summaryrefslogtreecommitdiff
path: root/fs/btrfs/extent_map.c
AgeCommit message (Collapse)AuthorFilesLines
2024-07-11btrfs: avoid races when tracking progress for extent map shrinkingFilipe Manana1-21/+63
We store the progress (root and inode numbers) of the extent map shrinker in fs_info without any synchronization but we can have multiple tasks calling into the shrinker during memory allocations when there's enough memory pressure for example. This can result in a task A reading fs_info->extent_map_shrinker_last_ino after another task B updates it, and task A reading fs_info->extent_map_shrinker_last_root before task B updates it, making task A see an odd state that isn't necessarily harmful but may make it skip certain inode ranges or do more work than necessary by going over the same inodes again. These unprotected accesses would also trigger warnings from tools like KCSAN. So add a lock to protect access to these progress fields. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: stop extent map shrinker if reschedule is neededFilipe Manana1-8/+31
The extent map shrinker can be called in a variety of contexts where we are under memory pressure, and of them is when a task is trying to allocate memory. For this reason the shrinker is typically called with a value of struct shrink_control::nr_to_scan that is much smaller than what we return in the nr_cached_objects callback of struct super_operations (fs/btrfs/super.c:btrfs_nr_cached_objects()), so that the shrinker does not take a long time and cause high latencies. However we can still take a lot of time in the shrinker even for a limited amount of nr_to_scan: 1) When traversing the red black tree that tracks open inodes in a root, as for example with millions of open inodes we get a deep tree which takes time searching for an inode; 2) Iterating over the extent map tree, which is a red black tree, of an inode when doing the rb_next() calls and when removing an extent map from the tree, since often that requires rebalancing the red black tree; 3) When trying to write lock an inode's extent map tree we may wait for a significant amount of time, because there's either another task about to do IO and searching for an extent map in the tree or inserting an extent map in the tree, and we can have thousands or even millions of extent maps for an inode. Furthermore, there can be concurrent calls to the shrinker so the lock might be busy simply because there is already another task shrinking extent maps for the same inode; 4) We often reschedule if we need to, which further increases latency. So improve on this by stopping the extent map shrinking code whenever we need to reschedule and make it skip an inode if we can't immediately lock its extent map tree. Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CABXGCsMmmb36ym8hVNGTiU8yfUS_cGvoUmGCcBrGWq9OxTrs+A@mail.gmail.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: use delayed iput during extent map shrinkingFilipe Manana1-1/+1
When putting an inode during extent map shrinking we're doing a standard iput() but that may take a long time in case the inode is dirty and we are doing the final iput that triggers eviction - the VFS will have to wait for writeback before calling the btrfs evict callback (see fs/inode.c:evict()). This slows down the task running the shrinker which may have been triggered while updating some tree for example, meaning locks are held as well as an open transaction handle. Also if the iput() ends up triggering eviction and the inode has no links anymore, then we trigger item truncation which requires flushing delayed items, space reservation to start a transaction and that may trigger the space reclaim task and wait for it, resulting in deadlocks in case the reclaim task needs for example to commit a transaction and the shrinker is being triggered from a path holding a transaction handle. Syzbot reported such a case with the following stack traces: ====================================================== WARNING: possible circular locking dependency detected 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Not tainted ------------------------------------------------------ kswapd0/111 is trying to acquire lock: ffff88801eae4610 (sb_internal#3){.+.+}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 but task is already holding lock: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire mm/page_alloc.c:3783 [inline] fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3797 might_alloc include/linux/sched/mm.h:334 [inline] slab_pre_alloc_hook mm/slub.c:3890 [inline] slab_alloc_node mm/slub.c:3980 [inline] kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4019 btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411 alloc_inode+0x5d/0x230 fs/inode.c:261 iget5_locked fs/inode.c:1235 [inline] iget5_locked+0x1c9/0x2c0 fs/inode.c:1228 btrfs_iget_locked fs/btrfs/inode.c:5590 [inline] btrfs_iget_path fs/btrfs/inode.c:5607 [inline] btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636 create_reloc_inode+0x403/0x820 fs/btrfs/relocation.c:3911 btrfs_relocate_block_group+0x471/0xe60 fs/btrfs/relocation.c:4114 btrfs_relocate_chunk+0x143/0x450 fs/btrfs/volumes.c:3373 __btrfs_balance fs/btrfs/volumes.c:4157 [inline] btrfs_balance+0x211a/0x3f00 fs/btrfs/volumes.c:4534 btrfs_ioctl_balance fs/btrfs/ioctl.c:3675 [inline] btrfs_ioctl+0x12ed/0x8290 fs/btrfs/ioctl.c:4742 __do_compat_sys_ioctl+0x2c3/0x330 fs/ioctl.c:1007 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}: join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #1 (btrfs_trans_num_writers){++++}-{0:0}: join_transaction+0x148/0xf40 fs/btrfs/transaction.c:314 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #0 (sb_internal#3){.+.+}-{0:0}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 other info that might help us debug this: Chain exists of: sb_internal#3 --> btrfs_trans_num_extwriters --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(btrfs_trans_num_extwriters); lock(fs_reclaim); rlock(sb_internal#3); *** DEADLOCK *** 2 locks held by kswapd0/111: #0: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_trylock_shared fs/super.c:562 [inline] #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_cache_scan+0x96/0x550 fs/super.c:196 stack backtrace: CPU: 0 PID: 111 Comm: kswapd0 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187 check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> So fix this by using btrfs_add_delayed_iput() so that the final iput is delegated to the cleaner kthread. Link: https://lore.kernel.org/linux-btrfs/000000000000892280061a344581@google.com/ Reported-by: syzbot+3dad89b3993a4b275e72@syzkaller.appspotmail.com Fixes: 956a17d9d050 ("btrfs: add a shrinker for extent maps") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: add tracepoints for extent map shrinker eventsFilipe Manana1-0/+13
Add some tracepoints for the extent map shrinker to help debug and analyse main events. These have proved useful during development of the shrinker. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: add a shrinker for extent mapsFilipe Manana1-0/+160
Extent maps are used either to represent existing file extent items, or to represent new extents that are going to be written and the respective file extent items are created when the ordered extent completes. We currently don't have any limit for how many extent maps we can have, neither per inode nor globally. Most of the time this not too noticeable because extent maps are removed in the following situations: 1) When evicting an inode; 2) When releasing folios (pages) through the btrfs_release_folio() address space operation callback. However we won't release extent maps in the folio range if the folio is either dirty or under writeback or if the inode's i_size is less than or equals to 16M (see try_release_extent_mapping(). This 16M i_size constraint was added back in 2008 with commit 70dec8079d78 ("Btrfs: extent_io and extent_state optimizations"), but there's no explanation about why we have it or why the 16M value. This means that for buffered IO we can reach an OOM situation due to too many extent maps if either of the following happens: 1) There's a set of tasks constantly doing IO on many files with a size not larger than 16M, specially if they keep the files open for very long periods, therefore preventing inode eviction. This requires a really high number of such files, and having many non mergeable extent maps (due to random 4K writes for example) and a machine with very little memory; 2) There's a set tasks constantly doing random write IO (therefore creating many non mergeable extent maps) on files and keeping them open for long periods of time, so inode eviction doesn't happen and there's always a lot of dirty pages or pages under writeback, preventing btrfs_release_folio() from releasing the respective extent maps. This second case was actually reported in the thread pointed by the Link tag below, and it requires a very large file under heavy IO and a machine with very little amount of RAM, which is probably hard to happen in practice in a real world use case. However when using direct IO this is not so hard to happen, because the page cache is not used, and therefore btrfs_release_folio() is never called. Which means extent maps are dropped only when evicting the inode, and that means that if we have tasks that keep a file descriptor open and keep doing IO on a very large file (or files), we can exhaust memory due to an unbounded amount of extent maps. This is especially easy to happen if we have a huge file with millions of small extents and their extent maps are not mergeable (non contiguous offsets and disk locations). This was reported in that thread with the following fio test: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="" cat <<EOF > /tmp/fio-job.ini [global] name=fio-rand-write filename=$MNT/fio-rand-write rw=randwrite bs=4K direct=1 numjobs=16 fallocate=none time_based runtime=90000 [file1] size=300G ioengine=libaio iodepth=16 EOF umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT Monitoring the btrfs_extent_map slab while running the test with: $ watch -d -n 1 'cat /sys/kernel/slab/btrfs_extent_map/objects \ /sys/kernel/slab/btrfs_extent_map/total_objects' Shows the number of active and total extent maps skyrocketing to tens of millions, and on systems with a short amount of memory it's easy and quick to get into an OOM situation, as reported in that thread. So to avoid this issue add a shrinker that will remove extents maps, as long as they are not pinned, and takes proper care with any concurrent fsync to avoid missing extents (setting the full sync flag while in the middle of a fast fsync). This shrinker is triggered through the callbacks nr_cached_objects and free_cached_objects of struct super_operations. The shrinker will iterate over all roots and over all inodes of each root, and keeps track of the last scanned root and inode, so that the next time it runs, it starts from that root and from the next inode. This is similar to what xfs does for its inode reclaim (implements those callbacks, and cycles through inodes by starting from where it ended last time). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: add a global per cpu counter to track number of used extent mapsFilipe Manana1-0/+17
Add a per cpu counter that tracks the total number of extent maps that are in extent trees of inodes that belong to fs trees. This is going to be used in an upcoming change that adds a shrinker for extent maps. Only extent maps for fs trees are considered, because for special trees such as the data relocation tree we don't want to evict their extent maps which are critical for the relocation to work, and since those are limited, it's not a concern to have them in memory during the relocation of a block group. Another case are extent maps for free space cache inodes, which must always remain in memory, but those are limited (there's only one per free space cache inode, which means one per block group). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to try_merge_map()Filipe Manana1-7/+6
Extent maps are always associated to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to try_merge_map(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change try_merge_map() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to setup_extent_mapping()Filipe Manana1-5/+5
Extent maps are always associated to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to setup_extent_mapping(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change setup_extent_mapping() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to replace_extent_mapping()Filipe Manana1-5/+6
Extent maps are always associated to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to replace_extent_mapping(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change replace_extent_mapping() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to remove_extent_mapping()Filipe Manana1-9/+13
Extent maps are always associated to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to remove_extent_mapping(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change remove_extent_mapping() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to clear_em_logging()Filipe Manana1-1/+3
Extent maps are always associated to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to clear_em_logging(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change clear_em_logging() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass the extent map tree's inode to add_extent_mapping()Filipe Manana1-18/+16
Extent maps are always added to an inode's extent map tree, so there's no need to pass the extent map tree explicitly to add_extent_mapping(). In order to facilitate an upcoming change that adds a shrinker for extent maps, change add_extent_mapping() to receive the inode instead of its extent map tree. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: simplify add_extent_mapping() by removing pointless labelFilipe Manana1-4/+4
The add_extent_mapping() function is short and trivial, there's no need to have a label for a quick exit in case of an error, even because there's no error handling needed, we just need to return the error. So remove that label and return directly. Also while at it remove the redundant initialization of 'ret', as that may help avoid some warnings with clang tools such as the one reported/fixed by commit 966de47ff0c9 ("btrfs: remove redundant initialization of variables in log_new_ancestors"). Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: pass an inode to btrfs_add_extent_mapping()Filipe Manana1-7/+7
Instead of passing fs_info and extent map tree arguments to btrfs_add_extent_mapping(), we can pass an inode instead, as extent maps are always inserted in the extent map tree of an inode, and the fs_info can be extracted from the inode (inode->root->fs_info). The only exception is in the self tests where we allocate an extent map tree and then use it to insert/update/remove extent maps. However the tests can be changed to use a test inode and then use the inode's extent map tree. So change btrfs_add_extent_mapping() to have an inode as an argument instead of a fs_info and an extent map tree. This reduces the number of parameters and will also be needed for an upcoming change. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: remove not needed mod_start and mod_len from struct extent_mapFilipe Manana1-18/+0
The mod_start and mod_len fields of struct extent_map were introduced by commit 4e2f84e63dc1 ("Btrfs: improve fsync by filtering extents that we want") in order to avoid too low performance when fsyncing a file that keeps getting extent maps merge, because it resulted in each fsync logging again csum ranges that were already merged before. We don't need this anymore as extent maps in the list of modified extents are never merged with other extent maps and once we log an extent map we remove it from the list of modified extent maps, so it's never logged twice. So remove the mod_start and mod_len fields from struct extent_map and use instead the start and len fields when logging checksums in the fast fsync path. This also makes EXTENT_FLAG_FILLING unused so remove it as well. Running the reproducer from the commit mentioned before, with a larger number of extents and against a null block device, so that IO is fast and we can better see any impact from searching checksums items and logging them, gave the following results from dd: Before this change: 409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s After this change: 409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s So no changes in throughput. The test was done in a release kernel (non-debug, Debian's default kernel config) and its steps are the following: $ mkfs.btrfs -f /dev/nullb0 $ mount /dev/sdb /mnt $ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync $ umount /mnt This also reduces the size of struct extent_map from 128 bytes down to 112 bytes, so now we can have 36 extents maps per 4K page instead of 32. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-04-18btrfs: fix wrong block_start calculation for btrfs_drop_extent_map_range()Qu Wenruo1-1/+1
[BUG] During my extent_map cleanup/refactor, with extra sanity checks, extent-map-tests::test_case_7() would not pass the checks. The problem is, after btrfs_drop_extent_map_range(), the resulted extent_map has a @block_start way too large. Meanwhile my btrfs_file_extent_item based members are returning a correct @disk_bytenr/@offset combination. The extent map layout looks like this: 0 16K 32K 48K | PINNED | | Regular | The regular em at [32K, 48K) also has 32K @block_start. Then drop range [0, 36K), which should shrink the regular one to be [36K, 48K). However the @block_start is incorrect, we expect 32K + 4K, but got 52K. [CAUSE] Inside btrfs_drop_extent_map_range() function, if we hit an extent_map that covers the target range but is still beyond it, we need to split that extent map into half: |<-- drop range -->| |<----- existing extent_map --->| And if the extent map is not compressed, we need to forward extent_map::block_start by the difference between the end of drop range and the extent map start. However in that particular case, the difference is calculated using (start + len - em->start). The problem is @start can be modified if the drop range covers any pinned extent. This leads to wrong calculation, and would be caught by my later extent_map sanity checks, which checks the em::block_start against btrfs_file_extent_item::disk_bytenr + btrfs_file_extent_item::offset. This is a regression caused by commit c962098ca4af ("btrfs: fix incorrect splitting in btrfs_drop_extent_map_range"), which removed the @len update for pinned extents. [FIX] Fix it by avoiding using @start completely, and use @end - em->start instead, which @end is exclusive bytenr number. And update the test case to verify the @block_start to prevent such problem from happening. Thankfully this is not going to lead to any data corruption, as IO path does not utilize btrfs_drop_extent_map_range() with @skip_pinned set. So this fix is only here for the sake of consistency/correctness. CC: stable@vger.kernel.org # 6.5+ Fixes: c962098ca4af ("btrfs: fix incorrect splitting in btrfs_drop_extent_map_range") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26btrfs: use btrfs_warn() to log message at btrfs_add_extent_mapping()Filipe Manana1-5/+5
At btrfs_add_extent_mapping(), if we failed to merge the extent map, which is unexpected and theoretically should never happen, we use WARN_ONCE() to log a message which is not great because we don't get information about which filesystem it relates to in case we have multiple btrfs filesystems mounted. So change this to use btrfs_warn() and surround the error check with WARN_ON() so we always get a useful stack trace and the condition is flagged as "unlikely" since it's not expected to ever happen. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26btrfs: fix message not properly printing interval when adding extent mapFilipe Manana1-2/+2
At btrfs_add_extent_mapping(), if we are unable to merge the existing extent map, we print a warning message that suggests interval ranges in the form "[X, Y)", where the first element is the inclusive start offset of a range and the second element is the exclusive end offset. However we end up printing the length of the ranges instead of the exclusive end offsets. So fix this by printing the range end offsets. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26btrfs: fix warning messages not printing interval at unpin_extent_range()Filipe Manana1-2/+2
At unpin_extent_range() we print warning messages that are supposed to print an interval in the form "[X, Y)", with the first element being an inclusive start offset and the second element being the exclusive end offset of a range. However we end up printing the range's length instead of the range's exclusive end offset, so fix that to avoid having confusing and non-sense messages in case we hit one of these unexpected scenarios. Fixes: 00deaf04df35 ("btrfs: log messages at unpin_extent_range() during unexpected cases") Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26btrfs: fix extent map leak in unexpected scenario at unpin_extent_cache()Filipe Manana1-1/+1
At unpin_extent_cache() if we happen to find an extent map with an unexpected start offset, we jump to the 'out' label and never release the reference we added to the extent map through the call to lookup_extent_mapping(), therefore resulting in a leak. So fix this by moving the free_extent_map() under the 'out' label. Fixes: c03c89f821e5 ("btrfs: handle errors returned from unpin_extent_cache()") Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-05btrfs: remove SLAB_MEM_SPREAD flag useChengming Zhou1-2/+1
The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was removed as of v6.8-rc1, so it became a dead flag since the commit 16a1d968358a ("mm/slab: remove mm/slab.c and slab_def.h"). And the series[1] went on to mark it obsolete to avoid confusion for users. Here we can just remove all its users, which has no functional change. [1] https://lore.kernel.org/all/20240223-slab-cleanup-flags-v2-1-02f1753e8303@suse.cz/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: handle invalid range and start in merge_extent_mapping()David Sterba1-4/+5
Turn a BUG_ON to a properly handled error and update the error message in the caller. It is expected that @em_in and @start passed to btrfs_add_extent_mapping() overlap. Besides tests, the only caller btrfs_get_extent() makes sure this is true. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: handle errors returned from unpin_extent_cache()David Sterba1-1/+9
We've had numerous attempts to let function unpin_extent_cache() return void as it only returns 0. There are still error cases to handle so do that, in addition to the verbose messages. The only caller btrfs_finish_one_ordered() will now abort the transaction, previously it let it continue which could lead to further problems. Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: remove unused included headersDavid Sterba1-1/+0
With help of neovim, LSP and clangd we can identify header files that are not actually needed to be included in the .c files. This is focused only on removal (with minor fixups), further cleanups are possible but will require doing the header files properly with forward declarations, minimized includes and include-what-you-use care. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: use the flags of an extent map to identify the compression typeFilipe Manana1-29/+22
Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: refactor mergable_maps() for more readabilityFilipe Manana1-14/+14
At mergable_maps() instead of having a single if statement with many ORed and ANDed conditions, refactor it with multiple if statements that check a single condition and return immediately once a requirement fails. This makes it easier to read. Also change the return type from int to bool, make the arguments const and rename the function from mergable_maps() to mergeable_maps(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: avoid useless rbtree iterations when attempting to merge extent mapFilipe Manana1-17/+21
When trying to merge an extent map that was just inserted or unpinned, we will try to merge it with any adjacent extent map that is suitable. However we will only check if our extent map is mergeable after searching for the previous and next extent maps in the rbtree, meaning that we are doing unnecessary calls to rb_prev() and rb_next() in case our extent map is not mergeable (it's compressed, in the list of modifed extents, being logged or pinned), wasting CPU time chasing rbtree pointers and pulling in unnecessary cache lines. So change the logic to check first if an extent map is mergeable before searching for the next and previous extent maps in the rbtree. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: log messages at unpin_extent_range() during unexpected casesFilipe Manana1-6/+16
At unpin_extent_range() we trigger a WARN_ON() when we don't find an extent map or we find one with a start offset not matching the start offset of the target range. This however isn't very useful for debugging because: 1) We don't know which condition was triggered, as they are both in the same WARN_ON() call; 2) We don't know which inode was affected, from which root, for which range, what's the start offset of the extent map, and so on. So trigger a separate warning for each case and log a message for each case providing information about the inode, its root, the target range, the generation and the start offset of the extent map we found. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: remove redundant value assignment at btrfs_add_extent_mapping()Filipe Manana1-2/+0
At btrfs_add_extent_mapping(), in case add_extent_mapping() returned -EEXIST, it's pointless to assign 0 to 'ret' since we will assign a value to it shortly after, without 'ret' being used before that. So remove that pointless assignment. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: unexport add_extent_mapping()Filipe Manana1-2/+2
There's no need to export add_extent_mapping(), as it's only used inside extent_map.c and in the self tests. For the tests we can use instead btrfs_add_extent_mapping(), which will accomplish exactly the same as we don't expect collisions in any of them. So unexport it and make the tests use btrfs_add_extent_mapping() instead of add_extent_mapping(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-16btrfs: assert extent map is not in a list when setting it upFilipe Manana1-1/+3
When setting up a new extent map, at setup_extent_mapping(), we're doing a list move operation to add the extent map the tree's list of modified extents. This is confusing because at this point the extent map can not be in any list, because it's a new extent map. So replace the list move with a list add and add an assertion that checks that the extent map is not currently in any list. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: remove no longer used EXTENT_MAP_DELALLOC block start valueFilipe Manana1-3/+0
After commit ac3c0d36a2a2 ("btrfs: make fiemap more efficient and accurate reporting extent sharedness") we no longer need to create special extent maps during fiemap that have a block start with the EXTENT_MAP_DELALLOC value. So this block start value for extent maps is no longer used since then, therefore remove it. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: use a dedicated data structure for chunk mapsFilipe Manana1-46/+0
Currently we abuse the extent_map structure for two purposes: 1) To actually represent extents for inodes; 2) To represent chunk mappings. This is odd and has several disadvantages: 1) To create a chunk map, we need to do two memory allocations: one for an extent_map structure and another one for a map_lookup structure, so more potential for an allocation failure and more complicated code to manage and link two structures; 2) For a chunk map we actually only use 3 fields (24 bytes) of the respective extent map structure: the 'start' field to have the logical start address of the chunk, the 'len' field to have the chunk's size, and the 'orig_block_len' field to contain the chunk's stripe size. Besides wasting a memory, it's also odd and not intuitive at all to have the stripe size in a field named 'orig_block_len'. We are also using 'block_len' of the extent_map structure to contain the chunk size, so we have 2 fields for the same value, 'len' and 'block_len', which is pointless; 3) When an extent map is associated to a chunk mapping, we set the bit EXTENT_FLAG_FS_MAPPING on its flags and then make its member named 'map_lookup' point to the associated map_lookup structure. This means that for an extent map associated to an inode extent, we are not using this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform); 4) Extent maps associated to a chunk mapping are never merged or split so it's pointless to use the existing extent map infrastructure. So add a dedicated data structure named 'btrfs_chunk_map' to represent chunk mappings, this is basically the existing map_lookup structure with some extra fields: 1) 'start' to contain the chunk logical address; 2) 'chunk_len' to contain the chunk's length; 3) 'stripe_size' for the stripe size; 4) 'rb_node' for insertion into a rb tree; 5) 'refs' for reference counting. This way we do a single memory allocation for chunk mappings and we don't waste memory for them with unused/unnecessary fields from an extent_map. We also save 8 bytes from the extent_map structure by removing the 'map_lookup' pointer, so the size of struct extent_map is reduced from 144 bytes down to 136 bytes, and we can now have 30 extents map per 4K page instead of 28. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: unexport extent_map_block_end()Filipe Manana1-0/+7
The helper extent_map_block_end() is currently not used anywhere outside extent_map.c, so move into from extent_map.h into extent_map.c. While at it, also make the extent map pointer argument as const. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-18btrfs: fix incorrect splitting in btrfs_drop_extent_map_rangeJosef Bacik1-4/+2
In production we were seeing a variety of WARN_ON()'s in the extent_map code, specifically in btrfs_drop_extent_map_range() when we have to call add_extent_mapping() for our second split. Consider the following extent map layout PINNED [0 16K) [32K, 48K) and then we call btrfs_drop_extent_map_range for [0, 36K), with skip_pinned == true. The initial loop will have start = 0 end = 36K len = 36K we will find the [0, 16k) extent, but since we are pinned we will skip it, which has this code start = em_end; if (end != (u64)-1) len = start + len - em_end; em_end here is 16K, so now the values are start = 16K len = 16K + 36K - 16K = 36K len should instead be 20K. This is a problem when we find the next extent at [32K, 48K), we need to split this extent to leave [36K, 48k), however the code for the split looks like this split->start = start + len; split->len = em_end - (start + len); In this case we have em_end = 48K split->start = 16K + 36K // this should be 16K + 20K split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K and now we have an invalid extent_map in the tree that potentially overlaps other entries in the extent map. Even in the non-overlapping case we will have split->start set improperly, which will cause problems with any block related calculations. We don't actually need len in this loop, we can simply use end as our end point, and only adjust start up when we find a pinned extent we need to skip. Adjust the logic to do this, which keeps us from inserting an invalid extent map. We only skip_pinned in the relocation case, so this is relatively rare, except in the case where you are running relocation a lot, which can happen with auto relocation on. Fixes: 55ef68990029 ("Btrfs: Fix btrfs_drop_extent_cache for skip pinned case") CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: pass the new logical address to split_extent_mapChristoph Hellwig1-3/+5
split_extent_map splits off the first chunk of an extent map into a new one. One of the two users is the zoned I/O completion code that wants to rewrite the logical block start address right after this split. Pass in the logical address to be set in the split off first extent_map as an argument to avoid an extra extent tree lookup for this case. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: move split_extent_map to extent_map.cChristoph Hellwig1-4/+94
split_extent_map doesn't have anything to do with the other code in inode.c, so move it to extent_map.c. This also allows marking replace_extent_mapping static. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: drop gfp from parameter extent state helpersDavid Sterba1-2/+2
Now that all extent state bit helpers effectively take the GFP_NOFS mask (and GFP_NOWAIT is encoded in the bits) we can remove the parameter. This reduces stack consumption in many functions and simplifies a lot of code. Net effect on module on a release build: text data bss dec hex filename 1250432 20985 16088 1287505 13a551 pre/btrfs.ko 1247074 20985 16088 1284147 139833 post/btrfs.ko DELTA: -3358 Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: pass NOWAIT for set/clear extent bits as another bitDavid Sterba1-3/+4
The only flags we now pass to set_extent_bit/__clear_extent_bit are GFP_NOFS and GFP_NOWAIT (a few functions handling mappings). This requires an extra parameter to be passed everywhere but is almost always the same. Encode the GFP_NOWAIT as an artificial extent bit and extract the real bits and gfp mask in the lowest level helpers. Now the passed gfp mask is not actually used and can be removed. Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code set_extent_bits_nowaitDavid Sterba1-2/+3
The helper only passes GFP_NOWAIT as gfp flags and is used two times. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-03-06btrfs: fix extent map logging bit not cleared for split maps after dropping ↵Filipe Manana1-1/+6
range At btrfs_drop_extent_map_range() we are clearing the EXTENT_FLAG_LOGGING bit on a 'flags' variable that was not initialized. This makes static checkers complain about it, so initialize the 'flags' variable before clearing the bit. In practice this has no consequences, because EXTENT_FLAG_LOGGING should not be set when btrfs_drop_extent_map_range() is called, as an fsync locks the inode in exclusive mode, locks the inode's mmap semaphore in exclusive mode too and it always flushes all delalloc. Also add a comment about why we clear EXTENT_FLAG_LOGGING on a copy of the flags of the split extent map. Reported-by: Dan Carpenter <error27@gmail.com> Link: https://lore.kernel.org/linux-btrfs/Y%2FyipSVozUDEZKow@kili/ Fixes: db21370bffbc ("btrfs: drop extent map range more efficiently") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove no longer used btrfs_next_extent_map()Filipe Manana1-29/+0
There are no more users of btrfs_next_extent_map(), the previous patch in the series ("btrfs: search for delalloc more efficiently during lseek/fiemap") removed the last usage of the function, so delete it. This change is part of a patchset that has the goal to make performance better for applications that use lseek's SEEK_HOLE and SEEK_DATA modes to iterate over the extents of a file. Two examples are the cp program from coreutils 9.0+ and the tar program (when using its --sparse / -S option). A sample test and results are listed in the changelog of the last patch in the series: 1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree 2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap 3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap 4/9 btrfs: search for delalloc more efficiently during lseek/fiemap 5/9 btrfs: remove no longer used btrfs_next_extent_map() 6/9 btrfs: allow passing a cached state record to count_range_bits() 7/9 btrfs: update stale comment for count_range_bits() 8/9 btrfs: use cached state when looking for delalloc ranges with fiemap 9/9 btrfs: use cached state when looking for delalloc ranges with lseek Reported-by: Wang Yugui <wangyugui@e16-tech.com> Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/ Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: selftests: remove impossible inline extent at non-zero file offsetQu Wenruo1-0/+7
In our inode-tests.c, we create an inline offset at file offset 5, which is no longer possible since the introduction of tree-checker. Thus I don't think we should spend time maintaining some corner cases which are already ruled out by tree-checker. So this patch will: - Change the inline extent to start at file offset 0 Also change its length to 6 to cover the original length - Add an extra ASSERT() for btrfs_add_extent_mapping() This is to make sure tree-checker is working correctly. - Update the inode selftest Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: update function commentsDavid Sterba1-35/+30
Update, reformat or reword function comments. This also removes the kdoc marker so we don't get reports when the function name is missing. Changes made: - remove kdoc markers - reformat the brief description to be a proper sentence - reword to imperative voice - align parameter list - fix typos Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the printk helpers out of ctree.hJosef Bacik1-0/+1
We have a bunch of printk helpers that are in ctree.h. These have nothing to do with ctree.c, so move them into their own header. Subsequent patches will cleanup the printk helpers. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: get the next extent map during fiemap/lseek more efficientlyFilipe Manana1-1/+30
At find_delalloc_subrange(), when we need to get the next extent map, we do a full search on the extent map tree (a red black tree). This is fine but it's a lot more efficient to simply use rb_next(), which typically requires iterating over less nodes of the tree and never needs to compare the ranges of nodes with the one we are looking for. So add a public helper to extent_map.{h,c} to get the extent map that immediately follows another extent map, using rb_next(), and use that helper at find_delalloc_subrange(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: drop extent map range more efficientlyFilipe Manana1-45/+74
Currently when dropping extent maps for a file range, through btrfs_drop_extent_map_range(), we do the following non-optimal things: 1) We lookup for extent maps one by one, always starting the search from the root of the extent map tree. This is not efficient if we have multiple extent maps in the range; 2) We check on every iteration if we have the 'split' and 'split2' spare extent maps in case we need to split an extent map that intersects our range but also crosses its boundaries (to the left, to the right or both cases). If our target range is for example: [2M, 8M) And we have 3 extents maps in the range: [1M, 3M) [3M, 6M) [6M, 10M[ The on the first iteration we allocate two extent maps for 'split' and 'split2', and use the 'split' to split the first extent map, so after the split we set 'split' to 'split2' and then set 'split2' to NULL. On the second iteration, we don't need to split the second extent map, but because 'split2' is now NULL, we allocate a new extent map for 'split2'. On the third iteration we need to split the third extent map, so we use the extent map pointed by 'split'. So we ended up allocating 3 extent maps for splitting, but all we needed was 2 extent maps. We never need to allocate more than 2, because extent maps that need to be split are always the first one and the last one in the target range. Improve on this by: 1) Using rb_next() to move on to the next extent map. This results in iterating over less nodes of the tree and it does not require comparing the ranges of nodes to our start/end offset; 2) Allocate the 2 extent maps for splitting before entering the loop and never allocate more than 2. In practice it's very rare to have the combination of both extent map allocations fail, since we have a dedicated slab for extent maps, and also have the need to split two extent maps. This patch is part of a patchset comprised of the following patches: btrfs: fix missed extent on fsync after dropping extent maps btrfs: move btrfs_drop_extent_cache() to extent_map.c btrfs: use extent_map_end() at btrfs_drop_extent_map_range() btrfs: use cond_resched_rwlock_write() during inode eviction btrfs: move open coded extent map tree deletion out of inode eviction btrfs: add helper to replace extent map range with a new extent map btrfs: remove the refcount warning/check at free_extent_map() btrfs: remove unnecessary extent map initializations btrfs: assert tree is locked when clearing extent map from logging btrfs: remove unnecessary NULL pointer checks when searching extent maps btrfs: remove unnecessary next extent map search btrfs: avoid pointless extent map tree search when flushing delalloc btrfs: drop extent map range more efficiently And the following fio test was done before and after applying the whole patchset, on a non-debug kernel (Debian's default kernel config) on a 12 cores Intel box with 64G of ram: $ cat test.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/nvme0n1 MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-R free-space-tree -O no-holes" cat <<EOF > /tmp/fio-job.ini [writers] rw=randwrite fsync=8 fallocate=none group_reporting=1 direct=0 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 ioengine=psync filesize=2G runtime=300 time_based directory=$MNT numjobs=8 thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor echo echo "Using config:" echo cat /tmp/fio-job.ini echo umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT Result before applying the patchset: WRITE: bw=197MiB/s (206MB/s), 197MiB/s-197MiB/s (206MB/s-206MB/s), io=57.7GiB (61.9GB), run=300188-300188msec Result after applying the patchset: WRITE: bw=203MiB/s (213MB/s), 203MiB/s-203MiB/s (213MB/s-213MB/s), io=59.5GiB (63.9GB), run=300019-300019msec Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: remove unnecessary next extent map searchFilipe Manana1-14/+17
At __tree_search(), and its single caller __lookup_extent_mapping(), there is no point in finding the next extent map that starts after the search offset if we were able to find the previous extent map that ends before our search offset, because __lookup_extent_mapping() ignores the next acceptable extent map if we were able to find the previous one. So just return immediately if we were able to find the previous extent map, therefore avoiding wasting time iterating the tree looking for the next extent map which will not be used by __lookup_extent_mapping(). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: remove unnecessary NULL pointer checks when searching extent mapsFilipe Manana1-14/+14
The previous and next pointer arguments passed to __tree_search() are never NULL as the only caller of this function, __lookup_extent_mapping(), always passes the address of two on stack pointers. So remove the NULL checks and add assertions to verify the pointers. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-29btrfs: assert tree is locked when clearing extent map from loggingFilipe Manana1-0/+2
When calling clear_em_logging() we should have a write lock on the extent map tree, as we will try to merge the extent map with the previous and next ones in the tree. So assert that we have a write lock. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>