs/super.c hpfs_inode_cache fs/isofs/inode.c isofs_inode_cache fs/jffs/inode-v23.c jffs_fm fs/jffs2/super.c jffs2_i fs/jfs/super.c jfs_ip fs/minix/inode.c minix_inode_cache fs/ncpfs/inode.c ncp_inode_cache fs/nfs/direct.c nfs_direct_cache fs/nfs/inode.c nfs_inode_cache fs/ntfs/super.c ntfs_big_inode_cache_name fs/ntfs/super.c ntfs_inode_cache fs/ocfs2/dlm/dlmfs.c dlmfs_inode_cache fs/ocfs2/super.c ocfs2_inode_cache fs/proc/inode.c proc_inode_cache fs/qnx4/inode.c qnx4_inode_cache fs/reiserfs/super.c reiser_inode_cache fs/romfs/inode.c romfs_inode_cache fs/smbfs/inode.c smb_inode_cache fs/sysv/inode.c sysv_inode_cache fs/udf/super.c udf_inode_cache fs/ufs/super.c ufs_inode_cache net/socket.c sock_inode_cache net/sunrpc/rpc_pipe.c rpc_inode_cache The choice of which slab caches to so mark was quite simple. I marked those already marked SLAB_RECLAIM_ACCOUNT, except for fs/xfs, dentry_cache, inode_cache, and buffer_head, which were marked in a previous patch. Even though SLAB_RECLAIM_ACCOUNT is for a different purpose, it marks the same potentially large file system i/o related slab caches as we need for memory spreading. Given that the rule now becomes "wherever you would have used a SLAB_RECLAIM_ACCOUNT slab cache flag before (usually the inode cache), use the SLAB_MEM_SPREAD flag too", this should be easy enough to maintain. Future file system writers will just copy one of the existing file system slab cache setups and tend to get it right without thinking. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-09[PATCH] fat: support ->direct_IO()OGAWA Hirofumi1-3/+11
This patch add to support of ->direct_IO() for mostly read. The user of this seems to want to use for streaming read. So, current direct I/O has limitation, it can only overwrite. (For write operation, mainly we need to handle the hole etc..) Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-01[PATCH] fatfs sectioning fixAndrew Morton1-1/+1
Fixup for the recent slab leak fix Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-17Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds1-0/+324
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!