summaryrefslogtreecommitdiff
path: root/fs/btrfs/ctree.h
AgeCommit message (Collapse)AuthorFilesLines
2024-10-04btrfs: fix race setting file private on concurrent lseek using same fdFilipe Manana1-0/+2
[ Upstream commit 7ee85f5515e86a4e2a2f51969795920733912bad ] When doing concurrent lseek(2) system calls against the same file descriptor, using multiple threads belonging to the same process, we have a short time window where a race happens and can result in a memory leak. The race happens like this: 1) A program opens a file descriptor for a file and then spawns two threads (with the pthreads library for example), lets call them task A and task B; 2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at file.c:find_desired_extent() while holding a read lock on the inode; 3) At the start of find_desired_extent(), it extracts the file's private_data pointer into a local variable named 'private', which has a value of NULL; 4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode in shared mode and enters file.c:find_desired_extent(), where it also extracts file->private_data into its local variable 'private', which has a NULL value; 5) Because it saw a NULL file private, task A allocates a private structure and assigns to the file structure; 6) Task B also saw a NULL file private so it also allocates its own file private and then assigns it to the same file structure, since both tasks are using the same file descriptor. At this point we leak the private structure allocated by task A. Besides the memory leak, there's also the detail that both tasks end up using the same cached state record in the private structure (struct btrfs_file_private::llseek_cached_state), which can result in a use-after-free problem since one task can free it while the other is still using it (only one task took a reference count on it). Also, sharing the cached state is not a good idea since it could result in incorrect results in the future - right now it should not be a problem because it end ups being used only in extent-io-tree.c:count_range_bits() where we do range validation before using the cached state. Fix this by protecting the private assignment and check of a file while holding the inode's spinlock and keep track of the task that allocated the private, so that it's used only by that task in order to prevent user-after-free issues with the cached state record as well as potentially using it incorrectly in the future. Fixes: 3c32c7212f16 ("btrfs: use cached state when looking for delalloc ranges with lseek") CC: stable@vger.kernel.org # 6.6+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-09-12btrfs: fix race between direct IO write and fsync when using same fdFilipe Manana1-1/+0
commit cd9253c23aedd61eb5ff11f37a36247cd46faf86 upstream. If we have 2 threads that are using the same file descriptor and one of them is doing direct IO writes while the other is doing fsync, we have a race where we can end up either: 1) Attempt a fsync without holding the inode's lock, triggering an assertion failures when assertions are enabled; 2) Do an invalid memory access from the fsync task because the file private points to memory allocated on stack by the direct IO task and it may be used by the fsync task after the stack was destroyed. The race happens like this: 1) A user space program opens a file descriptor with O_DIRECT; 2) The program spawns 2 threads using libpthread for example; 3) One of the threads uses the file descriptor to do direct IO writes, while the other calls fsync using the same file descriptor. 4) Call task A the thread doing direct IO writes and task B the thread doing fsyncs; 5) Task A does a direct IO write, and at btrfs_direct_write() sets the file's private to an on stack allocated private with the member 'fsync_skip_inode_lock' set to true; 6) Task B enters btrfs_sync_file() and sees that there's a private structure associated to the file which has 'fsync_skip_inode_lock' set to true, so it skips locking the inode's VFS lock; 7) Task A completes the direct IO write, and resets the file's private to NULL since it had no prior private and our private was stack allocated. Then it unlocks the inode's VFS lock; 8) Task B enters btrfs_get_ordered_extents_for_logging(), then the assertion that checks the inode's VFS lock is held fails, since task B never locked it and task A has already unlocked it. The stack trace produced is the following: assertion failed: inode_is_locked(&inode->vfs_inode), in fs/btrfs/ordered-data.c:983 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ordered-data.c:983! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 9 PID: 5072 Comm: worker Tainted: G U OE 6.10.5-1-default #1 openSUSE Tumbleweed 69f48d427608e1c09e60ea24c6c55e2ca1b049e8 Hardware name: Acer Predator PH315-52/Covini_CFS, BIOS V1.12 07/28/2020 RIP: 0010:btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs] Code: 50 d6 86 c0 e8 (...) RSP: 0018:ffff9e4a03dcfc78 EFLAGS: 00010246 RAX: 0000000000000054 RBX: ffff9078a9868e98 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffff907dce4a7800 RDI: ffff907dce4a7800 RBP: ffff907805518800 R08: 0000000000000000 R09: ffff9e4a03dcfb38 R10: ffff9e4a03dcfb30 R11: 0000000000000003 R12: ffff907684ae7800 R13: 0000000000000001 R14: ffff90774646b600 R15: 0000000000000000 FS: 00007f04b96006c0(0000) GS:ffff907dce480000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f32acbfc000 CR3: 00000001fd4fa005 CR4: 00000000003726f0 Call Trace: <TASK> ? __die_body.cold+0x14/0x24 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x6a/0x90 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? exc_invalid_op+0x50/0x70 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? btrfs_get_ordered_extents_for_logging.cold+0x1f/0x42 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] btrfs_sync_file+0x21a/0x4d0 [btrfs bb26272d49b4cdc847cf3f7faadd459b62caee9a] ? __seccomp_filter+0x31d/0x4f0 __x64_sys_fdatasync+0x4f/0x90 do_syscall_64+0x82/0x160 ? do_futex+0xcb/0x190 ? __x64_sys_futex+0x10e/0x1d0 ? switch_fpu_return+0x4f/0xd0 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 ? syscall_exit_to_user_mode+0x72/0x220 ? do_syscall_64+0x8e/0x160 entry_SYSCALL_64_after_hwframe+0x76/0x7e Another problem here is if task B grabs the private pointer and then uses it after task A has finished, since the private was allocated in the stack of task A, it results in some invalid memory access with a hard to predict result. This issue, triggering the assertion, was observed with QEMU workloads by two users in the Link tags below. Fix this by not relying on a file's private to pass information to fsync that it should skip locking the inode and instead pass this information through a special value stored in current->journal_info. This is safe because in the relevant section of the direct IO write path we are not holding a transaction handle, so current->journal_info is NULL. The following C program triggers the issue: $ cat repro.c /* Get the O_DIRECT definition. */ #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdint.h> #include <fcntl.h> #include <errno.h> #include <string.h> #include <pthread.h> static int fd; static ssize_t do_write(int fd, const void *buf, size_t count, off_t offset) { while (count > 0) { ssize_t ret; ret = pwrite(fd, buf, count, offset); if (ret < 0) { if (errno == EINTR) continue; return ret; } count -= ret; buf += ret; } return 0; } static void *fsync_loop(void *arg) { while (1) { int ret; ret = fsync(fd); if (ret != 0) { perror("Fsync failed"); exit(6); } } } int main(int argc, char *argv[]) { long pagesize; void *write_buf; pthread_t fsyncer; int ret; if (argc != 2) { fprintf(stderr, "Use: %s <file path>\n", argv[0]); return 1; } fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT, 0666); if (fd == -1) { perror("Failed to open/create file"); return 1; } pagesize = sysconf(_SC_PAGE_SIZE); if (pagesize == -1) { perror("Failed to get page size"); return 2; } ret = posix_memalign(&write_buf, pagesize, pagesize); if (ret) { perror("Failed to allocate buffer"); return 3; } ret = pthread_create(&fsyncer, NULL, fsync_loop, NULL); if (ret != 0) { fprintf(stderr, "Failed to create writer thread: %d\n", ret); return 4; } while (1) { ret = do_write(fd, write_buf, pagesize, 0); if (ret != 0) { perror("Write failed"); exit(5); } } return 0; } $ mkfs.btrfs -f /dev/sdi $ mount /dev/sdi /mnt/sdi $ timeout 10 ./repro /mnt/sdi/foo Usually the race is triggered within less than 1 second. A test case for fstests will follow soon. Reported-by: Paulo Dias <paulo.miguel.dias@gmail.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219187 Reported-by: Andreas Jahn <jahn-andi@web.de> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219199 Reported-by: syzbot+4704b3cc972bd76024f1@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000044ff540620d7dee2@google.com/ Fixes: 939b656bc8ab ("btrfs: fix corruption after buffer fault in during direct IO append write") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-08-14btrfs: fix corruption after buffer fault in during direct IO append writeFilipe Manana1-0/+1
commit 939b656bc8ab203fdbde26ccac22bcb7f0985be5 upstream. During an append (O_APPEND write flag) direct IO write if the input buffer was not previously faulted in, we can corrupt the file in a way that the final size is unexpected and it includes an unexpected hole. The problem happens like this: 1) We have an empty file, with size 0, for example; 2) We do an O_APPEND direct IO with a length of 4096 bytes and the input buffer is not currently faulted in; 3) We enter btrfs_direct_write(), lock the inode and call generic_write_checks(), which calls generic_write_checks_count(), and that function sets the iocb position to 0 with the following code: if (iocb->ki_flags & IOCB_APPEND) iocb->ki_pos = i_size_read(inode); 4) We call btrfs_dio_write() and enter into iomap, which will end up calling btrfs_dio_iomap_begin() and that calls btrfs_get_blocks_direct_write(), where we update the i_size of the inode to 4096 bytes; 5) After btrfs_dio_iomap_begin() returns, iomap will attempt to access the page of the write input buffer (at iomap_dio_bio_iter(), with a call to bio_iov_iter_get_pages()) and fail with -EFAULT, which gets returned to btrfs at btrfs_direct_write() via btrfs_dio_write(); 6) At btrfs_direct_write() we get the -EFAULT error, unlock the inode, fault in the write buffer and then goto to the label 'relock'; 7) We lock again the inode, do all the necessary checks again and call again generic_write_checks(), which calls generic_write_checks_count() again, and there we set the iocb's position to 4K, which is the current i_size of the inode, with the following code pointed above: if (iocb->ki_flags & IOCB_APPEND) iocb->ki_pos = i_size_read(inode); 8) Then we go again to btrfs_dio_write() and enter iomap and the write succeeds, but it wrote to the file range [4K, 8K), leaving a hole in the [0, 4K) range and an i_size of 8K, which goes against the expectations of having the data written to the range [0, 4K) and get an i_size of 4K. Fix this by not unlocking the inode before faulting in the input buffer, in case we get -EFAULT or an incomplete write, and not jumping to the 'relock' label after faulting in the buffer - instead jump to a location immediately before calling iomap, skipping all the write checks and relocking. This solves this problem and it's fine even in case the input buffer is memory mapped to the same file range, since only holding the range locked in the inode's io tree can cause a deadlock, it's safe to keep the inode lock (VFS lock), as was fixed and described in commit 51bd9563b678 ("btrfs: fix deadlock due to page faults during direct IO reads and writes"). A sample reproducer provided by a reporter is the following: $ cat test.c #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include <fcntl.h> #include <stdio.h> #include <sys/mman.h> #include <sys/stat.h> #include <unistd.h> int main(int argc, char *argv[]) { if (argc < 2) { fprintf(stderr, "Usage: %s <test file>\n", argv[0]); return 1; } int fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC | O_DIRECT | O_APPEND, 0644); if (fd < 0) { perror("creating test file"); return 1; } char *buf = mmap(NULL, 4096, PROT_READ, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ssize_t ret = write(fd, buf, 4096); if (ret < 0) { perror("pwritev2"); return 1; } struct stat stbuf; ret = fstat(fd, &stbuf); if (ret < 0) { perror("stat"); return 1; } printf("size: %llu\n", (unsigned long long)stbuf.st_size); return stbuf.st_size == 4096 ? 0 : 1; } A test case for fstests will be sent soon. Reported-by: Hanna Czenczek <hreitz@redhat.com> Link: https://lore.kernel.org/linux-btrfs/0b841d46-12fe-4e64-9abb-871d8d0de271@redhat.com/ Fixes: 8184620ae212 ("btrfs: fix lost file sync on direct IO write with nowait and dsync iocb") CC: stable@vger.kernel.org # 6.1+ Tested-by: Hanna Czenczek <hreitz@redhat.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-11-28btrfs: abort transaction on generation mismatch when marking eb as dirtyFilipe Manana1-4/+7
[ Upstream commit 50564b651d01c19ce732819c5b3c3fd60707188e ] When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(), we check if its generation matches the running transaction and if not we just print a warning. Such mismatch is an indicator that something really went wrong and only printing a warning message (and stack trace) is not enough to prevent a corruption. Allowing a transaction to commit with such an extent buffer will trigger an error if we ever try to read it from disk due to a generation mismatch with its parent generation. So abort the current transaction with -EUCLEAN if we notice a generation mismatch. For this we need to pass a transaction handle to btrfs_mark_buffer_dirty() which is always available except in test code, in which case we can pass NULL since it operates on dummy extent buffers and all test roots have a single node/leaf (root node at level 0). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-10-23btrfs: fix unwritten extent buffer after snapshotting a new subvolumeFilipe Manana1-1/+2
When creating a snapshot of a subvolume that was created in the current transaction, we can end up not persisting a dirty extent buffer that is referenced by the snapshot, resulting in IO errors due to checksum failures when trying to read the extent buffer later from disk. A sequence of steps that leads to this is the following: 1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical address 36007936, for the leaf/root of a new subvolume that has an ID of 291. We mark the extent buffer as dirty, and at this point the subvolume tree has a single node/leaf which is also its root (level 0); 2) We no longer commit the transaction used to create the subvolume at create_subvol(). We used to, but that was recently removed in commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create"); 3) The transaction used to create the subvolume has an ID of 33, so the extent buffer 36007936 has a generation of 33; 4) Several updates happen to subvolume 291 during transaction 33, several files created and its tree height changes from 0 to 1, so we end up with a new root at level 1 and the extent buffer 36007936 is now a leaf of that new root node, which is extent buffer 36048896. The commit root remains as 36007936, since we are still at transaction 33; 5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and we end up at transaction.c:create_pending_snapshot(), in the critical section of a transaction commit. There we COW the root of subvolume 291, which is extent buffer 36048896. The COW operation returns extent buffer 36048896, since there's no need to COW because the extent buffer was created in this transaction and it was not written yet. The we call btrfs_copy_root() against the root node 36048896. During this operation we allocate a new extent buffer to turn into the root node of the snapshot, copy the contents of the root node 36048896 into this snapshot root extent buffer, set the owner to 292 (the ID of the snapshot), etc, and then we call btrfs_inc_ref(). This will create a delayed reference for each leaf pointed by the root node with a reference root of 292 - this includes a reference for the leaf 36007936. After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state. Then we call btrfs_insert_dir_item(), to create the directory entry in in the tree of subvolume 291 that points to the snapshot. This ends up needing to modify leaf 36007936 to insert the respective directory items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state, we need to COW the leaf. We end up at btrfs_force_cow_block() and then at update_ref_for_cow(). At update_ref_for_cow() we call btrfs_block_can_be_shared() which returns false, despite the fact the leaf 36007936 is shared - the subvolume's root and the snapshot's root point to that leaf. The reason that it incorrectly returns false is because the commit root of the subvolume is extent buffer 36007936 - it was the initial root of the subvolume when we created it. So btrfs_block_can_be_shared() which has the following logic: int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf) { if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && buf != root->node && buf != root->commit_root && (btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) return 1; return 0; } Returns false (0) since 'buf' (extent buffer 36007936) matches the root's commit root. As a result, at update_ref_for_cow(), we don't check for the number of references for extent buffer 36007936, we just assume it's not shared and therefore that it has only 1 reference, so we set the local variable 'refs' to 1. Later on, in the final if-else statement at update_ref_for_cow(): static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { (...) if (refs > 1) { (...) } else { (...) btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } } So we mark the extent buffer 36007936 as not dirty, and as a result we don't write it to disk later in the transaction commit, despite the fact that the snapshot's root points to it. Attempting to access the leaf or dumping the tree for example shows that the extent buffer was not written: $ btrfs inspect-internal dump-tree -t 292 /dev/sdb btrfs-progs v6.2.2 file tree key (292 ROOT_ITEM 33) node 36110336 level 1 items 2 free space 119 generation 33 owner 292 node 36110336 flags 0x1(WRITTEN) backref revision 1 checksum stored a8103e3e checksum calced a8103e3e fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07 key (256 INODE_ITEM 0) block 36007936 gen 33 key (257 EXTENT_DATA 0) block 36052992 gen 33 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 total bytes 107374182400 bytes used 38572032 uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 The respective on disk region is full of zeroes as the device was trimmed at mkfs time. Obviously 'btrfs check' also detects and complains about this: $ btrfs check /dev/sdb Opening filesystem to check... Checking filesystem on /dev/sdb UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 generation: 33 (33) [1/7] checking root items [2/7] checking extents checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 owner ref check failed [36007936 4096] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 The following tree block(s) is corrupted in tree 292: tree block bytenr: 36110336, level: 1, node key: (256, 1, 0) root 292 root dir 256 not found ERROR: errors found in fs roots found 38572032 bytes used, error(s) found total csum bytes: 16048 total tree bytes: 1265664 total fs tree bytes: 1118208 total extent tree bytes: 65536 btree space waste bytes: 562598 file data blocks allocated: 65978368 referenced 36569088 Fix this by updating btrfs_block_can_be_shared() to consider that an extent buffer may be shared if it matches the commit root and if its generation matches the current transaction's generation. This can be reproduced with the following script: $ cat test.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi # Use a filesystem with a 64K node size so that we have the same node # size on every machine regardless of its page size (on x86_64 default # node size is 16K due to the 4K page size, while on PPC it's 64K by # default). This way we can make sure we are able to create a btree for # the subvolume with a height of 2. mkfs.btrfs -f -n 64K $DEV mount $DEV $MNT btrfs subvolume create $MNT/subvol # Create a few empty files on the subvolume, this bumps its btree # height to 2 (root node at level 1 and 2 leaves). for ((i = 1; i <= 300; i++)); do echo -n > $MNT/subvol/file_$i done btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap umount $DEV btrfs check $DEV Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment): $ ./test.sh Create subvolume '/mnt/sdi/subvol' Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap' Opening filesystem to check... Checking filesystem on /dev/sdi UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1 [1/7] checking root items [2/7] checking extents parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure owner ref check failed [30539776 65536] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0) Wrong generation of child node/leaf, wanted: 5, have: 7 root 257 root dir 256 not found ERROR: errors found in fs roots found 917504 bytes used, error(s) found total csum bytes: 0 total tree bytes: 851968 total fs tree bytes: 393216 total extent tree bytes: 65536 btree space waste bytes: 736550 file data blocks allocated: 0 referenced 0 A test case for fstests will follow soon. Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-14btrfs: fix infinite directory readsFilipe Manana1-0/+1
The readdir implementation currently processes always up to the last index it finds. This however can result in an infinite loop if the directory has a large number of entries such that they won't all fit in the given buffer passed to the readdir callback, that is, dir_emit() returns a non-zero value. Because in that case readdir() will be called again and if in the meanwhile new directory entries were added and we still can't put all the remaining entries in the buffer, we keep repeating this over and over. The following C program and test script reproduce the problem: $ cat /mnt/readdir_prog.c #include <sys/types.h> #include <dirent.h> #include <stdio.h> int main(int argc, char *argv[]) { DIR *dir = opendir("."); struct dirent *dd; while ((dd = readdir(dir))) { printf("%s\n", dd->d_name); rename(dd->d_name, "TEMPFILE"); rename("TEMPFILE", dd->d_name); } closedir(dir); } $ gcc -o /mnt/readdir_prog /mnt/readdir_prog.c $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV &> /dev/null #mkfs.xfs -f $DEV &> /dev/null #mkfs.ext4 -F $DEV &> /dev/null mount $DEV $MNT mkdir $MNT/testdir for ((i = 1; i <= 2000; i++)); do echo -n > $MNT/testdir/file_$i done cd $MNT/testdir /mnt/readdir_prog cd /mnt umount $MNT This behaviour is surprising to applications and it's unlike ext4, xfs, tmpfs, vfat and other filesystems, which always finish. In this case where new entries were added due to renames, some file names may be reported more than once, but this varies according to each filesystem - for example ext4 never reported the same file more than once while xfs reports the first 13 file names twice. So change our readdir implementation to track the last index number when opendir() is called and then make readdir() never process beyond that index number. This gives the same behaviour as ext4. Reported-by: Rob Landley <rob@landley.net> Link: https://lore.kernel.org/linux-btrfs/2c8c55ec-04c6-e0dc-9c5c-8c7924778c35@landley.net/ Link: https://bugzilla.kernel.org/show_bug.cgi?id=217681 CC: stable@vger.kernel.org # 6.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: do not BUG_ON() on tree mod log failures at btrfs_del_ptr()Filipe Manana1-2/+2
At btrfs_del_ptr(), instead of doing a BUG_ON() in case we fail to record tree mod log operations, do a transaction abort and return the error to the callers. There's really no need for the BUG_ON() as we can release all resources in the context of all callers, and we have to abort because other future tree searches that use the tree mod log (btrfs_search_old_slot()) may get inconsistent results if other operations modify the tree after that failure and before the tree mod log based search. This implies btrfs_del_ptr() return an int instead of void, and making all callers check for returned errors. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: rename del_ptr to btrfs_del_ptr and export itJosef Bacik1-0/+2
This exists internal to ctree.c, however btrfs check needs to use it for some of its operations. I'd rather not duplicate that code inside of btrfs check as this is low level and I want to keep this code in one place, so rename the function to btrfs_del_ptr and export it so that it can be used inside of btrfs-progs safely. Add a comment to make sure this doesn't get removed by a future cleanup. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: add a btrfs_csum_type_size helperJosef Bacik1-0/+1
This is needed in btrfs-progs for the tools that convert the checksum types for file systems and a few other things. We don't have it in the kernel as we just want to get the size for the super blocks type. However I don't want to have to manually add this every time we sync ctree.c into btrfs-progs, so add the helper in the kernel with a note so it doesn't get removed by a later cleanup. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: print-tree: pass const extent buffer pointerQu Wenruo1-1/+1
Since print-tree infrastructure only prints the content of a tree block, we can make them to accept const extent buffer pointer. This removes a forced type convert in extent-tree, where we convert a const extent buffer pointer to regular one, just to avoid compiler warning. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: unexport btrfs_prev_leaf()Filipe Manana1-1/+0
btrfs_prev_leaf() is not used outside ctree.c, so there's no need to export it at ctree.h - just make it static at ctree.c and move its definition above btrfs_search_slot_for_read(), since that function calls it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: open code btrfs_bin_search()Anand Jain1-15/+2
btrfs_bin_search() is a simple wrapper that searches for the whole slots by calling btrfs_generic_bin_search() with the starting slot/first_slot preset to 0. This simple wrapper can be open coded as btrfs_bin_search(). Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: do unsigned integer division in the extent buffer binary search loopFilipe Manana1-1/+1
In the search loop of the binary search function, we are doing a division by 2 of the sum of the high and low slots. Because the slots are integers, the generated assembly code for it is the following on x86_64: 0x00000000000141f1 <+145>: mov %eax,%ebx 0x00000000000141f3 <+147>: shr $0x1f,%ebx 0x00000000000141f6 <+150>: add %eax,%ebx 0x00000000000141f8 <+152>: sar %ebx It's a few more instructions than a simple right shift, because signed integer division needs to round towards zero. However we know that slots can never be negative (btrfs_header_nritems() returns an u32), so we can instead use unsigned types for the low and high slots and therefore use unsigned integer division, which results in a single instruction on x86_64: 0x00000000000141f0 <+144>: shr %ebx So use unsigned types for the slots and therefore unsigned division. This is part of a small patchset comprised of the following two patches: btrfs: eliminate extra call when doing binary search on extent buffer btrfs: do unsigned integer division in the extent buffer binary search loop The following fs_mark test was run on a non-debug kernel (Debian's default kernel config) before and after applying the patchset: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-O no-holes -R free-space-tree" FILES=100000 THREADS=$(nproc --all) FILE_SIZE=0 umount $DEV &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT OPTS="-S 0 -L 6 -n $FILES -s $FILE_SIZE -t $THREADS -k" for ((i = 1; i <= $THREADS; i++)); do OPTS="$OPTS -d $MNT/d$i" done fs_mark $OPTS umount $MNT Results before applying patchset: FSUse% Count Size Files/sec App Overhead 2 1200000 0 174472.0 11549868 4 2400000 0 253503.0 11694618 4 3600000 0 257833.1 11611508 6 4800000 0 247089.5 11665983 6 6000000 0 211296.1 12121244 10 7200000 0 187330.6 12548565 Results after applying patchset: FSUse% Count Size Files/sec App Overhead 2 1200000 0 207556.0 11393252 4 2400000 0 266751.1 11347909 4 3600000 0 274397.5 11270058 6 4800000 0 259608.4 11442250 6 6000000 0 238895.8 11635921 8 7200000 0 211942.2 11873825 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-15btrfs: eliminate extra call when doing binary search on extent bufferFilipe Manana1-0/+15
The function btrfs_bin_search() is just a wrapper around the function generic_bin_search(), which passes the same arguments plus a default low slot with a value of 0. This adds an unnecessary extra function call, since btrfs_bin_search() is not static. So improve on this by making btrfs_bin_search() an inline function that calls generic_bin_search(), renaming the later to btrfs_generic_bin_search() and exporting it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the csum helpers into ctree.hJosef Bacik1-0/+5
These got moved because of copy+paste, but this code exists in ctree.c, so move the declarations back into ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move eb offset helpers into extent_io.hJosef Bacik1-33/+0
These are very specific to how the extent buffer is defined, so this differs between btrfs-progs and the kernel. Make things easier by moving these helpers into extent_io.h so we don't have to worry about this when syncing ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move file_extent_item helpers into file-item.hJosef Bacik1-8/+0
These helpers use functions that are in multiple places, which makes it tricky to sync them into btrfs-progs. Move them to file-item.h and then include file-item.h in places that use these helpers. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move root helpers back into ctree.hJosef Bacik1-0/+17
These accidentally got brought into accessors.h, but belong with the btrfs_root definitions which are currently in ctree.h. Move these to make it easier to sync accessors.[ch] into btrfs-progs. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: use cached state when looking for delalloc ranges with lseekFilipe Manana1-0/+1
During lseek (SEEK_HOLE/DATA), whenever we find a hole or prealloc extent, we will look for delalloc in that range, and one of the things we do for that is to find out ranges in the inode's io_tree marked with EXTENT_DELALLOC, using calls to count_range_bits(). Typically there's a single, or few, searches in the io_tree for delalloc per lseek call. However it's common for applications to keep calling lseek with SEEK_HOLE and SEEK_DATA to find where extents and holes are in a file, read the extents and skip holes in order to avoid unnecessary IO and save disk space by preserving holes. One popular user is the cp utility from coreutils. Starting with coreutils 9.0, cp uses SEEK_HOLE and SEEK_DATA to iterate over the extents of a file. Before 9.0, it used fiemap to figure out where holes and extents are in the source file. Another popular user is the tar utility when used with the --sparse / -S option to detect and preserve holes. Given that the pattern is to keep calling lseek with a start offset that matches the returned offset from the previous lseek call, we can benefit from caching the last extent state visited in count_range_bits() and use it for the next count_range_bits() from the next lseek call. Example, the following strace excerpt from running tar: $ strace tar cJSvf foo.tar.xz qemu_disk_file.raw (...) lseek(5, 125019574272, SEEK_HOLE) = 125024989184 lseek(5, 125024989184, SEEK_DATA) = 125024993280 lseek(5, 125024993280, SEEK_HOLE) = 125025239040 lseek(5, 125025239040, SEEK_DATA) = 125025255424 lseek(5, 125025255424, SEEK_HOLE) = 125025353728 lseek(5, 125025353728, SEEK_DATA) = 125025357824 lseek(5, 125025357824, SEEK_HOLE) = 125026766848 lseek(5, 125026766848, SEEK_DATA) = 125026770944 lseek(5, 125026770944, SEEK_HOLE) = 125027053568 (...) Shows that pattern, which is the same as with cp from coreutils 9.0+. So start using a cached state for the delalloc searches in lseek, and store it in struct file's private data so that it can be reused across lseek calls. This change is part of a patchset that is comprised of the following patches: 1/9 btrfs: remove leftover setting of EXTENT_UPTODATE state in an inode's io_tree 2/9 btrfs: add an early exit when searching for delalloc range for lseek/fiemap 3/9 btrfs: skip unnecessary delalloc searches during lseek/fiemap 4/9 btrfs: search for delalloc more efficiently during lseek/fiemap 5/9 btrfs: remove no longer used btrfs_next_extent_map() 6/9 btrfs: allow passing a cached state record to count_range_bits() 7/9 btrfs: update stale comment for count_range_bits() 8/9 btrfs: use cached state when looking for delalloc ranges with fiemap 9/9 btrfs: use cached state when looking for delalloc ranges with lseek The following test was run before and after applying the whole patchset: $ cat test-cp.sh #!/bin/bash DEV=/dev/sdh MNT=/mnt/sdh # coreutils 8.32, cp uses fiemap to detect holes and extents #CP_PROG=/usr/bin/cp # coreutils 9.1, cp uses SEEK_HOLE/DATA to detect holes and extents CP_PROG=/home/fdmanana/git/hub/coreutils/src/cp umount $DEV &> /dev/null mkfs.btrfs -f $DEV mount $DEV $MNT FILE_SIZE=$((1024 * 1024 * 1024)) echo "Creating file with a size of $((FILE_SIZE / 1024 / 1024))M" # Create a very sparse file, where each extent has a length of 4K and # is preceded by a 4K hole and followed by another 4K hole. start=$(date +%s%N) echo -n > $MNT/foobar for ((off = 0; off < $FILE_SIZE; off += 8192)); do xfs_io -c "pwrite -S 0xab $off 4K" $MNT/foobar > /dev/null echo -ne "\r$off / $FILE_SIZE ..." done end=$(date +%s%N) echo -e "\nFile created ($(( (end - start) / 1000000 )) milliseconds)" start=$(date +%s%N) $CP_PROG $MNT/foobar /dev/null end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "cp took $dur milliseconds with data/metadata cached and delalloc" # Flush all delalloc. sync start=$(date +%s%N) $CP_PROG $MNT/foobar /dev/null end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "cp took $dur milliseconds with data/metadata cached and no delalloc" # Unmount and mount again to test the case without any metadata # loaded in memory. umount $MNT mount $DEV $MNT start=$(date +%s%N) $CP_PROG $MNT/foobar /dev/null end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "cp took $dur milliseconds without data/metadata cached and no delalloc" umount $MNT The results, running on a box with a non-debug kernel (Debian's default kernel config), were the following: 128M file, before patchset: cp took 16574 milliseconds with data/metadata cached and delalloc cp took 122 milliseconds with data/metadata cached and no delalloc cp took 20144 milliseconds without data/metadata cached and no delalloc 128M file, after patchset: cp took 6277 milliseconds with data/metadata cached and delalloc cp took 109 milliseconds with data/metadata cached and no delalloc cp took 210 milliseconds without data/metadata cached and no delalloc 512M file, before patchset: cp took 14369 milliseconds with data/metadata cached and delalloc cp took 429 milliseconds with data/metadata cached and no delalloc cp took 88034 milliseconds without data/metadata cached and no delalloc 512M file, after patchset: cp took 12106 milliseconds with data/metadata cached and delalloc cp took 427 milliseconds with data/metadata cached and no delalloc cp took 824 milliseconds without data/metadata cached and no delalloc 1G file, before patchset: cp took 10074 milliseconds with data/metadata cached and delalloc cp took 886 milliseconds with data/metadata cached and no delalloc cp took 181261 milliseconds without data/metadata cached and no delalloc 1G file, after patchset: cp took 3320 milliseconds with data/metadata cached and delalloc cp took 880 milliseconds with data/metadata cached and no delalloc cp took 1801 milliseconds without data/metadata cached and no delalloc Reported-by: Wang Yugui <wangyugui@e16-tech.com> Link: https://lore.kernel.org/linux-btrfs/20221106073028.71F9.409509F4@e16-tech.com/ Link: https://lore.kernel.org/linux-btrfs/CAL3q7H5NSVicm7nYBJ7x8fFkDpno8z3PYt5aPU43Bajc1H0h1Q@mail.gmail.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move orphan prototypes into orphan.hJosef Bacik1-6/+0
Move these out of ctree.h into orphan.h to cut down on code in ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move super prototypes into super.hJosef Bacik1-7/+0
Move these out of ctree.h into super.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move CONFIG_BTRFS_FS_RUN_SANITY_TESTS checks to fs.hJosef Bacik1-15/+0
We already have a few of these in fs.h, move the remaining checks out of ctree.h into fs.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move verity prototypes into verity.hJosef Bacik1-22/+0
Move these out of ctree.h into verity.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move dev-replace prototypes into dev-replace.hJosef Bacik1-9/+0
We already have a dev-replace.h, simply move these prototypes and helpers into dev-replace.h where they belong. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move scrub prototypes into scrub.hJosef Bacik1-11/+0
Move these out of ctree.h into scrub.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move relocation prototypes into relocation.hJosef Bacik1-20/+0
Move these out of ctree.h into relocation.h to cut down on code in ctree.h Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move acl prototypes into acl.hJosef Bacik1-18/+0
Move these out of ctree.h into acl.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the snapshot drop related prototypes to extent-tree.hJosef Bacik1-6/+0
These belong in extent-tree.h, they were missed because they were not grouped with the other extent-tree.c prototypes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the 32bit warn defines into messages.hJosef Bacik1-13/+0
The code for these functions are in messages.c, move the defines and prototypes to messages.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move file prototypes to file.hJosef Bacik1-26/+0
Move these out of ctree.h into file.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move ioctl prototypes into ioctl.hJosef Bacik1-12/+0
Move these out of ctree.h into ioctl.h to cut down on code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move uuid tree prototypes to uuid-tree.hJosef Bacik1-7/+0
Move these out of ctree.h into uuid-tree.h to cut down on the code in ctree.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move file-item prototypes into their own headerJosef Bacik1-31/+0
Move these prototypes out of ctree.h and into file-item.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move dir-item prototypes into dir-item.hJosef Bacik1-38/+0
Move these prototypes out of ctree.h and into their own header file. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move defrag related prototypes to their own headerJosef Bacik1-18/+0
Now that the defrag code is all in one file, create a defrag.h and move all the defrag related prototypes and helper out of ctree.h and into defrag.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move inode prototypes to btrfs_inode.hJosef Bacik1-140/+0
I initially wanted to make a new header file for this, but these prototypes do naturally fit into btrfs_inode.h. If we want to extract vfs from pure btrfs code in the future we may need to split this up, but btrfs_inode embeds the vfs_inode, so it makes sense to put the prototypes in this header for now. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_chunk_item_size out of ctree.hJosef Bacik1-7/+0
This is used by the volumes code and the tree checker code. We want to maintain inline however, so simply move it to volumes.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove unused function prototypesJosef Bacik1-3/+0
I wrote the following coccinelle script to find function declarations that didn't have the corresponding code for them @funcproto@ identifier func; type T; position p0; @@ T func@p0(...); @funccode@ identifier funcproto.func; position p1; @@ func@p1(...) { ... } @script:python depends on !funccode@ p0 << funcproto.p0; @@ print("Proto with no function at %s:%s" % (p0[0].file, p0[0].line)) and ran it against btrfs, which identified the 4 function prototypes I've removed in this patch. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move root tree prototypes to their own headerJosef Bacik1-32/+0
Move all the root-tree.c prototypes to root-tree.h, and then update all the necessary files to include the new header. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: delete unused function prototypes in ctree.hJosef Bacik1-6/+0
This batch of prototypes no longer have code associated with them, so remove them. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move delalloc space related prototypes to delalloc-space.hJosef Bacik1-3/+0
These exist in delalloc-space.c, move them from ctree.h into delalloc-space.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move extent-tree helpers into their own header fileJosef Bacik1-72/+0
Move all the extent tree related prototypes to extent-tree.h out of ctree.h, and then go include it everywhere needed so everything compiles. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_account_ro_block_groups_free_space into space-info.cJosef Bacik1-1/+0
This was prototyped in ctree.h and the code existed in extent-tree.c, but it's space-info related so move it into space-info.c. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove extra space info prototypes in ctree.hJosef Bacik1-3/+0
These are defined already in space-info.h, remove them from ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: minor whitespace in ctree.hJosef Bacik1-2/+0
We've accumulated some whitespace problems in ctree.h, clean these up. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the lockdep helpers into locking.hJosef Bacik1-76/+0
These more naturally fit in with the locking related code, and they're all defines so they can easily go anywhere, move them out of ctree.h into locking.h Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move btrfs_fs_info declarations into fs.hJosef Bacik1-658/+1
Now that we have a lot of the fs_info related helpers and stuff isolated, copy these over to fs.h out of ctree.h. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ reformat comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: use struct fscrypt_str instead of struct qstrSweet Tea Dorminy1-10/+9
While struct qstr is more natural without fscrypt, since it's provided by dentries, struct fscrypt_str is provided by the fscrypt handlers processing dentries, and is thus more natural in the fscrypt world. Replace all of the struct qstr uses with struct fscrypt_str. Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: setup qstr from dentrys using fscrypt helperSweet Tea Dorminy1-0/+3
Most places where we get a struct qstr, we are doing so from a dentry. With fscrypt, the dentry's name may be encrypted on-disk, so fscrypt provides a helper to convert a dentry name to the appropriate disk name if necessary. Convert each of the dentry name accesses to use fscrypt_setup_filename(), then convert the resulting fscrypt_name back to an unencrypted qstr. This does not work for nokey names, but the specific locations that could spawn nokey names are noted. At present, since there are no encrypted directories, nothing goes down the filename encryption paths. Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: use struct qstr instead of name and namelen pairsSweet Tea Dorminy1-14/+12
Many functions throughout btrfs take name buffer and name length arguments. Most of these functions at the highest level are usually called with these arguments extracted from a supplied dentry's name. But the entire name can be passed instead, making each function a little more elegant. Each function whose arguments are currently the name and length extracted from a dentry is herein converted to instead take a pointer to the name in the dentry. The couple of calls to these calls without a struct dentry are converted to create an appropriate qstr to pass in. Additionally, every function which is only called with a name/len extracted directly from a qstr is also converted. This change has positive effect on stack consumption, frame of many functions is reduced but this will be used in the future for fscrypt related structures. Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>