summaryrefslogtreecommitdiff
path: root/fs/exec.c
AgeCommit message (Collapse)AuthorFilesLines
2017-08-01exec: Consolidate pdeath_signal clearingKees Cook1-4/+3
Instead of an additional secureexec check for pdeath_signal, just move it up into the initial secureexec test. Neither perf nor arch code touches pdeath_signal, so the relocation shouldn't change anything. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-08-01exec: Use sane stack rlimit under secureexecKees Cook1-0/+12
For a secureexec, before memory layout selection has happened, reset the stack rlimit to something sane to avoid the caller having control over the resulting layouts. $ ulimit -s 8192 $ ulimit -s unlimited $ /bin/sh -c 'ulimit -s' unlimited $ sudo /bin/sh -c 'ulimit -s' 8192 Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: James Morris <james.l.morris@oracle.com> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-08-01exec: Consolidate dumpability logicKees Cook1-6/+5
Since it's already valid to set dumpability in the early part of setup_new_exec(), we can consolidate the logic into a single place. The BINPRM_FLAGS_ENFORCE_NONDUMP is set during would_dump() calls before setup_new_exec(), so its test is safe to move as well. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-08-01exec: Use secureexec for clearing pdeath_signalKees Cook1-2/+1
Like dumpability, clearing pdeath_signal happens both in setup_new_exec() and later in commit_creds(). The test in setup_new_exec() is different from all other privilege comparisons, though: it is checking the new cred (bprm) uid vs the old cred (current) euid. This appears to be a bug, introduced by commit a6f76f23d297 ("CRED: Make execve() take advantage of copy-on-write credentials"): - if (bprm->e_uid != current_euid() || - bprm->e_gid != current_egid()) { - set_dumpable(current->mm, suid_dumpable); + if (bprm->cred->uid != current_euid() || + bprm->cred->gid != current_egid()) { It was bprm euid vs current euid (and egids), but the effective got dropped. Nothing in the exec flow changes bprm->cred->uid (nor gid). The call traces are: prepare_bprm_creds() prepare_exec_creds() prepare_creds() memcpy(new_creds, old_creds, ...) security_prepare_creds() (unimplemented by commoncap) ... prepare_binprm() bprm_fill_uid() resets euid/egid to current euid/egid sets euid/egid on bprm based on set*id file bits security_bprm_set_creds() cap_bprm_set_creds() handle all caps-based manipulations so this test is effectively a test of current_uid() vs current_euid(), which is wrong, just like the prior dumpability tests were wrong. The commit log says "Clear pdeath_signal and set dumpable on certain circumstances that may not be covered by commit_creds()." This may be meaning the earlier old euid vs new euid (and egid) test that got changed. Luckily, as with dumpability, this is all masked by commit_creds() which performs old/new euid and egid tests and clears pdeath_signal. And again, like dumpability, we should include LSM secureexec logic for pdeath_signal clearing. For example, Smack goes out of its way to clear pdeath_signal when it finds a secureexec condition. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-08-01exec: Use secureexec for setting dumpabilityKees Cook1-1/+1
The examination of "current" to decide dumpability is wrong. This was a check of and euid/uid (or egid/gid) mismatch in the existing process, not the newly created one. This appears to stretch back into even the "history.git" tree. Luckily, dumpability is later set in commit_creds(). In earlier kernel versions before creds existed, similar checks also existed late in the exec flow, covering up the mistake as far back as I could find. Note that because the commit_creds() check examines differences of euid, uid, egid, gid, and capabilities between the old and new creds, it would look like the setup_new_exec() dumpability test could be entirely removed. However, the secureexec test may cover a different set of tests (specific to the LSMs) than what commit_creds() checks for. So, fix this test to use secureexec (the removed euid tests are redundant to the commoncap secureexec checks now). Cc: David Howells <dhowells@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-08-01LSM: drop bprm_secureexec hookKees Cook1-2/+0
This removes the bprm_secureexec hook since the logic has been folded into the bprm_set_creds hook for all LSMs now. Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: John Johansen <john.johansen@canonical.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-08-01commoncap: Refactor to remove bprm_secureexec hookKees Cook1-0/+7
The commoncap implementation of the bprm_secureexec hook is the only LSM that depends on the final call to its bprm_set_creds hook (since it may be called for multiple files, it ignores bprm->called_set_creds). As a result, it cannot safely _clear_ bprm->secureexec since other LSMs may have set it. Instead, remove the bprm_secureexec hook by introducing a new flag to bprm specific to commoncap: cap_elevated. This is similar to cap_effective, but that is used for a specific subset of elevated privileges, and exists solely to track state from bprm_set_creds to bprm_secureexec. As such, it will be removed in the next patch. Here, set the new bprm->cap_elevated flag when setuid/setgid has happened from bprm_fill_uid() or fscapabilities have been prepared. This temporarily moves the bprm_secureexec hook to a static inline. The helper will be removed in the next patch; this makes the step easier to review and bisect, since this does not introduce any changes to inputs nor outputs to the "elevated privileges" calculation. The new flag is merged with the bprm->secureexec flag in setup_new_exec() since this marks the end of any further prepare_binprm() calls. Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-08-01binfmt: Introduce secureexec flagKees Cook1-0/+2
The bprm_secureexec hook can be moved earlier. Right now, it is called during create_elf_tables(), via load_binary(), via search_binary_handler(), via exec_binprm(). Nearly all (see exception below) state used by bprm_secureexec is created during the bprm_set_creds hook, called from prepare_binprm(). For all LSMs (except commoncaps described next), only the first execution of bprm_set_creds takes any effect (they all check bprm->called_set_creds which prepare_binprm() sets after the first call to the bprm_set_creds hook). However, all these LSMs also only do anything with bprm_secureexec when they detected a secure state during their first run of bprm_set_creds. Therefore, it is functionally identical to move the detection into bprm_set_creds, since the results from secureexec here only need to be based on the first call to the LSM's bprm_set_creds hook. The single exception is that the commoncaps secureexec hook also examines euid/uid and egid/gid differences which are controlled by bprm_fill_uid(), via prepare_binprm(), which can be called multiple times (e.g. binfmt_script, binfmt_misc), and may clear the euid/egid for the final load (i.e. the script interpreter). However, while commoncaps specifically ignores bprm->cred_prepared, and runs its bprm_set_creds hook each time prepare_binprm() may get called, it needs to base the secureexec decision on the final call to bprm_set_creds. As a result, it will need special handling. To begin this refactoring, this adds the secureexec flag to the bprm struct, and calls the secureexec hook during setup_new_exec(). This is safe since all the cred work is finished (and past the point of no return). This explicit call will be removed in later patches once the hook has been removed. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: John Johansen <john.johansen@canonical.com> Acked-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: James Morris <james.l.morris@oracle.com>
2017-08-01exec: Correct comments about "point of no return"Kees Cook1-3/+13
In commit 221af7f87b97 ("Split 'flush_old_exec' into two functions"), the comment about the point of no return should have stayed in flush_old_exec() since it refers to "bprm->mm = NULL;" line, but prior changes in commits c89681ed7d0e ("remove steal_locks()"), and fd8328be874f ("sanitize handling of shared descriptor tables in failing execve()") made it look like it meant the current->sas_ss_sp line instead. The comment was referring to the fact that once bprm->mm is NULL, all failures from a binfmt load_binary hook (e.g. load_elf_binary), will get SEGV raised against current. Move this comment and expand the explanation a bit, putting it above the assignment this time, and add details about the true nature of "point of no return" being the call to flush_old_exec() itself. This also removes an erroneous commet about when credentials are being installed. That has its own dedicated function, install_exec_creds(), which carries a similar (and correct) comment, so remove the bogus comment where installation is not actually happening. Cc: David Howells <dhowells@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-08-01exec: Rename bprm->cred_prepared to called_set_credsKees Cook1-1/+1
The cred_prepared bprm flag has a misleading name. It has nothing to do with the bprm_prepare_cred hook, and actually tracks if bprm_set_creds has been called. Rename this flag and improve its comment. Cc: David Howells <dhowells@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Casey Schaufler <casey@schaufler-ca.com> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: John Johansen <john.johansen@canonical.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Paul Moore <paul@paul-moore.com> Acked-by: Serge Hallyn <serge@hallyn.com>
2017-07-08exec: Limit arg stack to at most 75% of _STK_LIMKees Cook1-5/+6
To avoid pathological stack usage or the need to special-case setuid execs, just limit all arg stack usage to at most 75% of _STK_LIM (6MB). Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-24fs/exec.c: account for argv/envp pointersKees Cook1-4/+24
When limiting the argv/envp strings during exec to 1/4 of the stack limit, the storage of the pointers to the strings was not included. This means that an exec with huge numbers of tiny strings could eat 1/4 of the stack limit in strings and then additional space would be later used by the pointers to the strings. For example, on 32-bit with a 8MB stack rlimit, an exec with 1677721 single-byte strings would consume less than 2MB of stack, the max (8MB / 4) amount allowed, but the pointers to the strings would consume the remaining additional stack space (1677721 * 4 == 6710884). The result (1677721 + 6710884 == 8388605) would exhaust stack space entirely. Controlling this stack exhaustion could result in pathological behavior in setuid binaries (CVE-2017-1000365). [akpm@linux-foundation.org: additional commenting from Kees] Fixes: b6a2fea39318 ("mm: variable length argument support") Link: http://lkml.kernel.org/r/20170622001720.GA32173@beast Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Qualys Security Advisory <qsa@qualys.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-20x86/arch_prctl: Add ARCH_[GET|SET]_CPUIDKyle Huey1-0/+1
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge. When enabled, the processor will fault on attempts to execute the CPUID instruction with CPL>0. Exposing this feature to userspace will allow a ptracer to trap and emulate the CPUID instruction. When supported, this feature is controlled by toggling bit 0 of MSR_MISC_FEATURES_ENABLES. It is documented in detail in Section 2.3.2 of https://bugzilla.kernel.org/attachment.cgi?id=243991 Implement a new pair of arch_prctls, available on both x86-32 and x86-64. ARCH_GET_CPUID: Returns the current CPUID state, either 0 if CPUID faulting is enabled (and thus the CPUID instruction is not available) or 1 if CPUID faulting is not enabled. ARCH_SET_CPUID: Set the CPUID state to the second argument. If cpuid_enabled is 0 CPUID faulting will be activated, otherwise it will be deactivated. Returns ENODEV if CPUID faulting is not supported on this system. The state of the CPUID faulting flag is propagated across forks, but reset upon exec. Signed-off-by: Kyle Huey <khuey@kylehuey.com> Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com> Cc: kvm@vger.kernel.org Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: linux-kselftest@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Robert O'Callahan <robert@ocallahan.org> Cc: Richard Weinberger <richard@nod.at> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Len Brown <len.brown@intel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: user-mode-linux-devel@lists.sourceforge.net Cc: Jeff Dike <jdike@addtoit.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: user-mode-linux-user@lists.sourceforge.net Cc: David Matlack <dmatlack@google.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dmitry Safonov <dsafonov@virtuozzo.com> Cc: linux-fsdevel@vger.kernel.org Cc: Paolo Bonzini <pbonzini@redhat.com> Link: http://lkml.kernel.org/r/20170320081628.18952-9-khuey@kylehuey.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/task.h> We are going to split <linux/sched/task.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/task.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/numa_balancing.h> We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/numa_balancing.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/signal.h> We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/signal.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/coredump.h> We are going to split <linux/sched/coredump.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/coredump.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/mm.h> We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers, cgroups: Remove the threadgroup_change_*() wrapperyIngo Molnar1-3/+3
threadgroup_change_begin()/end() is a pointless wrapper around cgroup_threadgroup_change_begin()/end(), minus a might_sleep() in the !CONFIG_CGROUPS=y case. Remove the wrappery, move the might_sleep() (the down_read() already has a might_sleep() check). This debloats <linux/sched.h> a bit and simplifies this API. Update all call sites. No change in functionality. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-14vfs: Use upper filesystem inode in bprm_fill_uid()Vivek Goyal1-1/+1
Right now bprm_fill_uid() uses inode fetched from file_inode(bprm->file). This in turn returns inode of lower filesystem (in a stacked filesystem setup). I was playing with modified patches of shiftfs posted by james bottomley and realized that through shiftfs setuid bit does not take effect. And reason being that we fetch uid/gid from inode of lower fs (and not from shiftfs inode). And that results in following checks failing. /* We ignore suid/sgid if there are no mappings for them in the ns */ if (!kuid_has_mapping(bprm->cred->user_ns, uid) || !kgid_has_mapping(bprm->cred->user_ns, gid)) return; uid/gid fetched from lower fs inode might not be mapped inside the user namespace of container. So we need to look at uid/gid fetched from upper filesystem (shiftfs in this particular case) and these should be mapped and setuid bit can take affect. Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-01-24exec: Remove LSM_UNSAFE_PTRACE_CAPEric W. Biederman1-6/+2
With previous changes every location that tests for LSM_UNSAFE_PTRACE_CAP also tests for LSM_UNSAFE_PTRACE making the LSM_UNSAFE_PTRACE_CAP redundant, so remove it. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-12-24Replace <asm/uaccess.h> with <linux/uaccess.h> globallyLinus Torvalds1-1/+1
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-23fs: exec: apply CLOEXEC before changing dumpable task flagsAleksa Sarai1-2/+8
If you have a process that has set itself to be non-dumpable, and it then undergoes exec(2), any CLOEXEC file descriptors it has open are "exposed" during a race window between the dumpable flags of the process being reset for exec(2) and CLOEXEC being applied to the file descriptors. This can be exploited by a process by attempting to access /proc/<pid>/fd/... during this window, without requiring CAP_SYS_PTRACE. The race in question is after set_dumpable has been (for get_link, though the trace is basically the same for readlink): [vfs] -> proc_pid_link_inode_operations.get_link -> proc_pid_get_link -> proc_fd_access_allowed -> ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); Which will return 0, during the race window and CLOEXEC file descriptors will still be open during this window because do_close_on_exec has not been called yet. As a result, the ordering of these calls should be reversed to avoid this race window. This is of particular concern to container runtimes, where joining a PID namespace with file descriptors referring to the host filesystem can result in security issues (since PRCTL_SET_DUMPABLE doesn't protect against access of CLOEXEC file descriptors -- file descriptors which may reference filesystem objects the container shouldn't have access to). Cc: dev@opencontainers.org Cc: <stable@vger.kernel.org> # v3.2+ Reported-by: Michael Crosby <crosbymichael@gmail.com> Signed-off-by: Aleksa Sarai <asarai@suse.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-12-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-1/+1
Merge more updates from Andrew Morton: - a few misc things - kexec updates - DMA-mapping updates to better support networking DMA operations - IPC updates - various MM changes to improve DAX fault handling - lots of radix-tree changes, mainly to the test suite. All leading up to reimplementing the IDA/IDR code to be a wrapper layer over the radix-tree. However the final trigger-pulling patch is held off for 4.11. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits) radix tree test suite: delete unused rcupdate.c radix tree test suite: add new tag check radix-tree: ensure counts are initialised radix tree test suite: cache recently freed objects radix tree test suite: add some more functionality idr: reduce the number of bits per level from 8 to 6 rxrpc: abstract away knowledge of IDR internals tpm: use idr_find(), not idr_find_slowpath() idr: add ida_is_empty radix tree test suite: check multiorder iteration radix-tree: fix replacement for multiorder entries radix-tree: add radix_tree_split_preload() radix-tree: add radix_tree_split radix-tree: add radix_tree_join radix-tree: delete radix_tree_range_tag_if_tagged() radix-tree: delete radix_tree_locate_item() radix-tree: improve multiorder iterators btrfs: fix race in btrfs_free_dummy_fs_info() radix-tree: improve dump output radix-tree: make radix_tree_find_next_bit more useful ...
2016-12-15mm: add locked parameter to get_user_pages_remote()Lorenzo Stoakes1-1/+1
Patch series "mm: unexport __get_user_pages_unlocked()". This patch series continues the cleanup of get_user_pages*() functions taking advantage of the fact we can now pass gup_flags as we please. It firstly adds an additional 'locked' parameter to get_user_pages_remote() to allow for its callers to utilise VM_FAULT_RETRY functionality. This is necessary as the invocation of __get_user_pages_unlocked() in process_vm_rw_single_vec() makes use of this and no other existing higher level function would allow it to do so. Secondly existing callers of __get_user_pages_unlocked() are replaced with the appropriate higher-level replacement - get_user_pages_unlocked() if the current task and memory descriptor are referenced, or get_user_pages_remote() if other task/memory descriptors are referenced (having acquiring mmap_sem.) This patch (of 2): Add a int *locked parameter to get_user_pages_remote() to allow VM_FAULT_RETRY faulting behaviour similar to get_user_pages_[un]locked(). Taking into account the previous adjustments to get_user_pages*() functions allowing for the passing of gup_flags, we are now in a position where __get_user_pages_unlocked() need only be exported for his ability to allow VM_FAULT_RETRY behaviour, this adjustment allows us to subsequently unexport __get_user_pages_unlocked() as well as allowing for future flexibility in the use of get_user_pages_remote(). [sfr@canb.auug.org.au: merge fix for get_user_pages_remote API change] Link: http://lkml.kernel.org/r/20161122210511.024ec341@canb.auug.org.au Link: http://lkml.kernel.org/r/20161027095141.2569-2-lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jan Kara <jack@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krcmar <rkrcmar@redhat.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-15Merge branch 'for-linus' of ↵Linus Torvalds1-3/+18
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull namespace updates from Eric Biederman: "After a lot of discussion and work we have finally reachanged a basic understanding of what is necessary to make unprivileged mounts safe in the presence of EVM and IMA xattrs which the last commit in this series reflects. While technically it is a revert the comments it adds are important for people not getting confused in the future. Clearing up that confusion allows us to seriously work on unprivileged mounts of fuse in the next development cycle. The rest of the fixes in this set are in the intersection of user namespaces, ptrace, and exec. I started with the first fix which started a feedback cycle of finding additional issues during review and fixing them. Culiminating in a fix for a bug that has been present since at least Linux v1.0. Potentially these fixes were candidates for being merged during the rc cycle, and are certainly backport candidates but enough little things turned up during review and testing that I decided they should be handled as part of the normal development process just to be certain there were not any great surprises when it came time to backport some of these fixes" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: Revert "evm: Translate user/group ids relative to s_user_ns when computing HMAC" exec: Ensure mm->user_ns contains the execed files ptrace: Don't allow accessing an undumpable mm ptrace: Capture the ptracer's creds not PT_PTRACE_CAP mm: Add a user_ns owner to mm_struct and fix ptrace permission checks
2016-11-22exec: Ensure mm->user_ns contains the execed filesEric W. Biederman1-2/+17
When the user namespace support was merged the need to prevent ptrace from revealing the contents of an unreadable executable was overlooked. Correct this oversight by ensuring that the executed file or files are in mm->user_ns, by adjusting mm->user_ns. Use the new function privileged_wrt_inode_uidgid to see if the executable is a member of the user namespace, and as such if having CAP_SYS_PTRACE in the user namespace should allow tracing the executable. If not update mm->user_ns to the parent user namespace until an appropriate parent is found. Cc: stable@vger.kernel.org Reported-by: Jann Horn <jann@thejh.net> Fixes: 9e4a36ece652 ("userns: Fail exec for suid and sgid binaries with ids outside our user namespace.") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-11-22ptrace: Capture the ptracer's creds not PT_PTRACE_CAPEric W. Biederman1-1/+1
When the flag PT_PTRACE_CAP was added the PTRACE_TRACEME path was overlooked. This can result in incorrect behavior when an application like strace traces an exec of a setuid executable. Further PT_PTRACE_CAP does not have enough information for making good security decisions as it does not report which user namespace the capability is in. This has already allowed one mistake through insufficient granulariy. I found this issue when I was testing another corner case of exec and discovered that I could not get strace to set PT_PTRACE_CAP even when running strace as root with a full set of caps. This change fixes the above issue with strace allowing stracing as root a setuid executable without disabling setuid. More fundamentaly this change allows what is allowable at all times, by using the correct information in it's decision. Cc: stable@vger.kernel.org Fixes: 4214e42f96d4 ("v2.4.9.11 -> v2.4.9.12") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-11-16posix-timers: Make them configurableNicolas Pitre1-0/+2
Some embedded systems have no use for them. This removes about 25KB from the kernel binary size when configured out. Corresponding syscalls are routed to a stub logging the attempt to use those syscalls which should be enough of a clue if they were disabled without proper consideration. They are: timer_create, timer_gettime: timer_getoverrun, timer_settime, timer_delete, clock_adjtime, setitimer, getitimer, alarm. The clock_settime, clock_gettime, clock_getres and clock_nanosleep syscalls are replaced by simple wrappers compatible with CLOCK_REALTIME, CLOCK_MONOTONIC and CLOCK_BOOTTIME only which should cover the vast majority of use cases with very little code. Signed-off-by: Nicolas Pitre <nico@linaro.org> Acked-by: Richard Cochran <richardcochran@gmail.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Cc: Paul Bolle <pebolle@tiscali.nl> Cc: linux-kbuild@vger.kernel.org Cc: netdev@vger.kernel.org Cc: Michal Marek <mmarek@suse.com> Cc: Edward Cree <ecree@solarflare.com> Link: http://lkml.kernel.org/r/1478841010-28605-7-git-send-email-nicolas.pitre@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-10-19mm: replace get_user_pages_remote() write/force parameters with gup_flagsLorenzo Stoakes1-2/+7
This removes the 'write' and 'force' from get_user_pages_remote() and replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers as use of this flag can result in surprising behaviour (and hence bugs) within the mm subsystem. Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-05Merge branch 'for-linus' of ↵Linus Torvalds1-0/+33
git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu Pull m68knommu updates from Greg Ungerer: "This series is all about Nicolas flat format support for MMU systems. Traditional m68k no-MMU flat format binaries can now be run on m68k MMU enabled systems too. The series includes some nice cleanups of the binfmt_flat code and converts it to using proper user space accessor functions. With all this in place you can boot and run a complete no-MMU flat format based user space on an MMU enabled system" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu: m68k: enable binfmt_flat on systems with an MMU binfmt_flat: allow compressed flat binary format to work on MMU systems binfmt_flat: add MMU-specific support binfmt_flat: update libraries' data segment pointer with userspace accessors binfmt_flat: use clear_user() rather than memset() to clear .bss binfmt_flat: use proper user space accessors with old relocs code binfmt_flat: use proper user space accessors with relocs processing code binfmt_flat: clean up create_flat_tables() and stack accesses binfmt_flat: use generic transfer_args_to_stack() elf_fdpic_transfer_args_to_stack(): make it generic binfmt_flat: prevent kernel dammage from corrupted executable headers binfmt_flat: convert printk invocations to their modern form binfmt_flat: assorted cleanups m68k: use same start_thread() on MMU and no-MMU m68k: fix file path comment m68k: fix bFLT executable running on MMU enabled systems
2016-08-03firmware: support loading into a pre-allocated bufferStephen Boyd1-3/+6
Some systems are memory constrained but they need to load very large firmwares. The firmware subsystem allows drivers to request this firmware be loaded from the filesystem, but this requires that the entire firmware be loaded into kernel memory first before it's provided to the driver. This can lead to a situation where we map the firmware twice, once to load the firmware into kernel memory and once to copy the firmware into the final resting place. This creates needless memory pressure and delays loading because we have to copy from kernel memory to somewhere else. Let's add a request_firmware_into_buf() API that allows drivers to request firmware be loaded directly into a pre-allocated buffer. This skips the intermediate step of allocating a buffer in kernel memory to hold the firmware image while it's read from the filesystem. It also requires that drivers know how much memory they'll require before requesting the firmware and negates any benefits of firmware caching because the firmware layer doesn't manage the buffer lifetime. For a 16MB buffer, about half the time is spent performing a memcpy from the buffer to the final resting place. I see loading times go from 0.081171 seconds to 0.047696 seconds after applying this patch. Plus the vmalloc pressure is reduced. This is based on a patch from Vikram Mulukutla on codeaurora.org: https://www.codeaurora.org/cgit/quic/la/kernel/msm-3.18/commit/drivers/base/firmware_class.c?h=rel/msm-3.18&id=0a328c5f6cd999f5c591f172216835636f39bcb5 Link: http://lkml.kernel.org/r/20160607164741.31849-4-stephen.boyd@linaro.org Signed-off-by: Stephen Boyd <stephen.boyd@linaro.org> Cc: Mimi Zohar <zohar@linux.vnet.ibm.com> Cc: Vikram Mulukutla <markivx@codeaurora.org> Cc: Mark Brown <broonie@kernel.org> Cc: Ming Lei <ming.lei@canonical.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-25elf_fdpic_transfer_args_to_stack(): make it genericNicolas Pitre1-0/+33
This copying of arguments and environment is common to both NOMMU binary formats we support. Let's make the elf_fdpic version available to the flat format as well. While at it, improve the code a bit not to copy below the actual data area. Signed-off-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Greg Ungerer <gerg@linux-m68k.org> Signed-off-by: Greg Ungerer <gerg@linux-m68k.org>
2016-06-24fs: Treat foreign mounts as nosuidAndy Lutomirski1-1/+1
If a process gets access to a mount from a different user namespace, that process should not be able to take advantage of setuid files or selinux entrypoints from that filesystem. Prevent this by treating mounts from other mount namespaces and those not owned by current_user_ns() or an ancestor as nosuid. This will make it safer to allow more complex filesystems to be mounted in non-root user namespaces. This does not remove the need for MNT_LOCK_NOSUID. The setuid, setgid, and file capability bits can no longer be abused if code in a user namespace were to clear nosuid on an untrusted filesystem, but this patch, by itself, is insufficient to protect the system from abuse of files that, when execed, would increase MAC privilege. As a more concrete explanation, any task that can manipulate a vfsmount associated with a given user namespace already has capabilities in that namespace and all of its descendents. If they can cause a malicious setuid, setgid, or file-caps executable to appear in that mount, then that executable will only allow them to elevate privileges in exactly the set of namespaces in which they are already privileges. On the other hand, if they can cause a malicious executable to appear with a dangerous MAC label, running it could change the caller's security context in a way that should not have been possible, even inside the namespace in which the task is confined. As a hardening measure, this would have made CVE-2014-5207 much more difficult to exploit. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Acked-by: James Morris <james.l.morris@oracle.com> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2016-05-24exec: make exec path waiting for mmap_sem killableMichal Hocko1-2/+8
setup_arg_pages requires mmap_sem for write. If the waiting task gets killed by the oom killer it would block oom_reaper from asynchronous address space reclaim and reduce the chances of timely OOM resolving. Wait for the lock in the killable mode and return with EINTR if the task got killed while waiting. All the callers are already handling error path and the fatal signal doesn't need any additional treatment. The same applies to __bprm_mm_init. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-24exec: remove the no longer needed remove_arg_zero()->free_arg_page()Oleg Nesterov1-7/+0
remove_arg_zero() does free_arg_page() for no reason. This was needed before and only if CONFIG_MMU=y: see commit 4fc75ff4816c ("exec: fix remove_arg_zero"), install_arg_page() was called for every page != NULL in bprm->page[] array. Today install_arg_page() has already gone and free_arg_page() is nop after another commit b6a2fea39318 ("mm: variable length argument support"). CONFIG_MMU=n does free_arg_pages() in free_bprm() and thus it doesn't need remove_arg_zero()->free_arg_page() too; apart from get_arg_page() it never checks if the page in bprm->page[] was allocated or not, so the "extra" non-freed page is fine. OTOH, this free_arg_page() can add the minor pessimization, the caller is going to do copy_strings_kernel() right after remove_arg_zero() which will likely need to re-allocate the same page again. And as Hujunjie pointed out, the "offset == PAGE_SIZE" check is wrong because we are going to increment bprm->p once again before return, so CONFIG_MMU=n "leaks" the page anyway if '0' is the final byte in this page. NOTE: remove_arg_zero() assumes that argv[0] is null-terminated but this is not necessarily true. copy_strings() does "len = strnlen_user(...)", then copy_from_user(len) but another thread or debuger can overwrite the trailing '0' in between. Afaics nothing really bad can happen because we must always have the null-terminated bprm->filename copied by the 1st copy_strings_kernel(), but perhaps we should change this code to check "bprm->p < bprm->exec" anyway, and/or change copy_strings() to ensure that the last byte in string is always zero. Link: http://lkml.kernel.org/r/20160517155335.GA31435@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported by: hujunjie <jj.net@163.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19Merge branch 'next' of ↵Linus Torvalds1-8/+21
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull security subsystem updates from James Morris: "Highlights: - A new LSM, "LoadPin", from Kees Cook is added, which allows forcing of modules and firmware to be loaded from a specific device (this is from ChromeOS, where the device as a whole is verified cryptographically via dm-verity). This is disabled by default but can be configured to be enabled by default (don't do this if you don't know what you're doing). - Keys: allow authentication data to be stored in an asymmetric key. Lots of general fixes and updates. - SELinux: add restrictions for loading of kernel modules via finit_module(). Distinguish non-init user namespace capability checks. Apply execstack check on thread stacks" * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (48 commits) LSM: LoadPin: provide enablement CONFIG Yama: use atomic allocations when reporting seccomp: Fix comment typo ima: add support for creating files using the mknodat syscall ima: fix ima_inode_post_setattr vfs: forbid write access when reading a file into memory fs: fix over-zealous use of "const" selinux: apply execstack check on thread stacks selinux: distinguish non-init user namespace capability checks LSM: LoadPin for kernel file loading restrictions fs: define a string representation of the kernel_read_file_id enumeration Yama: consolidate error reporting string_helpers: add kstrdup_quotable_file string_helpers: add kstrdup_quotable_cmdline string_helpers: add kstrdup_quotable selinux: check ss_initialized before revalidating an inode label selinux: delay inode label lookup as long as possible selinux: don't revalidate an inode's label when explicitly setting it selinux: Change bool variable name to index. KEYS: Add KEYCTL_DH_COMPUTE command ...
2016-05-17exec: clarify reasoning for euid/egid resetKees Cook1-1/+6
This section of code initially looks redundant, but is required. This improves the comment to explain more clearly why the reset is needed. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-01vfs: forbid write access when reading a file into memoryDmitry Kasatkin1-8/+21
This patch is based on top of the "vfs: support for a common kernel file loader" patch set. In general when the kernel is reading a file into memory it does not want anything else writing to it. The kernel currently only forbids write access to a file being executed. This patch extends this locking to files being read by the kernel. Changelog: - moved function to kernel_read_file() - Mimi - updated patch description - Mimi Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@huawei.com> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Reviewed-by: Luis R. Rodriguez <mcgrof@kernel.org> Acked-by: Kees Cook <keescook@chromium.org>
2016-03-21Merge branch 'mm-pkeys-for-linus' of ↵Linus Torvalds1-2/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 protection key support from Ingo Molnar: "This tree adds support for a new memory protection hardware feature that is available in upcoming Intel CPUs: 'protection keys' (pkeys). There's a background article at LWN.net: https://lwn.net/Articles/643797/ The gist is that protection keys allow the encoding of user-controllable permission masks in the pte. So instead of having a fixed protection mask in the pte (which needs a system call to change and works on a per page basis), the user can map a (handful of) protection mask variants and can change the masks runtime relatively cheaply, without having to change every single page in the affected virtual memory range. This allows the dynamic switching of the protection bits of large amounts of virtual memory, via user-space instructions. It also allows more precise control of MMU permission bits: for example the executable bit is separate from the read bit (see more about that below). This tree adds the MM infrastructure and low level x86 glue needed for that, plus it adds a high level API to make use of protection keys - if a user-space application calls: mmap(..., PROT_EXEC); or mprotect(ptr, sz, PROT_EXEC); (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice this special case, and will set a special protection key on this memory range. It also sets the appropriate bits in the Protection Keys User Rights (PKRU) register so that the memory becomes unreadable and unwritable. So using protection keys the kernel is able to implement 'true' PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies PROT_READ as well. Unreadable executable mappings have security advantages: they cannot be read via information leaks to figure out ASLR details, nor can they be scanned for ROP gadgets - and they cannot be used by exploits for data purposes either. We know about no user-space code that relies on pure PROT_EXEC mappings today, but binary loaders could start making use of this new feature to map binaries and libraries in a more secure fashion. There is other pending pkeys work that offers more high level system call APIs to manage protection keys - but those are not part of this pull request. Right now there's a Kconfig that controls this feature (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled (like most x86 CPU feature enablement code that has no runtime overhead), but it's not user-configurable at the moment. If there's any serious problem with this then we can make it configurable and/or flip the default" * 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/mm/pkeys: Fix mismerge of protection keys CPUID bits mm/pkeys: Fix siginfo ABI breakage caused by new u64 field x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA mm/core, x86/mm/pkeys: Add execute-only protection keys support x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags x86/mm/pkeys: Allow kernel to modify user pkey rights register x86/fpu: Allow setting of XSAVE state x86/mm: Factor out LDT init from context init mm/core, x86/mm/pkeys: Add arch_validate_pkey() mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits() x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU x86/mm/pkeys: Add Kconfig prompt to existing config option x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps x86/mm/pkeys: Dump PKRU with other kernel registers mm/core, x86/mm/pkeys: Differentiate instruction fetches x86/mm/pkeys: Optimize fault handling in access_error() mm/core: Do not enforce PKEY permissions on remote mm access um, pkeys: Add UML arch_*_access_permitted() methods mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys x86/mm/gup: Simplify get_user_pages() PTE bit handling ...
2016-02-21vfs: define kernel_copy_file_from_fd()Mimi Zohar1-0/+16
This patch defines kernel_read_file_from_fd(), a wrapper for the VFS common kernel_read_file(). Changelog: - Separated from the kernel modules patch Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Luis R. Rodriguez <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
2016-02-21security: define kernel_read_file hookMimi Zohar1-0/+4
The kernel_read_file security hook is called prior to reading the file into memory. Changelog v4+: - export security_kernel_read_file() Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Luis R. Rodriguez <mcgrof@kernel.org> Acked-by: Casey Schaufler <casey@schaufler-ca.com>
2016-02-21vfs: define kernel_read_file_from_pathMimi Zohar1-0/+19
This patch defines kernel_read_file_from_path(), a wrapper for the VFS common kernel_read_file(). Changelog: - revert error msg regression - reported by Sergey Senozhatsky - Separated from the IMA patch Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Luis R. Rodriguez <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk>
2016-02-19vfs: define kernel_read_file_id enumerationMimi Zohar1-2/+2
To differentiate between the kernel_read_file() callers, this patch defines a new enumeration named kernel_read_file_id and includes the caller identifier as an argument. Subsequent patches define READING_KEXEC_IMAGE, READING_KEXEC_INITRAMFS, READING_FIRMWARE, READING_MODULE, and READING_POLICY. Changelog v3: - Replace the IMA specific enumeration with a generic one. Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Luis R. Rodriguez <mcgrof@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk>
2016-02-19vfs: define a generic function to read a file from the kernelMimi Zohar1-0/+53
For a while it was looked down upon to directly read files from Linux. These days there exists a few mechanisms in the kernel that do just this though to load a file into a local buffer. There are minor but important checks differences on each. This patch set is the first attempt at resolving some of these differences. This patch introduces a common function for reading files from the kernel with the corresponding security post-read hook and function. Changelog v4+: - export security_kernel_post_read_file() - Fengguang Wu v3: - additional bounds checking - Luis v2: - To simplify patch review, re-ordered patches Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com> Reviewed-by: Luis R. Rodriguez <mcgrof@suse.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk>
2016-02-16mm/gup: Introduce get_user_pages_remote()Dave Hansen1-2/+6
For protection keys, we need to understand whether protections should be enforced in software or not. In general, we enforce protections when working on our own task, but not when on others. We call these "current" and "remote" operations. This patch introduces a new get_user_pages() variant: get_user_pages_remote() Which is a replacement for when get_user_pages() is called on non-current tsk/mm. We also introduce a new gup flag: FOLL_REMOTE which can be used for the "__" gup variants to get this new behavior. The uprobes is_trap_at_addr() location holds mmap_sem and calls get_user_pages(current->mm) on an instruction address. This makes it a pretty unique gup caller. Being an instruction access and also really originating from the kernel (vs. the app), I opted to consider this a 'remote' access where protection keys will not be enforced. Without protection keys, this patch should not change any behavior. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: jack@suse.cz Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210154.3F0E51EA@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-23wrappers for ->i_mutex accessAl Viro1-2/+2
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested}, inode_foo(inode) being mutex_foo(&inode->i_mutex). Please, use those for access to ->i_mutex; over the coming cycle ->i_mutex will become rwsem, with ->lookup() done with it held only shared. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-04don't carry MAY_OPEN in op->acc_modeAl Viro1-2/+2
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-07-10vfs: Commit to never having exectuables on proc and sysfs.Eric W. Biederman1-2/+8
Today proc and sysfs do not contain any executable files. Several applications today mount proc or sysfs without noexec and nosuid and then depend on there being no exectuables files on proc or sysfs. Having any executable files show on proc or sysfs would cause a user space visible regression, and most likely security problems. Therefore commit to never allowing executables on proc and sysfs by adding a new flag to mark them as filesystems without executables and enforce that flag. Test the flag where MNT_NOEXEC is tested today, so that the only user visible effect will be that exectuables will be treated as if the execute bit is cleared. The filesystems proc and sysfs do not currently incoporate any executable files so this does not result in any user visible effects. This makes it unnecessary to vet changes to proc and sysfs tightly for adding exectuable files or changes to chattr that would modify existing files, as no matter what the individual file say they will not be treated as exectuable files by the vfs. Not having to vet changes to closely is important as without this we are only one proc_create call (or another goof up in the implementation of notify_change) from having problematic executables on proc. Those mistakes are all too easy to make and would create a situation where there are security issues or the assumptions of some program having to be broken (and cause userspace regressions). Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2015-05-12parisc,metag: Fix crashes due to stack randomization on stack-grows-upwards ↵Helge Deller1-0/+3
architectures On architectures where the stack grows upwards (CONFIG_STACK_GROWSUP=y, currently parisc and metag only) stack randomization sometimes leads to crashes when the stack ulimit is set to lower values than STACK_RND_MASK (which is 8 MB by default if not defined in arch-specific headers). The problem is, that when the stack vm_area_struct is set up in fs/exec.c, the additional space needed for the stack randomization (as defined by the value of STACK_RND_MASK) was not taken into account yet and as such, when the stack randomization code added a random offset to the stack start, the stack effectively got smaller than what the user defined via rlimit_max(RLIMIT_STACK) which then sometimes leads to out-of-stack situations and crashes. This patch fixes it by adding the maximum possible amount of memory (based on STACK_RND_MASK) which theoretically could be added by the stack randomization code to the initial stack size. That way, the user-defined stack size is always guaranteed to be at minimum what is defined via rlimit_max(RLIMIT_STACK). This bug is currently not visible on the metag architecture, because on metag STACK_RND_MASK is defined to 0 which effectively disables stack randomization. The changes to fs/exec.c are inside an "#ifdef CONFIG_STACK_GROWSUP" section, so it does not affect other platformws beside those where the stack grows upwards (parisc and metag). Signed-off-by: Helge Deller <deller@gmx.de> Cc: linux-parisc@vger.kernel.org Cc: James Hogan <james.hogan@imgtec.com> Cc: linux-metag@vger.kernel.org Cc: stable@vger.kernel.org # v3.16+