summaryrefslogtreecommitdiff
path: root/fs/afs/volume.c
AgeCommit message (Collapse)AuthorFilesLines
2017-11-13afs: Make use of the YFS service upgrade to fully support IPv6David Howells1-0/+16
YFS VL servers offer an upgraded Volume Location service that can return IPv6 addresses to fileservers and volume servers in addition to IPv4 addresses using the YFSVL.GetEndpoints operation which we should use if it's available. To this end: (1) Make rxrpc_kernel_recv_data() return the call's current service ID so that the caller can detect service upgrade and see what the service was upgraded to. (2) When we see a VL server address we haven't seen before, send a VL.GetCapabilities operation to it with the service upgrade bit set. If we get an upgrade to the YFS VL service, change the service ID in the address list for that address to use the upgraded service and set a flag to note that this appears to be a YFS-compatible server. (3) If, when a server's addresses are being looked up, we note that we previously detected a YFS-compatible server, then send the YFSVL.GetEndpoints operation rather than VL.GetAddrsU. (4) Build a fileserver address list from the reply of YFSVL.GetEndpoints, including both IPv4 and IPv6 addresses. Volume server addresses are discarded. (5) The address list is sorted by address and port now, instead of just address. This allows multiple servers on the same host sitting on different ports. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul volume and server record caching and fileserver rotationDavid Howells1-120/+306
The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Move server rotation code into its own fileDavid Howells1-250/+0
Move server rotation code into its own file. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Add an address list conceptDavid Howells1-32/+83
Add an RCU replaceable address list structure to hold a list of server addresses. The list also holds the To this end: (1) A cell's VL server address list can be loaded directly via insmod or echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB or SRV records. (2) Anyone wanting to use a cell's VL server address must wait until the cell record comes online and has tried to obtain some addresses. (3) An FS server's address list, for the moment, has a single entry that is the key to the server list. This will change in the future when a server is instead keyed on its UUID and the VL.GetAddrsU operation is used. (4) An 'address cursor' concept is introduced to handle iteration through the address list. This is passed to the afs_make_call() as, in the future, stuff (such as abort code) that doesn't outlast the call will be returned in it. In the future, we might want to annotate the list with information about how each address fares. We might then want to propagate such annotations over address list replacement. Whilst we're at it, we allow IPv6 addresses to be specified in colon-delimited lists by enclosing them in square brackets. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul the callback handlingDavid Howells1-16/+27
Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Keep and pass sockaddr_rxrpc addresses rather than in_addrDavid Howells1-5/+4
Keep and pass sockaddr_rxrpc addresses around rather than keeping and passing in_addr addresses to allow for the use of IPv6 and non-standard port numbers in future. This also allows the port and service_id fields to be removed from the afs_call struct. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Update the cache index structureDavid Howells1-1/+1
Update the cache index structure in the following ways: (1) Don't use the volume name followed by the volume type as levels in the cache index. Volumes can be renamed. Use the volume ID instead. (2) Don't store the VLDB data for a volume in the tree. If the volume database should be cached locally, then it should be done in a separate tree. (3) Expand the volume ID stored in the cache to 64 bits. (4) Expand the file/vnode ID stored in the cache to 96 bits. (5) Increment the cache structure version number to 1. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Push the net ns pointer to more placesDavid Howells1-10/+10
Push the network namespace pointer to more places in AFS, including the afs_server structure (which doesn't hold a ref on the netns). In particular, afs_put_cell() now takes requires a net ns parameter so that it can safely alter the netns after decrementing the cell usage count - the cell will be deallocated by a background thread after being cached for a period, which means that it's not safe to access it after reducing its usage count. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Lay the groundwork for supporting network namespacesDavid Howells1-5/+5
Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-20afs: Convert to separately allocated bdiJan Kara1-8/+0
Allocate struct backing_dev_info separately instead of embedding it inside the superblock. This unifies handling of bdi among users. CC: David Howells <dhowells@redhat.com> CC: linux-afs@lists.infradead.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-01-06afs: Make afs_readpages() fetch data in bulkDavid Howells1-0/+1
Make afs_readpages() use afs_vnode_fetch_data()'s new ability to take a list of pages and do a bulk fetch. Signed-off-by: David Howells <dhowells@redhat.com>
2015-01-21fs: introduce f_op->mmap_capabilities for nommu mmap supportChristoph Hellwig1-1/+1
Since "BDI: Provide backing device capability information [try #3]" the backing_dev_info structure also provides flags for the kind of mmap operation available in a nommu environment, which is entirely unrelated to it's original purpose. Introduce a new nommu-only file operation to provide this information to the nommu mmap code instead. Splitting this from the backing_dev_info structure allows to remove lots of backing_dev_info instance that aren't otherwise needed, and entirely gets rid of the concept of providing a backing_dev_info for a character device. It also removes the need for the mtd_inodefs filesystem. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2013-09-27FS-Cache: Provide the ability to enable/disable cookiesDavid Howells1-1/+1
Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2010-04-22afs: add bdi backing to mount session.Jens Axboe1-0/+7
This ensures that dirty data gets flushed properly. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-04-03FS-Cache: Make kAFS use FS-CacheDavid Howells1-8/+6
The attached patch makes the kAFS filesystem in fs/afs/ use FS-Cache, and through it any attached caches. The kAFS filesystem will use caching automatically if it's available. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2007-05-21Detach sched.h from mm.hAlexey Dobriyan1-0/+1
First thing mm.h does is including sched.h solely for can_do_mlock() inline function which has "current" dereference inside. By dealing with can_do_mlock() mm.h can be detached from sched.h which is good. See below, why. This patch a) removes unconditional inclusion of sched.h from mm.h b) makes can_do_mlock() normal function in mm/mlock.c c) exports can_do_mlock() to not break compilation d) adds sched.h inclusions back to files that were getting it indirectly. e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were getting them indirectly Net result is: a) mm.h users would get less code to open, read, preprocess, parse, ... if they don't need sched.h b) sched.h stops being dependency for significant number of files: on x86_64 allmodconfig touching sched.h results in recompile of 4083 files, after patch it's only 3744 (-8.3%). Cross-compile tested on all arm defconfigs, all mips defconfigs, all powerpc defconfigs, alpha alpha-up arm i386 i386-up i386-defconfig i386-allnoconfig ia64 ia64-up m68k mips parisc parisc-up powerpc powerpc-up s390 s390-up sparc sparc-up sparc64 sparc64-up um-x86_64 x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig as well as my two usual configs. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-04-27[AFS]: Add "directory write" support.David Howells1-7/+7
Add support for the create, link, symlink, unlink, mkdir, rmdir and rename VFS operations to the in-kernel AFS filesystem. Also: (1) Fix dentry and inode revalidation. d_revalidate should only look at state of the dentry. Revalidation of the contents of an inode pointed to by a dentry is now separate. (2) Fix afs_lookup() to hash negative dentries as well as positive ones. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AFS]: Add security support.David Howells1-87/+22
Add security support to the AFS filesystem. Kerberos IV tickets are added as RxRPC keys are added to the session keyring with the klog program. open() and other VFS operations then find this ticket with request_key() and either use it immediately (eg: mkdir, unlink) or attach it to a file descriptor (open). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC.David Howells1-92/+49
Make the in-kernel AFS filesystem use AF_RXRPC instead of the old RxRPC code. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AFS]: Clean up the AFS sourcesDavid Howells1-37/+21
Clean up the AFS sources. Also remove references to AFS keys. RxRPC keys are used instead. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-27[PATCH] fs: Conversions from kmalloc+memset to k(z|c)allocPanagiotis Issaris1-2/+1
Conversions from kmalloc+memset to kzalloc. Signed-off-by: Panagiotis Issaris <takis@issaris.org> Jffs2-bit-acked-by: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-17Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds1-0/+520
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!