summaryrefslogtreecommitdiff
path: root/fs/afs/volume.c
AgeCommit message (Collapse)AuthorFilesLines
2024-03-01afs: Increase buffer size in afs_update_volume_status()Daniil Dulov1-2/+2
[ Upstream commit 6ea38e2aeb72349cad50e38899b0ba6fbcb2af3d ] The max length of volume->vid value is 20 characters. So increase idbuf[] size up to 24 to avoid overflow. Found by Linux Verification Center (linuxtesting.org) with SVACE. [DH: Actually, it's 20 + NUL, so increase it to 24 and use snprintf()] Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Signed-off-by: Daniil Dulov <d.dulov@aladdin.ru> Signed-off-by: David Howells <dhowells@redhat.com> Link: https://lore.kernel.org/r/20240211150442.3416-1-d.dulov@aladdin.ru/ # v1 Link: https://lore.kernel.org/r/20240212083347.10742-1-d.dulov@aladdin.ru/ # v2 Link: https://lore.kernel.org/r/20240219143906.138346-3-dhowells@redhat.com Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-16afs: Add tracing for cell refcount and active user countDavid Howells1-3/+3
Add a tracepoint to log the cell refcount and active user count and pass in a reason code through various functions that manipulate these counters. Additionally, a helper function, afs_see_cell(), is provided to log interesting places that deal with a cell without actually doing any accounting directly. Signed-off-by: David Howells <dhowells@redhat.com>
2020-10-16afs: Fix cell refcounting by splitting the usage counterDavid Howells1-2/+2
Management of the lifetime of afs_cell struct has some problems due to the usage counter being used to determine whether objects of that type are in use in addition to whether anyone might be interested in the structure. This is made trickier by cell objects being cached for a period of time in case they're quickly reused as they hold the result of a setup process that may be slow (DNS lookups, AFS RPC ops). Problems include the cached root volume from alias resolution pinning its parent cell record, rmmod occasionally hanging and occasionally producing assertion failures. Fix this by splitting the count of active users from the struct reference count. Things then work as follows: (1) The cell cache keeps +1 on the cell's activity count and this has to be dropped before the cell can be removed. afs_manage_cell() tries to exchange the 1 to a 0 with the cells_lock write-locked, and if successful, the record is removed from the net->cells. (2) One struct ref is 'owned' by the activity count. That is put when the active count is reduced to 0 (final_destruction label). (3) A ref can be held on a cell whilst it is queued for management on a work queue without confusing the active count. afs_queue_cell() is added to wrap this. (4) The queue's ref is dropped at the end of the management. This is split out into a separate function, afs_manage_cell_work(). (5) The root volume record is put after a cell is removed (at the final_destruction label) rather then in the RCU destruction routine. (6) Volumes hold struct refs, but aren't active users. (7) Both counts are displayed in /proc/net/afs/cells. There are some management function changes: (*) afs_put_cell() now just decrements the refcount and triggers the RCU destruction if it becomes 0. It no longer sets a timer to have the manager do this. (*) afs_use_cell() and afs_unuse_cell() are added to increase and decrease the active count. afs_unuse_cell() sets the management timer. (*) afs_queue_cell() is added to queue a cell with approprate refs. There are also some other fixes: (*) Don't let /proc/net/afs/cells access a cell's vllist if it's NULL. (*) Make sure that candidate cells in lookups are properly destroyed rather than being simply kfree'd. This ensures the bits it points to are destroyed also. (*) afs_dec_cells_outstanding() is now called in cell destruction rather than at "final_destruction". This ensures that cell->net is still valid to the end of the destructor. (*) As a consequence of the previous two changes, move the increment of net->cells_outstanding that was at the point of insertion into the tree to the allocation routine to correctly balance things. Fixes: 989782dcdc91 ("afs: Overhaul cell database management") Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Reorganise volume and server trees to be rooted on the cellDavid Howells1-11/+73
Reorganise afs_volume objects such that they're in a tree keyed on volume ID, rooted at on an afs_cell object rather than being in multiple trees, each of which is rooted on an afs_server object. afs_server structs become per-cell and acquire a pointer to the cell. The process of breaking a callback then starts with finding the server by its network address, following that to the cell and then looking up each volume ID in the volume tree. This is simpler than the afs_vol_interest/afs_cb_interest N:M mapping web and allows those structs and the code for maintaining them to be simplified or removed. It does make a couple of things a bit more tricky, though: (1) Operations now start with a volume, not a server, so there can be more than one answer as to whether or not the server we'll end up using supports the FS.InlineBulkStatus RPC. (2) CB RPC operations that specify the server UUID. There's still a tree of servers by UUID on the afs_net struct, but the UUIDs in it aren't guaranteed unique. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Add a tracepoint to track the lifetime of the afs_volume structDavid Howells1-4/+23
Add a tracepoint to track the lifetime of the afs_volume struct. Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Detect cell aliases 1 - Cells with root volumesDavid Howells1-4/+5
Put in the first phase of cell alias detection. This part handles alias detection for cells that have root.cell volumes (which is expected to be likely). When a cell becomes newly active, it is probed for its root.cell volume, and if it has one, this volume is compared against other root.cell volumes to find out if the list of fileserver UUIDs have any in common - and if that's the case, do the address lists of those fileservers have any addresses in common. If they do, the new cell is adjudged to be an alias of the old cell and the old cell is used instead. Comparing is aided by the server list in struct afs_server_list being sorted in UUID order and the addresses in the fileserver address lists being sorted in address order. The cell then retains the afs_volume object for the root.cell volume, even if it's not mounted for future alias checking. This necessary because: (1) Whilst fileservers have UUIDs that are meant to be globally unique, in practice they are not because cells get cloned without changing the UUIDs - so afs_server records need to be per cell. (2) Sometimes the DNS is used to make cell aliases - but if we don't know they're the same, we may end up with multiple superblocks and multiple afs_server records for the same thing, impairing our ability to deliver callback notifications of third party changes (3) The fileserver RPC API doesn't contain the cell name, so it can't tell us which cell it's notifying and can't see that a change made to to one cell should notify the same client that's also accessed as the other cell. Reported-by: Jeffrey Altman <jaltman@auristor.com> Signed-off-by: David Howells <dhowells@redhat.com>
2020-06-04afs: Build an abstraction around an "operation" conceptDavid Howells1-6/+6
Turn the afs_operation struct into the main way that most fileserver operations are managed. Various things are added to the struct, including the following: (1) All the parameters and results of the relevant operations are moved into it, removing corresponding fields from the afs_call struct. afs_call gets a pointer to the op. (2) The target volume is made the main focus of the operation, rather than the target vnode(s), and a bunch of op->vnode->volume are made op->volume instead. (3) Two vnode records are defined (op->file[]) for the vnode(s) involved in most operations. The vnode record (struct afs_vnode_param) contains: - The vnode pointer. - The fid of the vnode to be included in the parameters or that was returned in the reply (eg. FS.MakeDir). - The status and callback information that may be returned in the reply about the vnode. - Callback break and data version tracking for detecting simultaneous third-parth changes. (4) Pointers to dentries to be updated with new inodes. (5) An operations table pointer. The table includes pointers to functions for issuing AFS and YFS-variant RPCs, handling the success and abort of an operation and handling post-I/O-lock local editing of a directory. To make this work, the following function restructuring is made: (A) The rotation loop that issues calls to fileservers that can be found in each function that wants to issue an RPC (such as afs_mkdir()) is extracted out into common code, in a new file called fs_operation.c. (B) The rotation loops, such as the one in afs_mkdir(), are replaced with a much smaller piece of code that allocates an operation, sets the parameters and then calls out to the common code to do the actual work. (C) The code for handling the success and failure of an operation are moved into operation functions (as (5) above) and these are called from the core code at appropriate times. (D) The pseudo inode getting stuff used by the dynamic root code is moved over into dynroot.c. (E) struct afs_iget_data is absorbed into the operation struct and afs_iget() expects to be given an op pointer and a vnode record. (F) Point (E) doesn't work for the root dir of a volume, but we know the FID in advance (it's always vnode 1, unique 1), so a separate inode getter, afs_root_iget(), is provided to special-case that. (G) The inode status init/update functions now also take an op and a vnode record. (H) The RPC marshalling functions now, for the most part, just take an afs_operation struct as their only argument. All the data they need is held there. The result delivery functions write their answers there as well. (I) The call is attached to the operation and then the operation core does the waiting. And then the new operation code is, for the moment, made to just initialise the operation, get the appropriate vnode I/O locks and do the same rotation loop as before. This lays the foundation for the following changes in the future: (*) Overhauling the rotation (again). (*) Support for asynchronous I/O, where the fileserver rotation must be done asynchronously also. Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-31afs: Rename struct afs_fs_cursor to afs_operationDavid Howells1-2/+2
As a prelude to implementing asynchronous fileserver operations in the afs filesystem, rename struct afs_fs_cursor to afs_operation. This struct is going to form the core of the operation management and is going to acquire more members in later. Signed-off-by: David Howells <dhowells@redhat.com>
2020-05-31afs: Actively poll fileservers to maintain NAT or firewall openingsDavid Howells1-11/+13
When an AFS client accesses a file, it receives a limited-duration callback promise that the server will notify it if another client changes a file. This callback duration can be a few hours in length. If a client mounts a volume and then an application prevents it from being unmounted, say by chdir'ing into it, but then does nothing for some time, the rxrpc_peer record will expire and rxrpc-level keepalive will cease. If there is NAT or a firewall between the client and the server, the route back for the server may close after a comparatively short duration, meaning that attempts by the server to notify the client may then bounce. The client, however, may (so far as it knows) still have a valid unexpired promise and will then rely on its cached data and will not see changes made on the server by a third party until it incidentally rechecks the status or the promise needs renewal. To deal with this, the client needs to regularly probe the server. This has two effects: firstly, it keeps a route open back for the server, and secondly, it causes the server to disgorge any notifications that got queued up because they couldn't be sent. Fix this by adding a mechanism to emit regular probes. Two levels of probing are made available: Under normal circumstances the 'slow' queue will be used for a fileserver - this just probes the preferred address once every 5 mins or so; however, if server fails to respond to any probes, the server will shift to the 'fast' queue from which all its interfaces will be probed every 30s. When it finally responds, the record will switch back to the slow queue. Further notes: (1) Probing is now no longer driven from the fileserver rotation algorithm. (2) Probes are dispatched to all interfaces on a fileserver when that an afs_server object is set up to record it. (3) The afs_server object is removed from the probe queues when we start to probe it. afs_is_probing_server() returns true if it's not listed - ie. it's undergoing probing. (4) The afs_server object is added back on to the probe queue when the final outstanding probe completes, but the probed_at time is set when we're about to launch a probe so that it's not dependent on the probe duration. (5) The timer and the work item added for this must be handed a count on net->servers_outstanding, which they hand on or release. This makes sure that network namespace cleanup waits for them. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Dave Botsch <botsch@cnf.cornell.edu> Signed-off-by: David Howells <dhowells@redhat.com>
2020-04-24afs: Make record checking use TASK_UNINTERRUPTIBLE when appropriateDavid Howells1-3/+5
When an operation is meant to be done uninterruptibly (such as FS.StoreData), we should not be allowing volume and server record checking to be interrupted. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Signed-off-by: David Howells <dhowells@redhat.com>
2019-09-02afs: remove unused variable 'afs_voltypes'YueHaibing1-2/+0
fs/afs/volume.c:15:26: warning: afs_voltypes defined but not used [-Wunused-const-variable=] It is not used since commit d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: David Howells <dhowells@redhat.com>
2019-06-28Merge tag 'afs-fixes-20190620' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull AFS fixes from David Howells: "The in-kernel AFS client has been undergoing testing on opendev.org on one of their mirror machines. They are using AFS to hold data that is then served via apache, and Ian Wienand had reported seeing oopses, spontaneous machine reboots and updates to volumes going missing. This patch series appears to have fixed the problem, very probably due to patch (2), but it's not 100% certain. (1) Fix the printing of the "vnode modified" warning to exclude checks on files for which we don't have a callback promise from the server (and so don't expect the server to tell us when it changes). Without this, for every file or directory for which we still have an in-core inode that gets changed on the server, we may get a message logged when we next look at it. This can happen in bulk if, for instance, someone does "vos release" to update a R/O volume from a R/W volume and a whole set of files are all changed together. We only really want to log a message if the file changed and the server didn't tell us about it or we failed to track the state internally. (2) Fix accidental corruption of either afs_vlserver struct objects or the the following memory locations (which could hold anything). The issue is caused by a union that points to two different structs in struct afs_call (to save space in the struct). The call cleanup code assumes that it can simply call the cleanup for one of those structs if not NULL - when it might be actually pointing to the other struct. This means that every Volume Location RPC op is going to corrupt something. (3) Fix an uninitialised spinlock. This isn't too bad, it just causes a one-off warning if lockdep is enabled when "vos release" is called, but the spinlock still behaves correctly. (4) Fix the setting of i_block in the inode. This causes du, for example, to produce incorrect results, but otherwise should not be dangerous to the kernel" * tag 'afs-fixes-20190620' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: afs: Fix setting of i_blocks afs: Fix uninitialised spinlock afs_volume::cb_break_lock afs: Fix vlserver record corruption afs: Fix over zealous "vnode modified" warnings
2019-06-20afs: Fix uninitialised spinlock afs_volume::cb_break_lockDavid Howells1-0/+1
Fix the cb_break_lock spinlock in afs_volume struct by initialising it when the volume record is allocated. Also rename the lock to cb_v_break_lock to distinguish it from the lock of the same name in the afs_server struct. Without this, the following trace may be observed when a volume-break callback is received: INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 2 PID: 50 Comm: kworker/2:1 Not tainted 5.2.0-rc1-fscache+ #3045 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Workqueue: afs SRXAFSCB_CallBack Call Trace: dump_stack+0x67/0x8e register_lock_class+0x23b/0x421 ? check_usage_forwards+0x13c/0x13c __lock_acquire+0x89/0xf73 lock_acquire+0x13b/0x166 ? afs_break_callbacks+0x1b2/0x3dd _raw_write_lock+0x2c/0x36 ? afs_break_callbacks+0x1b2/0x3dd afs_break_callbacks+0x1b2/0x3dd ? trace_event_raw_event_afs_server+0x61/0xac SRXAFSCB_CallBack+0x11f/0x16c process_one_work+0x2c5/0x4ee ? worker_thread+0x234/0x2ac worker_thread+0x1d8/0x2ac ? cancel_delayed_work_sync+0xf/0xf kthread+0x11f/0x127 ? kthread_park+0x76/0x76 ret_from_fork+0x24/0x30 Fixes: 68251f0a6818 ("afs: Fix whole-volume callback handling") Signed-off-by: David Howells <dhowells@redhat.com>
2019-05-30treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152Thomas Gleixner1-5/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-28afs: Add fs_context supportDavid Howells1-2/+2
Add fs_context support to the AFS filesystem, converting the parameter parsing to store options there. This will form the basis for namespace propagation over mountpoints within the AFS model, thereby allowing AFS to be used in containers more easily. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-10-24afs: Probe multiple fileservers simultaneouslyDavid Howells1-16/+0
Send probes to all the unprobed fileservers in a fileserver list on all addresses simultaneously in an attempt to find out the fastest route whilst not getting stuck for 20s on any server or address that we don't get a reply from. This alleviates the problem whereby attempting to access a new server can take a long time because the rotation algorithm ends up rotating through all servers and addresses until it finds one that responds. Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-24afs: Eliminate the address pointer from the address list cursorDavid Howells1-3/+3
Eliminate the address pointer from the address list cursor as it's redundant (ac->addrs[ac->index] can be used to find the same address) and address lists must be replaced rather than being rearranged, so is of limited value. Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-24afs: Increase to 64-bit volume ID and 96-bit vnode ID for YFSDavid Howells1-1/+1
Increase the sizes of the volume ID to 64 bits and the vnode ID (inode number equivalent) to 96 bits to allow the support of YFS. This requires the iget comparator to check the vnode->fid rather than i_ino and i_generation as i_ino is not sufficiently capacious. It also requires this data to be placed into the vnode cache key for fscache. For the moment, just discard the top 32 bits of the vnode ID when returning it though stat. Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-24afs: Implement VL server rotationDavid Howells1-36/+16
Track VL servers as independent entities rather than lumping all their addresses together into one set and implement server-level rotation by: (1) Add the concept of a VL server list, where each server has its own separate address list. This code is similar to the FS server list. (2) Use the DNS resolver to retrieve a set of servers and their associated addresses, ports, preference and weight ratings. (3) In the case of a legacy DNS resolver or an address list given directly through /proc/net/afs/cells, create a list containing just a dummy server record and attach all the addresses to that. (4) Implement a simple rotation policy, for the moment ignoring the priorities and weights assigned to the servers. (5) Show the address list through /proc/net/afs/<cell>/vlservers. This also displays the source and status of the data as indicated by the upcall. Signed-off-by: David Howells <dhowells@redhat.com>
2018-04-06fscache: Pass object size in rather than calling back for itDavid Howells1-1/+1
Pass the object size in to fscache_acquire_cookie() and fscache_write_page() rather than the netfs providing a callback by which it can be received. This makes it easier to update the size of the object when a new page is written that extends the object. The current object size is also passed by fscache to the check_aux function, obviating the need to store it in the aux data. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
2018-04-04fscache: Attach the index key and aux data to the cookieDavid Howells1-1/+3
Attach copies of the index key and auxiliary data to the fscache cookie so that: (1) The callbacks to the netfs for this stuff can be eliminated. This can simplify things in the cache as the information is still available, even after the cache has relinquished the cookie. (2) Simplifies the locking requirements of accessing the information as we don't have to worry about the netfs object going away on us. (3) The cache can do lazy updating of the coherency information on disk. As long as the cache is flushed before reboot/poweroff, there's no need to update the coherency info on disk every time it changes. (4) Cookies can be hashed or put in a tree as the index key is easily available. This allows: (a) Checks for duplicate cookies can be made at the top fscache layer rather than down in the bowels of the cache backend. (b) Caching can be added to a netfs object that has a cookie if the cache is brought online after the netfs object is allocated. A certain amount of space is made in the cookie for inline copies of the data, but if it won't fit there, extra memory will be allocated for it. The downside of this is that live cache operation requires more memory. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Anna Schumaker <anna.schumaker@netapp.com> Tested-by: Steve Dickson <steved@redhat.com>
2018-02-06afs: Fix server list handlingDavid Howells1-44/+2
Fix server list handling in the following ways: (1) In afs_alloc_volume(), remove duplicate server list build code. This was already done by afs_alloc_server_list() which afs_alloc_volume() previously called. This just results in twice as many VL RPCs. (2) In afs_deliver_vl_get_entry_by_name_u(), use the number of server records indicated by ->nServers in the UVLDB record returned by the VL.GetEntryByNameU RPC call rather than scanning all NMAXNSERVERS slots. Unused slots may contain garbage. (3) In afs_alloc_server_list(), don't stop converting a UVLDB record into a server list just because we can't look up one of the servers. Just skip that server and go on to the next. If we can't look up any of the servers then we'll fail at the end. Without this patch, an attempt to view the umich.edu root cell using something like "ls /afs/umich.edu" on a dynamic root (future patch) mount or an autocell mount will result in ENOMEDIUM. The failure is due to kafs not stopping after nServers'worth of records have been read, but then trying to access a server with a garbage UUID and getting an error, which aborts the server list build. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Reported-by: Jonathan Billings <jsbillings@jsbillings.org> Signed-off-by: David Howells <dhowells@redhat.com> cc: stable@vger.kernel.org
2018-02-06afs: Add missing afs_put_cell()David Howells1-0/+1
afs_alloc_volume() needs to release the cell ref it obtained in the case of an error. Fix this by adding an afs_put_cell() call into the error path. This can triggered when a lookup for a cell in a dynamic root or an autocell mount returns an error whilst trying to look up the server (such as ENOMEDIUM). This results in an assertion failure oops when the module is unloaded due to outstanding refs on a cell record. Fixes: d2ddc776a458 ("afs: Overhaul volume and server record caching and fileserver rotation") Signed-off-by: David Howells <dhowells@redhat.com> cc: stable@vger.kernel.org
2017-11-13afs: Make use of the YFS service upgrade to fully support IPv6David Howells1-0/+16
YFS VL servers offer an upgraded Volume Location service that can return IPv6 addresses to fileservers and volume servers in addition to IPv4 addresses using the YFSVL.GetEndpoints operation which we should use if it's available. To this end: (1) Make rxrpc_kernel_recv_data() return the call's current service ID so that the caller can detect service upgrade and see what the service was upgraded to. (2) When we see a VL server address we haven't seen before, send a VL.GetCapabilities operation to it with the service upgrade bit set. If we get an upgrade to the YFS VL service, change the service ID in the address list for that address to use the upgraded service and set a flag to note that this appears to be a YFS-compatible server. (3) If, when a server's addresses are being looked up, we note that we previously detected a YFS-compatible server, then send the YFSVL.GetEndpoints operation rather than VL.GetAddrsU. (4) Build a fileserver address list from the reply of YFSVL.GetEndpoints, including both IPv4 and IPv6 addresses. Volume server addresses are discarded. (5) The address list is sorted by address and port now, instead of just address. This allows multiple servers on the same host sitting on different ports. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul volume and server record caching and fileserver rotationDavid Howells1-120/+306
The current code assumes that volumes and servers are per-cell and are never shared, but this is not enforced, and, indeed, public cells do exist that are aliases of each other. Further, an organisation can, say, set up a public cell and a private cell with overlapping, but not identical, sets of servers. The difference is purely in the database attached to the VL servers. The current code will malfunction if it sees a server in two cells as it assumes global address -> server record mappings and that each server is in just one cell. Further, each server may have multiple addresses - and may have addresses of different families (IPv4 and IPv6, say). To this end, the following structural changes are made: (1) Server record management is overhauled: (a) Server records are made independent of cell. The namespace keeps track of them, volume records have lists of them and each vnode has a server on which its callback interest currently resides. (b) The cell record no longer keeps a list of servers known to be in that cell. (c) The server records are now kept in a flat list because there's no single address to sort on. (d) Server records are now keyed by their UUID within the namespace. (e) The addresses for a server are obtained with the VL.GetAddrsU rather than with VL.GetEntryByName, using the server's UUID as a parameter. (f) Cached server records are garbage collected after a period of non-use and are counted out of existence before purging is allowed to complete. This protects the work functions against rmmod. (g) The servers list is now in /proc/fs/afs/servers. (2) Volume record management is overhauled: (a) An RCU-replaceable server list is introduced. This tracks both servers and their coresponding callback interests. (b) The superblock is now keyed on cell record and numeric volume ID. (c) The volume record is now tied to the superblock which mounts it, and is activated when mounted and deactivated when unmounted. This makes it easier to handle the cache cookie without causing a double-use in fscache. (d) The volume record is loaded from the VLDB using VL.GetEntryByNameU to get the server UUID list. (e) The volume name is updated if it is seen to have changed when the volume is updated (the update is keyed on the volume ID). (3) The vlocation record is got rid of and VLDB records are no longer cached. Sufficient information is stored in the volume record, though an update to a volume record is now no longer shared between related volumes (volumes come in bundles of three: R/W, R/O and backup). and the following procedural changes are made: (1) The fileserver cursor introduced previously is now fleshed out and used to iterate over fileservers and their addresses. (2) Volume status is checked during iteration, and the server list is replaced if a change is detected. (3) Server status is checked during iteration, and the address list is replaced if a change is detected. (4) The abort code is saved into the address list cursor and -ECONNABORTED returned in afs_make_call() if a remote abort happened rather than translating the abort into an error message. This allows actions to be taken depending on the abort code more easily. (a) If a VMOVED abort is seen then this is handled by rechecking the volume and restarting the iteration. (b) If a VBUSY, VRESTARTING or VSALVAGING abort is seen then this is handled by sleeping for a short period and retrying and/or trying other servers that might serve that volume. A message is also displayed once until the condition has cleared. (c) If a VOFFLINE abort is seen, then this is handled as VBUSY for the moment. (d) If a VNOVOL abort is seen, the volume is rechecked in the VLDB to see if it has been deleted; if not, the fileserver is probably indicating that the volume couldn't be attached and needs salvaging. (e) If statfs() sees one of these aborts, it does not sleep, but rather returns an error, so as not to block the umount program. (5) The fileserver iteration functions in vnode.c are now merged into their callers and more heavily macroised around the cursor. vnode.c is removed. (6) Operations on a particular vnode are serialised on that vnode because the server will lock that vnode whilst it operates on it, so a second op sent will just have to wait. (7) Fileservers are probed with FS.GetCapabilities before being used. This is where service upgrade will be done. (8) A callback interest on a fileserver is set up before an FS operation is performed and passed through to afs_make_call() so that it can be set on the vnode if the operation returns a callback. The callback interest is passed through to afs_iget() also so that it can be set there too. In general, record updating is done on an as-needed basis when we try to access servers, volumes or vnodes rather than offloading it to work items and special threads. Notes: (1) Pre AFS-3.4 servers are no longer supported, though this can be added back if necessary (AFS-3.4 was released in 1998). (2) VBUSY is retried forever for the moment at intervals of 1s. (3) /proc/fs/afs/<cell>/servers no longer exists. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Move server rotation code into its own fileDavid Howells1-250/+0
Move server rotation code into its own file. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Add an address list conceptDavid Howells1-32/+83
Add an RCU replaceable address list structure to hold a list of server addresses. The list also holds the To this end: (1) A cell's VL server address list can be loaded directly via insmod or echo to /proc/fs/afs/cells or dynamically from a DNS query for AFSDB or SRV records. (2) Anyone wanting to use a cell's VL server address must wait until the cell record comes online and has tried to obtain some addresses. (3) An FS server's address list, for the moment, has a single entry that is the key to the server list. This will change in the future when a server is instead keyed on its UUID and the VL.GetAddrsU operation is used. (4) An 'address cursor' concept is introduced to handle iteration through the address list. This is passed to the afs_make_call() as, in the future, stuff (such as abort code) that doesn't outlast the call will be returned in it. In the future, we might want to annotate the list with information about how each address fares. We might then want to propagate such annotations over address list replacement. Whilst we're at it, we allow IPv6 addresses to be specified in colon-delimited lists by enclosing them in square brackets. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Overhaul the callback handlingDavid Howells1-16/+27
Overhaul the AFS callback handling by the following means: (1) Don't give up callback promises on vnodes that we are no longer using, rather let them just expire on the server or let the server break them. This is actually more efficient for the server as the callback lookup is expensive if there are lots of extant callbacks. (2) Only give up the callback promises we have from a server when the server record is destroyed. Then we can just give up *all* the callback promises on it in one go. (3) Servers can end up being shared between cells if cells are aliased, so don't add all the vnodes being backed by a particular server into a big FID-indexed tree on that server as there may be duplicates. Instead have each volume instance (~= superblock) register an interest in a server as it starts to make use of it and use this to allow the processor for callbacks from the server to find the superblock and thence the inode corresponding to the FID being broken by means of ilookup_nowait(). (4) Rather than iterating over the entire callback list when a mass-break comes in from the server, maintain a counter of mass-breaks in afs_server (cb_seq) and make afs_validate() check it against the copy in afs_vnode. It would be nice not to have to take a read_lock whilst doing this, but that's tricky without using RCU. (5) Save a ref on the fileserver we're using for a call in the afs_call struct so that we can access its cb_s_break during call decoding. (6) Write-lock around callback and status storage in a vnode and read-lock around getattr so that we don't see the status mid-update. This has the following consequences: (1) Data invalidation isn't seen until someone calls afs_validate() on a vnode. Unfortunately, we need to use a key to query the server, but getting one from a background thread is tricky without caching loads of keys all over the place. (2) Mass invalidation isn't seen until someone calls afs_validate(). (3) Callback breaking is going to hit the inode_hash_lock quite a bit. Could this be replaced with rcu_read_lock() since inodes are destroyed under RCU conditions. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Keep and pass sockaddr_rxrpc addresses rather than in_addrDavid Howells1-5/+4
Keep and pass sockaddr_rxrpc addresses around rather than keeping and passing in_addr addresses to allow for the use of IPv6 and non-standard port numbers in future. This also allows the port and service_id fields to be removed from the afs_call struct. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Update the cache index structureDavid Howells1-1/+1
Update the cache index structure in the following ways: (1) Don't use the volume name followed by the volume type as levels in the cache index. Volumes can be renamed. Use the volume ID instead. (2) Don't store the VLDB data for a volume in the tree. If the volume database should be cached locally, then it should be done in a separate tree. (3) Expand the volume ID stored in the cache to 64 bits. (4) Expand the file/vnode ID stored in the cache to 96 bits. (5) Increment the cache structure version number to 1. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Push the net ns pointer to more placesDavid Howells1-10/+10
Push the network namespace pointer to more places in AFS, including the afs_server structure (which doesn't hold a ref on the netns). In particular, afs_put_cell() now takes requires a net ns parameter so that it can safely alter the netns after decrementing the cell usage count - the cell will be deallocated by a background thread after being cached for a period, which means that it's not safe to access it after reducing its usage count. Signed-off-by: David Howells <dhowells@redhat.com>
2017-11-13afs: Lay the groundwork for supporting network namespacesDavid Howells1-5/+5
Lay the groundwork for supporting network namespaces (netns) to the AFS filesystem by moving various global features to a network-namespace struct (afs_net) and providing an instance of this as a temporary global variable that everything uses via accessor functions for the moment. The following changes have been made: (1) Store the netns in the superblock info. This will be obtained from the mounter's nsproxy on a manual mount and inherited from the parent superblock on an automount. (2) The cell list is made per-netns. It can be viewed through /proc/net/afs/cells and also be modified by writing commands to that file. (3) The local workstation cell is set per-ns in /proc/net/afs/rootcell. This is unset by default. (4) The 'rootcell' module parameter, which sets a cell and VL server list modifies the init net namespace, thereby allowing an AFS root fs to be theoretically used. (5) The volume location lists and the file lock manager are made per-netns. (6) The AF_RXRPC socket and associated I/O bits are made per-ns. The various workqueues remain global for the moment. Changes still to be made: (1) /proc/fs/afs/ should be moved to /proc/net/afs/ and a symlink emplaced from the old name. (2) A per-netns subsys needs to be registered for AFS into which it can store its per-netns data. (3) Rather than the AF_RXRPC socket being opened on module init, it needs to be opened on the creation of a superblock in that netns. (4) The socket needs to be closed when the last superblock using it is destroyed and all outstanding client calls on it have been completed. This prevents a reference loop on the namespace. (5) It is possible that several namespaces will want to use AFS, in which case each one will need its own UDP port. These can either be set through /proc/net/afs/cm_port or the kernel can pick one at random. The init_ns gets 7001 by default. Other issues that need resolving: (1) The DNS keyring needs net-namespacing. (2) Where do upcalls go (eg. DNS request-key upcall)? (3) Need something like open_socket_in_file_ns() syscall so that AFS command line tools attempting to operate on an AFS file/volume have their RPC calls go to the right place. Signed-off-by: David Howells <dhowells@redhat.com>
2017-04-20afs: Convert to separately allocated bdiJan Kara1-8/+0
Allocate struct backing_dev_info separately instead of embedding it inside the superblock. This unifies handling of bdi among users. CC: David Howells <dhowells@redhat.com> CC: linux-afs@lists.infradead.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-01-06afs: Make afs_readpages() fetch data in bulkDavid Howells1-0/+1
Make afs_readpages() use afs_vnode_fetch_data()'s new ability to take a list of pages and do a bulk fetch. Signed-off-by: David Howells <dhowells@redhat.com>
2015-01-21fs: introduce f_op->mmap_capabilities for nommu mmap supportChristoph Hellwig1-1/+1
Since "BDI: Provide backing device capability information [try #3]" the backing_dev_info structure also provides flags for the kind of mmap operation available in a nommu environment, which is entirely unrelated to it's original purpose. Introduce a new nommu-only file operation to provide this information to the nommu mmap code instead. Splitting this from the backing_dev_info structure allows to remove lots of backing_dev_info instance that aren't otherwise needed, and entirely gets rid of the concept of providing a backing_dev_info for a character device. It also removes the need for the mtd_inodefs filesystem. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Tejun Heo <tj@kernel.org> Acked-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2013-09-27FS-Cache: Provide the ability to enable/disable cookiesDavid Howells1-1/+1
Provide the ability to enable and disable fscache cookies. A disabled cookie will reject or ignore further requests to: Acquire a child cookie Invalidate and update backing objects Check the consistency of a backing object Allocate storage for backing page Read backing pages Write to backing pages but still allows: Checks/waits on the completion of already in-progress objects Uncaching of pages Relinquishment of cookies Two new operations are provided: (1) Disable a cookie: void fscache_disable_cookie(struct fscache_cookie *cookie, bool invalidate); If the cookie is not already disabled, this locks the cookie against other dis/enablement ops, marks the cookie as being disabled, discards or invalidates any backing objects and waits for cessation of activity on any associated object. This is a wrapper around a chunk split out of fscache_relinquish_cookie(), but it reinitialises the cookie such that it can be reenabled. All possible failures are handled internally. The caller should consider calling fscache_uncache_all_inode_pages() afterwards to make sure all page markings are cleared up. (2) Enable a cookie: void fscache_enable_cookie(struct fscache_cookie *cookie, bool (*can_enable)(void *data), void *data) If the cookie is not already enabled, this locks the cookie against other dis/enablement ops, invokes can_enable() and, if the cookie is not an index cookie, will begin the procedure of acquiring backing objects. The optional can_enable() function is passed the data argument and returns a ruling as to whether or not enablement should actually be permitted to begin. All possible failures are handled internally. The cookie will only be marked as enabled if provisional backing objects are allocated. A later patch will introduce these to NFS. Cookie enablement during nfs_open() is then contingent on i_writecount <= 0. can_enable() checks for a race between open(O_RDONLY) and open(O_WRONLY/O_RDWR). This simplifies NFS's cookie handling and allows us to get rid of open(O_RDONLY) accidentally introducing caching to an inode that's open for writing already. One operation has its API modified: (3) Acquire a cookie. struct fscache_cookie *fscache_acquire_cookie( struct fscache_cookie *parent, const struct fscache_cookie_def *def, void *netfs_data, bool enable); This now has an additional argument that indicates whether the requested cookie should be enabled by default. It doesn't need the can_enable() function because the caller must prevent multiple calls for the same netfs object and it doesn't need to take the enablement lock because no one else can get at the cookie before this returns. Signed-off-by: David Howells <dhowells@redhat.com
2010-04-22afs: add bdi backing to mount session.Jens Axboe1-0/+7
This ensures that dirty data gets flushed properly. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2009-04-03FS-Cache: Make kAFS use FS-CacheDavid Howells1-8/+6
The attached patch makes the kAFS filesystem in fs/afs/ use FS-Cache, and through it any attached caches. The kAFS filesystem will use caching automatically if it's available. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2007-05-21Detach sched.h from mm.hAlexey Dobriyan1-0/+1
First thing mm.h does is including sched.h solely for can_do_mlock() inline function which has "current" dereference inside. By dealing with can_do_mlock() mm.h can be detached from sched.h which is good. See below, why. This patch a) removes unconditional inclusion of sched.h from mm.h b) makes can_do_mlock() normal function in mm/mlock.c c) exports can_do_mlock() to not break compilation d) adds sched.h inclusions back to files that were getting it indirectly. e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were getting them indirectly Net result is: a) mm.h users would get less code to open, read, preprocess, parse, ... if they don't need sched.h b) sched.h stops being dependency for significant number of files: on x86_64 allmodconfig touching sched.h results in recompile of 4083 files, after patch it's only 3744 (-8.3%). Cross-compile tested on all arm defconfigs, all mips defconfigs, all powerpc defconfigs, alpha alpha-up arm i386 i386-up i386-defconfig i386-allnoconfig ia64 ia64-up m68k mips parisc parisc-up powerpc powerpc-up s390 s390-up sparc sparc-up sparc64 sparc64-up um-x86_64 x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig as well as my two usual configs. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-04-27[AFS]: Add "directory write" support.David Howells1-7/+7
Add support for the create, link, symlink, unlink, mkdir, rmdir and rename VFS operations to the in-kernel AFS filesystem. Also: (1) Fix dentry and inode revalidation. d_revalidate should only look at state of the dentry. Revalidation of the contents of an inode pointed to by a dentry is now separate. (2) Fix afs_lookup() to hash negative dentries as well as positive ones. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AFS]: Add security support.David Howells1-87/+22
Add security support to the AFS filesystem. Kerberos IV tickets are added as RxRPC keys are added to the session keyring with the klog program. open() and other VFS operations then find this ticket with request_key() and either use it immediately (eg: mkdir, unlink) or attach it to a file descriptor (open). Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AF_RXRPC]: Make the in-kernel AFS filesystem use AF_RXRPC.David Howells1-92/+49
Make the in-kernel AFS filesystem use AF_RXRPC instead of the old RxRPC code. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-04-27[AFS]: Clean up the AFS sourcesDavid Howells1-37/+21
Clean up the AFS sources. Also remove references to AFS keys. RxRPC keys are used instead. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-09-27[PATCH] fs: Conversions from kmalloc+memset to k(z|c)allocPanagiotis Issaris1-2/+1
Conversions from kmalloc+memset to kzalloc. Signed-off-by: Panagiotis Issaris <takis@issaris.org> Jffs2-bit-acked-by: David Woodhouse <dwmw2@infradead.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-17Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds1-0/+520
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!