summaryrefslogtreecommitdiff
path: root/fs/btrfs/backref.c
AgeCommit message (Collapse)AuthorFilesLines
2023-01-18btrfs: fix resolving backrefs for inline extent followed by preallocBoris Burkov1-0/+4
commit 560840afc3e63bbe5d9c5ef6b2ecf8f3589adff6 upstream. If a file consists of an inline extent followed by a regular or prealloc extent, then a legitimate attempt to resolve a logical address in the non-inline region will result in add_all_parents reading the invalid offset field of the inline extent. If the inline extent item is placed in the leaf eb s.t. it is the first item, attempting to access the offset field will not only be meaningless, it will go past the end of the eb and cause this panic: [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8 [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199 [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110 [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202 [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000 [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001 [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918 [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd [17.663617] FS: 00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000 [17.666525] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0 [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [17.676034] PKRU: 55555554 [17.677004] Call Trace: [17.677877] add_all_parents+0x276/0x480 [17.679325] find_parent_nodes+0xfae/0x1590 [17.680771] btrfs_find_all_leafs+0x5e/0xa0 [17.682217] iterate_extent_inodes+0xce/0x260 [17.683809] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.685597] ? iterate_inodes_from_logical+0xa1/0xd0 [17.687404] iterate_inodes_from_logical+0xa1/0xd0 [17.689121] ? btrfs_inode_flags_to_xflags+0x50/0x50 [17.691010] btrfs_ioctl_logical_to_ino+0x131/0x190 [17.692946] btrfs_ioctl+0x104a/0x2f60 [17.694384] ? selinux_file_ioctl+0x182/0x220 [17.695995] ? __x64_sys_ioctl+0x84/0xc0 [17.697394] __x64_sys_ioctl+0x84/0xc0 [17.698697] do_syscall_64+0x33/0x40 [17.700017] entry_SYSCALL_64_after_hwframe+0x44/0xae [17.701753] RIP: 0033:0x7f64e72761b7 [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7 [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003 [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60 [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001 [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0 [17.724839] Modules linked in: Fix the bug by detecting the inline extent item in add_all_parents and skipping to the next extent item. CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10btrfs: fix inode list leak during backref walking at find_parent_nodes()Filipe Manana1-1/+17
[ Upstream commit 92876eec382a0f19f33d09d2c939e9ca49038ae5 ] During backref walking, at find_parent_nodes(), if we are dealing with a data extent and we get an error while resolving the indirect backrefs, at resolve_indirect_refs(), or in the while loop that iterates over the refs in the direct refs rbtree, we end up leaking the inode lists attached to the direct refs we have in the direct refs rbtree that were not yet added to the refs ulist passed as argument to find_parent_nodes(). Since they were not yet added to the refs ulist and prelim_release() does not free the lists, on error the caller can only free the lists attached to the refs that were added to the refs ulist, all the remaining refs get their inode lists never freed, therefore leaking their memory. Fix this by having prelim_release() always free any attached inode list to each ref found in the rbtree, and have find_parent_nodes() set the ref's inode list to NULL once it transfers ownership of the inode list to a ref added to the refs ulist passed to find_parent_nodes(). Fixes: 86d5f9944252 ("btrfs: convert prelimary reference tracking to use rbtrees") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10btrfs: fix inode list leak during backref walking at resolve_indirect_refs()Filipe Manana1-19/+17
[ Upstream commit 5614dc3a47e3310fbc77ea3b67eaadd1c6417bf1 ] During backref walking, at resolve_indirect_refs(), if we get an error we jump to the 'out' label and call ulist_free() on the 'parents' ulist, which frees all the elements in the ulist - however that does not free any inode lists that may be attached to elements, through the 'aux' field of a ulist node, so we end up leaking lists if we have any attached to the unodes. Fix this by calling free_leaf_list() instead of ulist_free() when we exit from resolve_indirect_refs(). The static function free_leaf_list() is moved up for this to be possible and it's slightly simplified by removing unnecessary code. Fixes: 3301958b7c1d ("Btrfs: add inodes before dropping the extent lock in find_all_leafs") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-29btrfs: fix processing of delayed tree block refs during backref walkingFilipe Manana1-6/+7
[ Upstream commit 943553ef9b51db303ab2b955c1025261abfdf6fb ] During backref walking, when processing a delayed reference with a type of BTRFS_TREE_BLOCK_REF_KEY, we have two bugs there: 1) We are accessing the delayed references extent_op, and its key, without the protection of the delayed ref head's lock; 2) If there's no extent op for the delayed ref head, we end up with an uninitialized key in the stack, variable 'tmp_op_key', and then pass it to add_indirect_ref(), which adds the reference to the indirect refs rb tree. This is wrong, because indirect references should have a NULL key when we don't have access to the key, and in that case they should be added to the indirect_missing_keys rb tree and not to the indirect rb tree. This means that if have BTRFS_TREE_BLOCK_REF_KEY delayed ref resulting from freeing an extent buffer, therefore with a count of -1, it will not cancel out the corresponding reference we have in the extent tree (with a count of 1), since both references end up in different rb trees. When using fiemap, where we often need to check if extents are shared through shared subtrees resulting from snapshots, it means we can incorrectly report an extent as shared when it's no longer shared. However this is temporary because after the transaction is committed the extent is no longer reported as shared, as running the delayed reference results in deleting the tree block reference from the extent tree. Outside the fiemap context, the result is unpredictable, as the key was not initialized but it's used when navigating the rb trees to insert and search for references (prelim_ref_compare()), and we expect all references in the indirect rb tree to have valid keys. The following reproducer triggers the second bug: $ cat test.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount -o compress $DEV $MNT # With a compressed 128M file we get a tree height of 2 (level 1 root). xfs_io -f -c "pwrite -b 1M 0 128M" $MNT/foo btrfs subvolume snapshot $MNT $MNT/snap # Fiemap should output 0x2008 in the flags column. # 0x2000 means shared extent # 0x8 means encoded extent (because it's compressed) echo echo "fiemap after snapshot, range [120M, 120M + 128K):" xfs_io -c "fiemap -v 120M 128K" $MNT/foo echo # Overwrite one extent and fsync to flush delalloc and COW a new path # in the snapshot's tree. # # After this we have a BTRFS_DROP_DELAYED_REF delayed ref of type # BTRFS_TREE_BLOCK_REF_KEY with a count of -1 for every COWed extent # buffer in the path. # # In the extent tree we have inline references of type # BTRFS_TREE_BLOCK_REF_KEY, with a count of 1, for the same extent # buffers, so they should cancel each other, and the extent buffers in # the fs tree should no longer be considered as shared. # echo "Overwriting file range [120M, 120M + 128K)..." xfs_io -c "pwrite -b 128K 120M 128K" $MNT/snap/foo xfs_io -c "fsync" $MNT/snap/foo # Fiemap should output 0x8 in the flags column. The extent in the range # [120M, 120M + 128K) is no longer shared, it's now exclusive to the fs # tree. echo echo "fiemap after overwrite range [120M, 120M + 128K):" xfs_io -c "fiemap -v 120M 128K" $MNT/foo echo umount $MNT Running it before this patch: $ ./test.sh (...) wrote 134217728/134217728 bytes at offset 0 128 MiB, 128 ops; 0.1152 sec (1.085 GiB/sec and 1110.5809 ops/sec) Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap' fiemap after snapshot, range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 Overwriting file range [120M, 120M + 128K)... wrote 131072/131072 bytes at offset 125829120 128 KiB, 1 ops; 0.0001 sec (683.060 MiB/sec and 5464.4809 ops/sec) fiemap after overwrite range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 The extent in the range [120M, 120M + 128K) is still reported as shared (0x2000 bit set) after overwriting that range and flushing delalloc, which is not correct - an entire path was COWed in the snapshot's tree and the extent is now only referenced by the original fs tree. Running it after this patch: $ ./test.sh (...) wrote 134217728/134217728 bytes at offset 0 128 MiB, 128 ops; 0.1198 sec (1.043 GiB/sec and 1068.2067 ops/sec) Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap' fiemap after snapshot, range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x2008 Overwriting file range [120M, 120M + 128K)... wrote 131072/131072 bytes at offset 125829120 128 KiB, 1 ops; 0.0001 sec (694.444 MiB/sec and 5555.5556 ops/sec) fiemap after overwrite range [120M, 120M + 128K): /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [245760..246015]: 34304..34559 256 0x8 Now the extent is not reported as shared anymore. So fix this by passing a NULL key pointer to add_indirect_ref() when processing a delayed reference for a tree block if there's no extent op for our delayed ref head with a defined key. Also access the extent op only after locking the delayed ref head's lock. The reproducer will be converted later to a test case for fstests. Fixes: 86d5f994425252 ("btrfs: convert prelimary reference tracking to use rbtrees") Fixes: a6dbceafb915e8 ("btrfs: Remove unused op_key var from add_delayed_refs") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-29btrfs: fix processing of delayed data refs during backref walkingFilipe Manana1-9/+24
[ Upstream commit 4fc7b57228243d09c0d878873bf24fa64a90fa01 ] When processing delayed data references during backref walking and we are using a share context (we are being called through fiemap), whenever we find a delayed data reference for an inode different from the one we are interested in, then we immediately exit and consider the data extent as shared. This is wrong, because: 1) This might be a DROP reference that will cancel out a reference in the extent tree; 2) Even if it's an ADD reference, it may be followed by a DROP reference that cancels it out. In either case we should not exit immediately. Fix this by never exiting when we find a delayed data reference for another inode - instead add the reference and if it does not cancel out other delayed reference, we will exit early when we call extent_is_shared() after processing all delayed references. If we find a drop reference, then signal the code that processes references from the extent tree (add_inline_refs() and add_keyed_refs()) to not exit immediately if it finds there a reference for another inode, since we have delayed drop references that may cancel it out. In this later case we exit once we don't have references in the rb trees that cancel out each other and have two references for different inodes. Example reproducer for case 1): $ cat test-1.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT xfs_io -f -c "pwrite 0 64K" $MNT/foo cp --reflink=always $MNT/foo $MNT/bar echo echo "fiemap after cloning:" xfs_io -c "fiemap -v" $MNT/foo rm -f $MNT/bar echo echo "fiemap after removing file bar:" xfs_io -c "fiemap -v" $MNT/foo umount $MNT Running it before this patch, the extent is still listed as shared, it has the flag 0x2000 (FIEMAP_EXTENT_SHARED) set: $ ./test-1.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 Example reproducer for case 2): $ cat test-2.sh #!/bin/bash DEV=/dev/sdj MNT=/mnt/sdj mkfs.btrfs -f $DEV mount $DEV $MNT xfs_io -f -c "pwrite 0 64K" $MNT/foo cp --reflink=always $MNT/foo $MNT/bar # Flush delayed references to the extent tree and commit current # transaction. sync echo echo "fiemap after cloning:" xfs_io -c "fiemap -v" $MNT/foo rm -f $MNT/bar echo echo "fiemap after removing file bar:" xfs_io -c "fiemap -v" $MNT/foo umount $MNT Running it before this patch, the extent is still listed as shared, it has the flag 0x2000 (FIEMAP_EXTENT_SHARED) set: $ ./test-2.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 After this patch, after deleting bar in both tests, the extent is not reported with the 0x2000 flag anymore, it gets only the flag 0x1 (which is FIEMAP_EXTENT_LAST): $ ./test-1.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x1 $ ./test-2.sh fiemap after cloning: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x2001 fiemap after removing file bar: /mnt/sdj/foo: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 26624..26751 128 0x1 These tests will later be converted to a test case for fstests. Fixes: dc046b10c8b7d4 ("Btrfs: make fiemap not blow when you have lots of snapshots") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27btrfs: remove BUG_ON(!eie) in find_parent_nodesJosef Bacik1-3/+11
[ Upstream commit 9f05c09d6baef789726346397438cca4ec43c3ee ] If we're looking for leafs that point to a data extent we want to record the extent items that point at our bytenr. At this point we have the reference and we know for a fact that this leaf should have a reference to our bytenr. However if there's some sort of corruption we may not find any references to our leaf, and thus could end up with eie == NULL. Replace this BUG_ON() with an ASSERT() and then return -EUCLEAN for the mortals. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27btrfs: remove BUG_ON() in find_parent_nodes()Josef Bacik1-1/+6
[ Upstream commit fcba0120edf88328524a4878d1d6f4ad39f2ec81 ] We search for an extent entry with .offset = -1, which shouldn't be a thing, but corruption happens. Add an ASSERT() for the developers, return -EUCLEAN for mortals. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-07btrfs: backref, use correct count to resolve normal data refsethanwu1-18/+11
commit b25b0b871f206936d5bca02b80d38c05623e27da upstream. With the following patches: - btrfs: backref, only collect file extent items matching backref offset - btrfs: backref, not adding refs from shared block when resolving normal backref - btrfs: backref, only search backref entries from leaves of the same root we only collect the normal data refs we want, so the imprecise upper bound total_refs of that EXTENT_ITEM could now be changed to the count of the normal backref entry we want to search. Background and how the patches fit together: Btrfs has two types of data backref. For BTRFS_EXTENT_DATA_REF_KEY type of backref, we don't have the exact block number. Therefore, we need to call resolve_indirect_refs. It uses btrfs_search_slot to locate the leaf block. Then we need to walk through the leaves to search for the EXTENT_DATA items that have disk bytenr matching the extent item (add_all_parents). When resolving indirect refs, we could take entries that don't belong to the backref entry we are searching for right now. For that reason when searching backref entry, we always use total refs of that EXTENT_ITEM rather than individual count. For example: item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize extent refs 24 gen 7302 flags DATA shared data backref parent 394985472 count 10 #1 extent data backref root 257 objectid 260 offset 1048576 count 3 #2 extent data backref root 256 objectid 260 offset 65536 count 6 #3 extent data backref root 257 objectid 260 offset 65536 count 5 #4 For example, when searching backref entry #4, we'll use total_refs 24, a very loose loop ending condition, instead of total_refs = 5. But using total_refs = 24 is not accurate. Sometimes, we'll never find all the refs from specific root. As a result, the loop keeps on going until we reach the end of that inode. The first 3 patches, handle 3 different types refs we might encounter. These refs do not belong to the normal backref we are searching, and hence need to be skipped. This patch changes the total_refs to correct number so that we could end loop as soon as we find all the refs we want. btrfs send uses backref to find possible clone sources, the following is a simple test to compare the results with and without this patch: $ btrfs subvolume create /sub1 $ for i in `seq 1 163840`; do dd if=/dev/zero of=/sub1/file bs=64K count=1 seek=$((i-1)) conv=notrunc oflag=direct done $ btrfs subvolume snapshot /sub1 /sub2 $ for i in `seq 1 163840`; do dd if=/dev/zero of=/sub1/file bs=4K count=1 seek=$(((i-1)*16+10)) conv=notrunc oflag=direct done $ btrfs subvolume snapshot -r /sub1 /snap1 $ time btrfs send /snap1 | btrfs receive /volume2 Without this patch: real 69m48.124s user 0m50.199s sys 70m15.600s With this patch: real 1m59.683s user 0m35.421s sys 2m42.684s Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: ethanwu <ethanwu@synology.com> [ add patchset cover letter with background and numbers ] Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07btrfs: backref, only search backref entries from leaves of the same rootethanwu1-3/+9
commit cfc0eed0ec89db7c4a8d461174cabfaa4a0912c7 upstream. We could have some nodes/leaves in subvolume whose owner are not the that subvolume. In this way, when we resolve normal backrefs of that subvolume, we should avoid collecting those references from these blocks. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: ethanwu <ethanwu@synology.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07btrfs: backref, don't add refs from shared block when resolving normal backrefethanwu1-9/+52
commit ed58f2e66e849c34826083e5a6c1b506ee8a4d8e upstream. All references from the block of SHARED_DATA_REF belong to that shared block backref. For example: item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize 95 extent refs 24 gen 7302 flags DATA extent data backref root 257 objectid 260 offset 65536 count 5 extent data backref root 258 objectid 265 offset 0 count 9 shared data backref parent 394985472 count 10 Block 394985472 might be leaf from root 257, and the item obejctid and (file_pos - file_extent_item::offset) in that leaf just happens to be 260 and 65536 which is equal to the first extent data backref entry. Before this patch, when we resolve backref: root 257 objectid 260 offset 65536 we will add those refs in block 394985472 and wrongly treat those as the refs we want. Fix this by checking if the leaf we are processing is shared data backref, if so, just skip this leaf. Shared data refs added into preftrees.direct have all entry value = 0 (root_id = 0, key = NULL, level = 0) except parent entry. Other refs from indirect tree will have key value and root id != 0, and these values won't be changed when their parent is resolved and added to preftrees.direct. Therefore, we could reuse the preftrees.direct and search ref with all values = 0 except parent is set to avoid getting those resolved refs block. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: ethanwu <ethanwu@synology.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-07btrfs: backref, only collect file extent items matching backref offsetethanwu1-30/+33
commit 7ac8b88ee668a5b4743ebf3e9888fabac85c334a upstream. When resolving one backref of type EXTENT_DATA_REF, we collect all references that simply reference the EXTENT_ITEM even though their (file_pos - file_extent_item::offset) are not the same as the btrfs_extent_data_ref::offset we are searching for. This patch adds additional check so that we only collect references whose (file_pos - file_extent_item::offset) == btrfs_extent_data_ref::offset. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: ethanwu <ethanwu@synology.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-29btrfs: fix double free on ulist after backref resolution failureFilipe Manana1-0/+1
commit 580c079b5766ac706f56eec5c79aee4bf929fef6 upstream. At btrfs_find_all_roots_safe() we allocate a ulist and set the **roots argument to point to it. However if later we fail due to an error returned by find_parent_nodes(), we free that ulist but leave a dangling pointer in the **roots argument. Upon receiving the error, a caller of this function can attempt to free the same ulist again, resulting in an invalid memory access. One such scenario is during qgroup accounting: btrfs_qgroup_account_extents() --> calls btrfs_find_all_roots() passes &new_roots (a stack allocated pointer) to btrfs_find_all_roots() --> btrfs_find_all_roots() just calls btrfs_find_all_roots_safe() passing &new_roots to it --> allocates ulist and assigns its address to **roots (which points to new_roots from btrfs_qgroup_account_extents()) --> find_parent_nodes() returns an error, so we free the ulist and leave **roots pointing to it after returning --> btrfs_qgroup_account_extents() sees btrfs_find_all_roots() returned an error and jumps to the label 'cleanup', which just tries to free again the same ulist Stack trace example: ------------[ cut here ]------------ BTRFS: tree first key check failed WARNING: CPU: 1 PID: 1763215 at fs/btrfs/disk-io.c:422 btrfs_verify_level_key+0xe0/0x180 [btrfs] Modules linked in: dm_snapshot dm_thin_pool (...) CPU: 1 PID: 1763215 Comm: fsstress Tainted: G W 5.8.0-rc3-btrfs-next-64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_verify_level_key+0xe0/0x180 [btrfs] Code: 28 5b 5d (...) RSP: 0018:ffffb89b473779a0 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff90397759bf08 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000027 RDI: 00000000ffffffff RBP: ffff9039a419c000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: ffffb89b43301000 R12: 000000000000005e R13: ffffb89b47377a2e R14: ffffb89b473779af R15: 0000000000000000 FS: 00007fc47e1e1000(0000) GS:ffff9039ac200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc47e1df000 CR3: 00000003d9e4e001 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: read_block_for_search+0xf6/0x350 [btrfs] btrfs_next_old_leaf+0x242/0x650 [btrfs] resolve_indirect_refs+0x7cf/0x9e0 [btrfs] find_parent_nodes+0x4ea/0x12c0 [btrfs] btrfs_find_all_roots_safe+0xbf/0x130 [btrfs] btrfs_qgroup_account_extents+0x9d/0x390 [btrfs] btrfs_commit_transaction+0x4f7/0xb20 [btrfs] btrfs_sync_file+0x3d4/0x4d0 [btrfs] do_fsync+0x38/0x70 __x64_sys_fdatasync+0x13/0x20 do_syscall_64+0x5c/0xe0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fc47e2d72e3 Code: Bad RIP value. RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0 softirqs last enabled at (0): [<ffffffffb8eb5e85>] copy_process+0x755/0x1eb0 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace 8639237550317b48 ]--- BTRFS error (device sdc): tree first key mismatch detected, bytenr=62324736 parent_transid=94 key expected=(262,108,1351680) has=(259,108,1921024) general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1763215 Comm: fsstress Tainted: G W 5.8.0-rc3-btrfs-next-64 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:ulist_release+0x14/0x60 [btrfs] Code: c7 07 00 (...) RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840 FS: 00007fc47e1e1000(0000) GS:ffff9039ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8c1c0a51c8 CR3: 00000003d9e4e004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ulist_free+0x13/0x20 [btrfs] btrfs_qgroup_account_extents+0xf3/0x390 [btrfs] btrfs_commit_transaction+0x4f7/0xb20 [btrfs] btrfs_sync_file+0x3d4/0x4d0 [btrfs] do_fsync+0x38/0x70 __x64_sys_fdatasync+0x13/0x20 do_syscall_64+0x5c/0xe0 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7fc47e2d72e3 Code: Bad RIP value. RSP: 002b:00007fffa32098c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004b RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc47e2d72e3 RDX: 00007fffa3209830 RSI: 00007fffa3209830 RDI: 0000000000000003 RBP: 000000000000072e R08: 0000000000000001 R09: 0000000000000003 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000000003e8 R13: 0000000051eb851f R14: 00007fffa3209970 R15: 00005607c4ac8b50 Modules linked in: dm_snapshot dm_thin_pool (...) ---[ end trace 8639237550317b49 ]--- RIP: 0010:ulist_release+0x14/0x60 [btrfs] Code: c7 07 00 (...) RSP: 0018:ffffb89b47377d60 EFLAGS: 00010282 RAX: 6b6b6b6b6b6b6b6b RBX: ffff903959b56b90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000270024 RDI: ffff9036e2adc840 RBP: ffff9036e2adc848 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9036e2adc840 R13: 0000000000000015 R14: ffff9039a419ccf8 R15: ffff90395d605840 FS: 00007fc47e1e1000(0000) GS:ffff9039ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6a776f7d40 CR3: 00000003d9e4e002 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Fix this by making btrfs_find_all_roots_safe() set *roots to NULL after it frees the ulist. Fixes: 8da6d5815c592b ("Btrfs: added btrfs_find_all_roots()") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-30Btrfs: fix deadlock between fiemap and transaction commitsFilipe Manana1-1/+1
The fiemap handler locks a file range that can have unflushed delalloc, and after locking the range, it tries to attach to a running transaction. If the running transaction started its commit, that is, it is in state TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the flushoncommit option or the transaction is creating a snapshot for the subvolume that contains the file that fiemap is operating on, we end up deadlocking. This happens because fiemap is blocked on the transaction, waiting for it to complete, and the transaction is waiting for the flushed dealloc to complete, which requires locking the file range that the fiemap task already locked. The following stack traces serve as an example of when this deadlock happens: (...) [404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs] [404571.515956] Call Trace: [404571.516360] ? __schedule+0x3ae/0x7b0 [404571.516730] schedule+0x3a/0xb0 [404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs] [404571.517465] ? remove_wait_queue+0x60/0x60 [404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs] [404571.518202] normal_work_helper+0xea/0x530 [btrfs] [404571.518566] process_one_work+0x21e/0x5c0 [404571.518990] worker_thread+0x4f/0x3b0 [404571.519413] ? process_one_work+0x5c0/0x5c0 [404571.519829] kthread+0x103/0x140 [404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70 [404571.520565] ret_from_fork+0x3a/0x50 [404571.520915] kworker/u8:6 D 0 31651 2 0x80004000 [404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs] (...) [404571.537000] fsstress D 0 13117 13115 0x00004000 [404571.537263] Call Trace: [404571.537524] ? __schedule+0x3ae/0x7b0 [404571.537788] schedule+0x3a/0xb0 [404571.538066] wait_current_trans+0xc8/0x100 [btrfs] [404571.538349] ? remove_wait_queue+0x60/0x60 [404571.538680] start_transaction+0x33c/0x500 [btrfs] [404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs] [404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs] [404571.539866] extent_fiemap+0x2ce/0x650 [btrfs] [404571.540170] do_vfs_ioctl+0x526/0x6f0 [404571.540436] ksys_ioctl+0x70/0x80 [404571.540734] __x64_sys_ioctl+0x16/0x20 [404571.540997] do_syscall_64+0x60/0x1d0 [404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) [404571.543729] btrfs D 0 14210 14208 0x00004000 [404571.544023] Call Trace: [404571.544275] ? __schedule+0x3ae/0x7b0 [404571.544526] ? wait_for_completion+0x112/0x1a0 [404571.544795] schedule+0x3a/0xb0 [404571.545064] schedule_timeout+0x1ff/0x390 [404571.545351] ? lock_acquire+0xa6/0x190 [404571.545638] ? wait_for_completion+0x49/0x1a0 [404571.545890] ? wait_for_completion+0x112/0x1a0 [404571.546228] wait_for_completion+0x131/0x1a0 [404571.546503] ? wake_up_q+0x70/0x70 [404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs] [404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs] [404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs] [404571.547703] ? remove_wait_queue+0x60/0x60 [404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs] [404571.548226] ? __sb_start_write+0xd4/0x1c0 [404571.548512] ? mnt_want_write_file+0x24/0x50 [404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs] [404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs] [404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs] [404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0 [404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0 [404571.550064] ? __handle_mm_fault+0xe3e/0x11f0 [404571.550306] ? do_raw_spin_unlock+0x49/0xc0 [404571.550608] ? _raw_spin_unlock+0x24/0x30 [404571.550976] ? __handle_mm_fault+0xedf/0x11f0 [404571.551319] ? do_vfs_ioctl+0xa2/0x6f0 [404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [404571.552087] do_vfs_ioctl+0xa2/0x6f0 [404571.552355] ksys_ioctl+0x70/0x80 [404571.552621] __x64_sys_ioctl+0x16/0x20 [404571.552864] do_syscall_64+0x60/0x1d0 [404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) If we were joining the transaction instead of attaching to it, we would not risk a deadlock because a join only blocks if the transaction is in a state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc flush performed by a transaction is done before it reaches that state, when it is in the state TRANS_STATE_COMMIT_START. However a transaction join is intended for use cases where we do modify the filesystem, and fiemap only needs to peek at delayed references from the current transaction in order to determine if extents are shared, and, besides that, when there is no current transaction or when it blocks to wait for a current committing transaction to complete, it creates a new transaction without reserving any space. Such unnecessary transactions, besides doing unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary rotation of the precious backup roots. So fix this by adding a new transaction join variant, named join_nostart, which behaves like the regular join, but it does not create a transaction when none currently exists or after waiting for a committing transaction to complete. Fixes: 03628cdbc64db6 ("Btrfs: do not start a transaction during fiemap") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-01btrfs: fiemap: preallocate ulists for btrfs_check_sharedDavid Sterba1-11/+6
btrfs_check_shared looks up parents of a given extent and uses ulists for that. These are allocated and freed repeatedly. Preallocation in the caller will avoid the overhead and also allow us to use the GFP_KERNEL as it is happens before the extent locks are taken. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: do not start a transaction during fiemapFilipe Manana1-6/+10
During fiemap, for regular extents (non inline) we need to check if they are shared and if they are, set the shared bit. Checking if an extent is shared requires checking the delayed references of the currently running transaction, since some reference might have not yet hit the extent tree and be only in the in-memory delayed references. However we were using a transaction join for this, which creates a new transaction when there is no transaction currently running. That means that two more potential failures can happen: creating the transaction and committing it. Further, if no write activity is currently happening in the system, and fiemap calls keep being done, we end up creating and committing transactions that do nothing. In some extreme cases this can result in the commit of the transaction created by fiemap to fail with ENOSPC when updating the root item of a subvolume tree because a join does not reserve any space, leading to a trace like the following: heisenberg kernel: ------------[ cut here ]------------ heisenberg kernel: BTRFS: Transaction aborted (error -28) heisenberg kernel: WARNING: CPU: 0 PID: 7137 at fs/btrfs/root-tree.c:136 btrfs_update_root+0x22b/0x320 [btrfs] (...) heisenberg kernel: CPU: 0 PID: 7137 Comm: btrfs-transacti Not tainted 4.19.0-4-amd64 #1 Debian 4.19.28-2 heisenberg kernel: Hardware name: FUJITSU LIFEBOOK U757/FJNB2A5, BIOS Version 1.21 03/19/2018 heisenberg kernel: RIP: 0010:btrfs_update_root+0x22b/0x320 [btrfs] (...) heisenberg kernel: RSP: 0018:ffffb5448828bd40 EFLAGS: 00010286 heisenberg kernel: RAX: 0000000000000000 RBX: ffff8ed56bccef50 RCX: 0000000000000006 heisenberg kernel: RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8ed6bda166a0 heisenberg kernel: RBP: 00000000ffffffe4 R08: 00000000000003df R09: 0000000000000007 heisenberg kernel: R10: 0000000000000000 R11: 0000000000000001 R12: ffff8ed63396a078 heisenberg kernel: R13: ffff8ed092d7c800 R14: ffff8ed64f5db028 R15: ffff8ed6bd03d068 heisenberg kernel: FS: 0000000000000000(0000) GS:ffff8ed6bda00000(0000) knlGS:0000000000000000 heisenberg kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 heisenberg kernel: CR2: 00007f46f75f8000 CR3: 0000000310a0a002 CR4: 00000000003606f0 heisenberg kernel: DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 heisenberg kernel: DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 heisenberg kernel: Call Trace: heisenberg kernel: commit_fs_roots+0x166/0x1d0 [btrfs] heisenberg kernel: ? _cond_resched+0x15/0x30 heisenberg kernel: ? btrfs_run_delayed_refs+0xac/0x180 [btrfs] heisenberg kernel: btrfs_commit_transaction+0x2bd/0x870 [btrfs] heisenberg kernel: ? start_transaction+0x9d/0x3f0 [btrfs] heisenberg kernel: transaction_kthread+0x147/0x180 [btrfs] heisenberg kernel: ? btrfs_cleanup_transaction+0x530/0x530 [btrfs] heisenberg kernel: kthread+0x112/0x130 heisenberg kernel: ? kthread_bind+0x30/0x30 heisenberg kernel: ret_from_fork+0x35/0x40 heisenberg kernel: ---[ end trace 05de912e30e012d9 ]--- Since fiemap (and btrfs_check_shared()) is a read-only operation, do not do a transaction join to avoid the overhead of creating a new transaction (if there is currently no running transaction) and introducing a potential point of failure when the new transaction gets committed, instead use a transaction attach to grab a handle for the currently running transaction if any. Reported-by: Christoph Anton Mitterer <calestyo@scientia.net> Link: https://lore.kernel.org/linux-btrfs/b2a668d7124f1d3e410367f587926f622b3f03a4.camel@scientia.net/ Fixes: afce772e87c36c ("btrfs: fix check_shared for fiemap ioctl") CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: do not start a transaction at iterate_extent_inodes()Filipe Manana1-6/+12
When finding out which inodes have references on a particular extent, done by backref.c:iterate_extent_inodes(), from the BTRFS_IOC_LOGICAL_INO (both v1 and v2) ioctl and from scrub we use the transaction join API to grab a reference on the currently running transaction, since in order to give accurate results we need to inspect the delayed references of the currently running transaction. However, if there is currently no running transaction, the join operation will create a new transaction. This is inefficient as the transaction will eventually be committed, doing unnecessary IO and introducing a potential point of failure that will lead to a transaction abort due to -ENOSPC, as recently reported [1]. That's because the join, creates the transaction but does not reserve any space, so when attempting to update the root item of the root passed to btrfs_join_transaction(), during the transaction commit, we can end up failling with -ENOSPC. Users of a join operation are supposed to actually do some filesystem changes and reserve space by some means, which is not the case of iterate_extent_inodes(), it is a read-only operation for all contextes from which it is called. The reported [1] -ENOSPC failure stack trace is the following: heisenberg kernel: ------------[ cut here ]------------ heisenberg kernel: BTRFS: Transaction aborted (error -28) heisenberg kernel: WARNING: CPU: 0 PID: 7137 at fs/btrfs/root-tree.c:136 btrfs_update_root+0x22b/0x320 [btrfs] (...) heisenberg kernel: CPU: 0 PID: 7137 Comm: btrfs-transacti Not tainted 4.19.0-4-amd64 #1 Debian 4.19.28-2 heisenberg kernel: Hardware name: FUJITSU LIFEBOOK U757/FJNB2A5, BIOS Version 1.21 03/19/2018 heisenberg kernel: RIP: 0010:btrfs_update_root+0x22b/0x320 [btrfs] (...) heisenberg kernel: RSP: 0018:ffffb5448828bd40 EFLAGS: 00010286 heisenberg kernel: RAX: 0000000000000000 RBX: ffff8ed56bccef50 RCX: 0000000000000006 heisenberg kernel: RDX: 0000000000000007 RSI: 0000000000000092 RDI: ffff8ed6bda166a0 heisenberg kernel: RBP: 00000000ffffffe4 R08: 00000000000003df R09: 0000000000000007 heisenberg kernel: R10: 0000000000000000 R11: 0000000000000001 R12: ffff8ed63396a078 heisenberg kernel: R13: ffff8ed092d7c800 R14: ffff8ed64f5db028 R15: ffff8ed6bd03d068 heisenberg kernel: FS: 0000000000000000(0000) GS:ffff8ed6bda00000(0000) knlGS:0000000000000000 heisenberg kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 heisenberg kernel: CR2: 00007f46f75f8000 CR3: 0000000310a0a002 CR4: 00000000003606f0 heisenberg kernel: DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 heisenberg kernel: DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 heisenberg kernel: Call Trace: heisenberg kernel: commit_fs_roots+0x166/0x1d0 [btrfs] heisenberg kernel: ? _cond_resched+0x15/0x30 heisenberg kernel: ? btrfs_run_delayed_refs+0xac/0x180 [btrfs] heisenberg kernel: btrfs_commit_transaction+0x2bd/0x870 [btrfs] heisenberg kernel: ? start_transaction+0x9d/0x3f0 [btrfs] heisenberg kernel: transaction_kthread+0x147/0x180 [btrfs] heisenberg kernel: ? btrfs_cleanup_transaction+0x530/0x530 [btrfs] heisenberg kernel: kthread+0x112/0x130 heisenberg kernel: ? kthread_bind+0x30/0x30 heisenberg kernel: ret_from_fork+0x35/0x40 heisenberg kernel: ---[ end trace 05de912e30e012d9 ]--- So fix that by using the attach API, which does not create a transaction when there is currently no running transaction. [1] https://lore.kernel.org/linux-btrfs/b2a668d7124f1d3e410367f587926f622b3f03a4.camel@scientia.net/ Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: use BUG() instead of BUG_ON(1)Arnd Bergmann1-2/+2
BUG_ON(1) leads to bogus warnings from clang when CONFIG_PROFILE_ANNOTATED_BRANCHES is set: fs/btrfs/volumes.c:5041:3: error: variable 'max_chunk_size' is used uninitialized whenever 'if' condition is false [-Werror,-Wsometimes-uninitialized] BUG_ON(1); ^~~~~~~~~ include/asm-generic/bug.h:61:36: note: expanded from macro 'BUG_ON' #define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0) ^~~~~~~~~~~~~~~~~~~ include/linux/compiler.h:48:23: note: expanded from macro 'unlikely' # define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fs/btrfs/volumes.c:5046:9: note: uninitialized use occurs here max_chunk_size); ^~~~~~~~~~~~~~ include/linux/kernel.h:860:36: note: expanded from macro 'min' #define min(x, y) __careful_cmp(x, y, <) ^ include/linux/kernel.h:853:17: note: expanded from macro '__careful_cmp' __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) ^ include/linux/kernel.h:847:25: note: expanded from macro '__cmp_once' typeof(y) unique_y = (y); \ ^ fs/btrfs/volumes.c:5041:3: note: remove the 'if' if its condition is always true BUG_ON(1); ^ include/asm-generic/bug.h:61:32: note: expanded from macro 'BUG_ON' #define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0) ^ fs/btrfs/volumes.c:4993:20: note: initialize the variable 'max_chunk_size' to silence this warning u64 max_chunk_size; ^ = 0 Change it to BUG() so clang can see that this code path can never continue. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: honor path->skip_locking in backref codeJosef Bacik1-7/+13
Qgroups will do the old roots lookup at delayed ref time, which could be while walking down the extent root while running a delayed ref. This should be fine, except we specifically lock eb's in the backref walking code irrespective of path->skip_locking, which deadlocks the system. Fix up the backref code to honor path->skip_locking, nobody will be modifying the commit_root when we're searching so it's completely safe to do. This happens since fb235dc06fac ("btrfs: qgroup: Move half of the qgroup accounting time out of commit trans"), kernel may lockup with quota enabled. There is one backref trace triggered by snapshot dropping along with write operation in the source subvolume. The example can be reliably reproduced: btrfs-cleaner D 0 4062 2 0x80000000 Call Trace: schedule+0x32/0x90 btrfs_tree_read_lock+0x93/0x130 [btrfs] find_parent_nodes+0x29b/0x1170 [btrfs] btrfs_find_all_roots_safe+0xa8/0x120 [btrfs] btrfs_find_all_roots+0x57/0x70 [btrfs] btrfs_qgroup_trace_extent_post+0x37/0x70 [btrfs] btrfs_qgroup_trace_leaf_items+0x10b/0x140 [btrfs] btrfs_qgroup_trace_subtree+0xc8/0xe0 [btrfs] do_walk_down+0x541/0x5e3 [btrfs] walk_down_tree+0xab/0xe7 [btrfs] btrfs_drop_snapshot+0x356/0x71a [btrfs] btrfs_clean_one_deleted_snapshot+0xb8/0xf0 [btrfs] cleaner_kthread+0x12b/0x160 [btrfs] kthread+0x112/0x130 ret_from_fork+0x27/0x50 When dropping snapshots with qgroup enabled, we will trigger backref walk. However such backref walk at that timing is pretty dangerous, as if one of the parent nodes get WRITE locked by other thread, we could cause a dead lock. For example: FS 260 FS 261 (Dropped) node A node B / \ / \ node C node D node E / \ / \ / \ leaf F|leaf G|leaf H|leaf I|leaf J|leaf K The lock sequence would be: Thread A (cleaner) | Thread B (other writer) ----------------------------------------------------------------------- write_lock(B) | write_lock(D) | ^^^ called by walk_down_tree() | | write_lock(A) | write_lock(D) << Stall read_lock(H) << for backref walk | read_lock(D) << lock owner is | the same thread A | so read lock is OK | read_lock(A) << Stall | So thread A hold write lock D, and needs read lock A to unlock. While thread B holds write lock A, while needs lock D to unlock. This will cause a deadlock. This is not only limited to snapshot dropping case. As the backref walk, even only happens on commit trees, is breaking the normal top-down locking order, makes it deadlock prone. Fixes: fb235dc06fac ("btrfs: qgroup: Move half of the qgroup accounting time out of commit trans") CC: stable@vger.kernel.org # 4.14+ Reported-and-tested-by: David Sterba <dsterba@suse.com> Reported-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ rebase to latest branch and fix lock assert bug in btrfs/007 ] Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy logs and deadlock analysis from Qu's patch ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: replace btrfs_set_lock_blocking_rw with appropriate helpersDavid Sterba1-2/+2
We can use the right helper where the lock type is a fixed parameter. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: Fix typos in comments and stringsAndrea Gelmini1-2/+2
The typos accumulate over time so once in a while time they get fixed in a large patch. Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: Remove needless tree locking in iterate_inode_extrefsNikolay Borisov1-5/+0
In iterate_inode_exrefs the eb is cloned via btrfs_clone_extent_buffer which creates a private extent buffer with the dummy flag set and ref count of 1. Then this buffer is locked for reading and its ref count is incremented by 1. Finally it's fed to the passed iterate_irefs_t function. The actual iterate call back is inode_to_path (coming from paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final function the passed eb is only read by first assigning it to the local eb variable. This variable is only modified in the case another eb was referenced from the passed path that is eb != eb_in check triggers. Considering this there is no point in locking the cloned eb in iterate_inode_refs since it's never being modified and is not published anywhere. Furthermore the cloned eb is completely fine having its ref count be 1. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: Remove needless tree locking in iterate_inode_refsNikolay Borisov1-4/+0
In iterate_inode_refs the eb is cloned via btrfs_clone_extent_buffer which creates a private extent buffer with the dummy flag set and ref count of 1. Then this buffer is locked for reading and its ref count is incremented by 1. Finally it's fed to the passed iterate_irefs_t function. The actual iterate call back is inode_to_path (coming from paths_from_inode) which feeds the eb to btrfs_ref_to_path. In this final function the passed eb is only read by first assigning it to the local eb variable. This variable is only modified in the case another eb was referenced from the passed path that is eb != eb_in check triggers. Considering this there is no point in locking the cloned eb in iterate_inode_refs since it's never being modified and is not published anywhere. Furthermore the cloned eb is completely fine having its ref count be 1. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15Btrfs: preftree: use rb_first_cachedLiu Bo1-15/+17
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). While resolving indirect refs and missing refs, it always looks for the first rb entry in a while loop, it's helpful to use rb_first_cached instead. For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15Btrfs: delayed-refs: use rb_first_cached for ref_treeLiu Bo1-1/+1
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). Functions manipulating href->ref_tree need to get the first entry, this converts href->ref_tree to use rb_first_cached(). For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: Remove 'objectid' member from struct btrfs_rootMisono Tomohiro1-2/+3
There are two members in struct btrfs_root which indicate root's objectid: objectid and root_key.objectid. They are both set to the same value in __setup_root(): static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { ... root->objectid = objectid; ... root->root_key.objectid = objecitd; ... } and not changed to other value after initialization. grep in btrfs directory shows both are used in many places: $ grep -rI "root->root_key.objectid" | wc -l 133 $ grep -rI "root->objectid" | wc -l 55 (4.17, inc. some noise) It is confusing to have two similar variable names and it seems that there is no rule about which should be used in a certain case. Since ->root_key itself is needed for tree reloc tree, let's remove 'objecitd' member and unify code to use ->root_key.objectid in all places. Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: backref: Use ERR_CAST to return error codeMisono Tomohiro1-1/+1
Use ERR_CAST() instead of void * to make meaning clear. Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: return EUCLEAN if extent_inline_ref type is invalidSu Yue1-2/+2
If type of extent_inline_ref found is not expected, filesystem may have been corrupted, should return EUCLEAN instead of EINVAL. Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- sourcesDavid Sterba1-14/+1
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: Validate child tree block's level and first keyQu Wenruo1-2/+4
We have several reports about node pointer points to incorrect child tree blocks, which could have even wrong owner and level but still with valid generation and checksum. Although btrfs check could handle it and print error message like: leaf parent key incorrect 60670574592 Kernel doesn't have enough check on this type of corruption correctly. At least add such check to read_tree_block() and btrfs_read_buffer(), where we need two new parameters @level and @first_key to verify the child tree block. The new @level check is mandatory and all call sites are already modified to extract expected level from its call chain. While @first_key is optional, the following call sites are skipping such check: 1) Root node/leaf As ROOT_ITEM doesn't contain the first key, skip @first_key check. 2) Direct backref Only parent bytenr and level is known and we need to resolve the key all by ourselves, skip @first_key check. Another note of this verification is, it needs extra info from nodeptr or ROOT_ITEM, so it can't fit into current tree-checker framework, which is limited to node/leaf boundary. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: Remove unused op_key var from add_delayed_refsNikolay Borisov1-4/+1
Added as part of 86d5f9944252 ("btrfs: convert prelimary reference tracking to use rbtrees") but never used. tmp_op_key essentially subsumed that variable. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26btrfs: add more __cold annotationsDavid Sterba1-1/+1
The __cold functions are placed to a special section, as they're expected to be called rarely. This could help i-cache prefetches or help compiler to decide which branches are more/less likely to be taken without any other annotations needed. Though we can't add more __exit annotations, it's still possible to add __cold (that's also added with __exit). That way the following function categories are tagged: - printf wrappers, error messages - exit helpers Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-15btrfs: add missing initialization in btrfs_check_sharedEdmund Nadolski1-0/+1
This patch addresses an issue that causes fiemap to falsely report a shared extent. The test case is as follows: xfs_io -f -d -c "pwrite -b 16k 0 64k" -c "fiemap -v" /media/scratch/file5 sync xfs_io -c "fiemap -v" /media/scratch/file5 which gives the resulting output: wrote 65536/65536 bytes at offset 0 64 KiB, 4 ops; 0.0000 sec (121.359 MiB/sec and 7766.9903 ops/sec) /media/scratch/file5: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 24576..24703 128 0x2001 /media/scratch/file5: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 24576..24703 128 0x1 This is because btrfs_check_shared calls find_parent_nodes repeatedly in a loop, passing a share_check struct to report the count of shared extent. But btrfs_check_shared does not re-initialize the count value to zero for subsequent calls from the loop, resulting in a false share count value. This is a regressive behavior from 4.13. With proper re-initialization the test result is as follows: wrote 65536/65536 bytes at offset 0 64 KiB, 4 ops; 0.0000 sec (110.035 MiB/sec and 7042.2535 ops/sec) /media/scratch/file5: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 24576..24703 128 0x1 /media/scratch/file5: EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS 0: [0..127]: 24576..24703 128 0x1 which corrects the regression. Fixes: 3ec4d3238ab ("btrfs: allow backref search checks for shared extents") Signed-off-by: Edmund Nadolski <enadolski@suse.com> [ add text from cover letter to changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-02-02btrfs: remove spurious WARN_ON(ref->count < 0) in find_parent_nodesZygo Blaxell1-1/+10
Until v4.14, this warning was very infrequent: WARNING: CPU: 3 PID: 18172 at fs/btrfs/backref.c:1391 find_parent_nodes+0xc41/0x14e0 Modules linked in: [...] CPU: 3 PID: 18172 Comm: bees Tainted: G D W L 4.11.9-zb64+ #1 Hardware name: System manufacturer System Product Name/M5A78L-M/USB3, BIOS 2101 12/02/2014 Call Trace: dump_stack+0x85/0xc2 __warn+0xd1/0xf0 warn_slowpath_null+0x1d/0x20 find_parent_nodes+0xc41/0x14e0 __btrfs_find_all_roots+0xad/0x120 ? extent_same_check_offsets+0x70/0x70 iterate_extent_inodes+0x168/0x300 iterate_inodes_from_logical+0x87/0xb0 ? iterate_inodes_from_logical+0x87/0xb0 ? extent_same_check_offsets+0x70/0x70 btrfs_ioctl+0x8ac/0x2820 ? lock_acquire+0xc2/0x200 do_vfs_ioctl+0x91/0x700 ? __fget+0x112/0x200 SyS_ioctl+0x79/0x90 entry_SYSCALL_64_fastpath+0x23/0xc6 ? trace_hardirqs_off_caller+0x1f/0x140 Starting with v4.14 (specifically 86d5f9944252 ("btrfs: convert prelimary reference tracking to use rbtrees")) the WARN_ON occurs three orders of magnitude more frequently--almost once per second while running workloads like bees. Replace the WARN_ON() with a comment rationale for its removal. The rationale is paraphrased from an explanation by Edmund Nadolski <enadolski@suse.de> on the linux-btrfs mailing list. Fixes: 8da6d5815c59 ("Btrfs: added btrfs_find_all_roots()") Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22btrfs: make function update_share_count staticColin Ian King1-1/+2
The function update_share_count is local to the source and does not need to be in global scope, so make it static. Cleans up sparse warning: fs/btrfs/backref.c:219:6: warning: symbol 'update_share_count' was not declared. Should it be static? Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01btrfs: track refs in a rb_tree instead of a listJosef Bacik1-1/+4
If we get a significant amount of delayed refs for a single block (think modifying multiple snapshots) we can end up spending an ungodly amount of time looping through all of the entries trying to see if they can be merged. This is because we only add them to a list, so we have O(2n) for every ref head. This doesn't make any sense as we likely have refs for different roots, and so they cannot be merged. Tracking in a tree will allow us to break as soon as we hit an entry that doesn't match, making our worst case O(n). With this we can also merge entries more easily. Before we had to hope that matching refs were on the ends of our list, but with the tree we can search down to exact matches and merge them at insert time. Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-11-01btrfs: add a flag to iterate_inodes_from_logical to find all extent refs for ↵Zygo Blaxell1-25/+38
uncompressed extents The LOGICAL_INO ioctl provides a backward mapping from extent bytenr and offset (encoded as a single logical address) to a list of extent refs. LOGICAL_INO complements TREE_SEARCH, which provides the forward mapping (extent ref -> extent bytenr and offset, or logical address). These are useful capabilities for programs that manipulate extents and extent references from userspace (e.g. dedup and defrag utilities). When the extents are uncompressed (and not encrypted and not other), check_extent_in_eb performs filtering of the extent refs to remove any extent refs which do not contain the same extent offset as the 'logical' parameter's extent offset. This prevents LOGICAL_INO from returning references to more than a single block. To find the set of extent references to an uncompressed extent from [a, b), userspace has to run a loop like this pseudocode: for (i = a; i < b; ++i) extent_ref_set += LOGICAL_INO(i); At each iteration of the loop (up to 32768 iterations for a 128M extent), data we are interested in is collected in the kernel, then deleted by the filter in check_extent_in_eb. When the extents are compressed (or encrypted or other), the 'logical' parameter must be an extent bytenr (the 'a' parameter in the loop). No filtering by extent offset is done (or possible?) so the result is the complete set of extent refs for the entire extent. This removes the need for the loop, since we get all the extent refs in one call. Add an 'ignore_offset' argument to iterate_inodes_from_logical, [...several levels of function call graph...], and check_extent_in_eb, so that we can disable the extent offset filtering for uncompressed extents. This flag can be set by an improved version of the LOGICAL_INO ioctl to get either behavior as desired. There is no functional change in this patch. The new flag is always false. Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Reviewed-by: David Sterba <dsterba@suse.com> [ minor coding style fixes ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-10-30btrfs: remove delayed_ref_node from ref_headJosef Bacik1-2/+2
This is just excessive information in the ref_head, and makes the code complicated. It is a relic from when we had the heads and the refs in the same tree, which is no longer the case. With this removal I've cleaned up a bunch of the cruft around this old assumption as well. Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-21Btrfs: convert to use btrfs_get_extent_inline_ref_typeLiu Bo1-2/+9
Since we have a helper which can do sanity check, this converts all btrfs_extent_inline_ref_type to it. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: clean up extraneous computations in add_delayed_refsEdmund Nadolski1-17/+13
Repeating the same computation in multiple places is not necessary. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: allow backref search checks for shared extentsEdmund Nadolski1-49/+115
When called with a struct share_check, find_parent_nodes() will detect a shared extent and immediately return with BACKREF_SHARED_FOUND. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: add cond_resched() calls when resolving backrefsEdmund Nadolski1-0/+3
Since backref resolution is CPU-intensive, the cond_resched calls should help alleviate soft lockup occurences. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: backref, add tracepoints for prelim_ref insertion and mergingJeff Mahoney1-58/+60
This patch adds a tracepoint event for prelim_ref insertion and merging. For each, the ref being inserted or merged and the count of tree nodes is issued. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: add a node counter to each of the rbtreesJeff Mahoney1-1/+5
This patch adds counters to each of the rbtrees so that we can tell how large they are growing for a given workload. These counters will be exported by tracepoints in the next patch. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: convert prelimary reference tracking to use rbtreesEdmund Nadolski1-157/+285
It's been known for a while that the use of multiple lists that are periodically merged was an algorithmic problem within btrfs. There are several workloads that don't complete in any reasonable amount of time (e.g. btrfs/130) and others that cause soft lockups. The solution is to use a set of rbtrees that do insertion merging for both indirect and direct refs, with the former converting refs into the latter. The result is a btrfs/130 workload that used to take several hours now takes about half of that. This runtime still isn't acceptable and a future patch will address that by moving the rbtrees higher in the stack so the lookups can be shared across multiple calls to find_parent_nodes. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: remove ref_tree implementation from backref.cEdmund Nadolski1-348/+7
Commit afce772e87c3 ("btrfs: fix check_shared for fiemap ioctl") added the ref_tree code in backref.c to reduce backref searching for shared extents under the FIEMAP ioctl. This code will not be compatible with the upcoming rbtree changes for improved backref searching, so this patch removes the ref_tree code. The rbtree changes will provide the equivalent functionality for FIEMAP. The above commit also introduced transaction semantics around calls to btrfs_check_shared() in order to accurately account for delayed refs. This functionality needs to be retained, so a complete revert of the above commit is not desirable. This patch therefore removes the ref_tree portion of the commit as above, however it does not remove the transaction portion. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: btrfs_check_shared should manage its own transactionEdmund Nadolski1-11/+19
Commit afce772e87c3 ("btrfs: fix check_shared for fiemap ioctl") added transaction semantics around calls to btrfs_check_shared() in order to provide accurate accounting of delayed refs. The transaction management should be done inside btrfs_check_shared(), so that callers do not need to manage transactions individually. Signed-off-by: Edmund Nadolski <enadolski@suse.com> Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: backref, cleanup __ namespace abuseJeff Mahoney1-116/+109
We typically use __ to indicate a helper routine that shouldn't be called directly without understanding the proper context required to do so. We use static functions to indicate that a function is private to a particular C file. The backref code uses static function and __ prefixes on nearly everything, which makes the code difficult to read and establishes a pattern for future code that shouldn't be followed. This patch drops all the unnecessary prefixes. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: backref, add unode_aux_to_inode_list helperJeff Mahoney1-5/+11
Replacing the double cast and ternary conditional with a helper makes the code easier on the eyes. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-08-16btrfs: backref, constify some argumentsJeff Mahoney1-13/+16
This constifies a few buffers used in the backref code. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-19btrfs: use GFP_KERNEL in init_ipathDavid Sterba1-5/+5
Now that init_ipath is called either from a safe context or with memalloc_nofs protection, we can switch to GFP_KERNEL allocations in init_path and init_data_container. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>