Age | Commit message (Collapse) | Author | Files | Lines |
|
This adds create/remove window ioctls to create and remove DMA windows.
sPAPR defines a Dynamic DMA windows capability which allows
para-virtualized guests to create additional DMA windows on a PCI bus.
The existing linux kernels use this new window to map the entire guest
memory and switch to the direct DMA operations saving time on map/unmap
requests which would normally happen in a big amounts.
This adds 2 ioctl handlers - VFIO_IOMMU_SPAPR_TCE_CREATE and
VFIO_IOMMU_SPAPR_TCE_REMOVE - to create and remove windows.
Up to 2 windows are supported now by the hardware and by this driver.
This changes VFIO_IOMMU_SPAPR_TCE_GET_INFO handler to return additional
information such as a number of supported windows and maximum number
levels of TCE tables.
DDW is added as a capability, not as a SPAPR TCE IOMMU v2 unique feature
as we still want to support v2 on platforms which cannot do DDW for
the sake of TCE acceleration in KVM (coming soon).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The existing implementation accounts the whole DMA window in
the locked_vm counter. This is going to be worse with multiple
containers and huge DMA windows. Also, real-time accounting would requite
additional tracking of accounted pages due to the page size difference -
IOMMU uses 4K pages and system uses 4K or 64K pages.
Another issue is that actual pages pinning/unpinning happens on every
DMA map/unmap request. This does not affect the performance much now as
we spend way too much time now on switching context between
guest/userspace/host but this will start to matter when we add in-kernel
DMA map/unmap acceleration.
This introduces a new IOMMU type for SPAPR - VFIO_SPAPR_TCE_v2_IOMMU.
New IOMMU deprecates VFIO_IOMMU_ENABLE/VFIO_IOMMU_DISABLE and introduces
2 new ioctls to register/unregister DMA memory -
VFIO_IOMMU_SPAPR_REGISTER_MEMORY and VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY -
which receive user space address and size of a memory region which
needs to be pinned/unpinned and counted in locked_vm.
New IOMMU splits physical pages pinning and TCE table update
into 2 different operations. It requires:
1) guest pages to be registered first
2) consequent map/unmap requests to work only with pre-registered memory.
For the default single window case this means that the entire guest
(instead of 2GB) needs to be pinned before using VFIO.
When a huge DMA window is added, no additional pinning will be
required, otherwise it would be guest RAM + 2GB.
The new memory registration ioctls are not supported by
VFIO_SPAPR_TCE_IOMMU. Dynamic DMA window and in-kernel acceleration
will require memory to be preregistered in order to work.
The accounting is done per the user process.
This advertises v2 SPAPR TCE IOMMU and restricts what the userspace
can do with v1 or v2 IOMMUs.
In order to support memory pre-registration, we need a way to track
the use of every registered memory region and only allow unregistration
if a region is not in use anymore. So we need a way to tell from what
region the just cleared TCE was from.
This adds a userspace view of the TCE table into iommu_table struct.
It contains userspace address, one per TCE entry. The table is only
allocated when the ownership over an IOMMU group is taken which means
it is only used from outside of the powernv code (such as VFIO).
As v2 IOMMU supports IODA2 and pre-IODA2 IOMMUs (which do not support
DDW API), this creates a default DMA window for IODA2 for consistency.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
control
Before the IOMMU user (VFIO) would take control over the IOMMU table
belonging to a specific IOMMU group. This approach did not allow sharing
tables between IOMMU groups attached to the same container.
This introduces a new IOMMU ownership flavour when the user can not
just control the existing IOMMU table but remove/create tables on demand.
If an IOMMU implements take/release_ownership() callbacks, this lets
the user have full control over the IOMMU group. When the ownership
is taken, the platform code removes all the windows so the caller must
create them.
Before returning the ownership back to the platform code, VFIO
unprograms and removes all the tables it created.
This changes IODA2's onwership handler to remove the existing table
rather than manipulating with the existing one. From now on,
iommu_take_ownership() and iommu_release_ownership() are only called
from the vfio_iommu_spapr_tce driver.
Old-style ownership is still supported allowing VFIO to run on older
P5IOC2 and IODA IO controllers.
No change in userspace-visible behaviour is expected. Since it recreates
TCE tables on each ownership change, related kernel traces will appear
more often.
This adds a pnv_pci_ioda2_setup_default_config() which is called
when PE is being configured at boot time and when the ownership is
passed from VFIO to the platform code.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This extends iommu_table_group_ops by a set of callbacks to support
dynamic DMA windows management.
create_table() creates a TCE table with specific parameters.
it receives iommu_table_group to know nodeid in order to allocate
TCE table memory closer to the PHB. The exact format of allocated
multi-level table might be also specific to the PHB model (not
the case now though).
This callback calculated the DMA window offset on a PCI bus from @num
and stores it in a just created table.
set_window() sets the window at specified TVT index + @num on PHB.
unset_window() unsets the window from specified TVT.
This adds a free() callback to iommu_table_ops to free the memory
(potentially a tree of tables) allocated for the TCE table.
create_table() and free() are supposed to be called once per
VFIO container and set_window()/unset_window() are supposed to be
called for every group in a container.
This adds IOMMU capabilities to iommu_table_group such as default
32bit window parameters and others. This makes use of new values in
vfio_iommu_spapr_tce. IODA1/P5IOC2 do not support DDW so they do not
advertise pagemasks to the userspace.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
At the moment writing new TCE value to the IOMMU table fails with EBUSY
if there is a valid entry already. However PAPR specification allows
the guest to write new TCE value without clearing it first.
Another problem this patch is addressing is the use of pool locks for
external IOMMU users such as VFIO. The pool locks are to protect
DMA page allocator rather than entries and since the host kernel does
not control what pages are in use, there is no point in pool locks and
exchange()+put_page(oldtce) is sufficient to avoid possible races.
This adds an exchange() callback to iommu_table_ops which does the same
thing as set() plus it returns replaced TCE and DMA direction so
the caller can release the pages afterwards. The exchange() receives
a physical address unlike set() which receives linear mapping address;
and returns a physical address as the clear() does.
This implements exchange() for P5IOC2/IODA/IODA2. This adds a requirement
for a platform to have exchange() implemented in order to support VFIO.
This replaces iommu_tce_build() and iommu_clear_tce() with
a single iommu_tce_xchg().
This makes sure that TCE permission bits are not set in TCE passed to
IOMMU API as those are to be calculated by platform code from
DMA direction.
This moves SetPageDirty() to the IOMMU code to make it work for both
VFIO ioctl interface in in-kernel TCE acceleration (when it becomes
available later).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds tce_iommu_take_ownership() and tce_iommu_release_ownership
which call in a loop iommu_take_ownership()/iommu_release_ownership()
for every table on the group. As there is just one now, no change in
behaviour is expected.
At the moment the iommu_table struct has a set_bypass() which enables/
disables DMA bypass on IODA2 PHB. This is exposed to POWERPC IOMMU code
which calls this callback when external IOMMU users such as VFIO are
about to get over a PHB.
The set_bypass() callback is not really an iommu_table function but
IOMMU/PE function. This introduces a iommu_table_group_ops struct and
adds take_ownership()/release_ownership() callbacks to it which are
called when an external user takes/releases control over the IOMMU.
This replaces set_bypass() with ownership callbacks as it is not
necessarily just bypass enabling, it can be something else/more
so let's give it more generic name.
The callbacks is implemented for IODA2 only. Other platforms (P5IOC2,
IODA1) will use the old iommu_take_ownership/iommu_release_ownership API.
The following patches will replace iommu_take_ownership/
iommu_release_ownership calls in IODA2 with full IOMMU table release/
create.
As we here and touching bypass control, this removes
pnv_pci_ioda2_setup_bypass_pe() as it does not do much
more compared to pnv_pci_ioda2_set_bypass. This moves tce_bypass_base
initialization to pnv_pci_ioda2_setup_dma_pe.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
So far one TCE table could only be used by one IOMMU group. However
IODA2 hardware allows programming the same TCE table address to
multiple PE allowing sharing tables.
This replaces a single pointer to a group in a iommu_table struct
with a linked list of groups which provides the way of invalidating
TCE cache for every PE when an actual TCE table is updated. This adds
pnv_pci_link_table_and_group() and pnv_pci_unlink_table_and_group()
helpers to manage the list. However without VFIO, it is still going
to be a single IOMMU group per iommu_table.
This changes iommu_add_device() to add a device to a first group
from the group list of a table as it is only called from the platform
init code or PCI bus notifier and at these moments there is only
one group per table.
This does not change TCE invalidation code to loop through all
attached groups in order to simplify this patch and because
it is not really needed in most cases. IODA2 is fixed in a later
patch.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Modern IBM POWERPC systems support multiple (currently two) TCE tables
per IOMMU group (a.k.a. PE). This adds a iommu_table_group container
for TCE tables. Right now just one table is supported.
This defines iommu_table_group struct which stores pointers to
iommu_group and iommu_table(s). This replaces iommu_table with
iommu_table_group where iommu_table was used to identify a group:
- iommu_register_group();
- iommudata of generic iommu_group;
This removes @data from iommu_table as it_table_group provides
same access to pnv_ioda_pe.
For IODA, instead of embedding iommu_table, the new iommu_table_group
keeps pointers to those. The iommu_table structs are allocated
dynamically.
For P5IOC2, both iommu_table_group and iommu_table are embedded into
PE struct. As there is no EEH and SRIOV support for P5IOC2,
iommu_free_table() should not be called on iommu_table struct pointers
so we can keep it embedded in pnv_phb::p5ioc2.
For pSeries, this replaces multiple calls of kzalloc_node() with a new
iommu_pseries_alloc_group() helper and stores the table group struct
pointer into the pci_dn struct. For release, a iommu_table_free_group()
helper is added.
This moves iommu_table struct allocation from SR-IOV code to
the generic DMA initialization code in pnv_pci_ioda_setup_dma_pe and
pnv_pci_ioda2_setup_dma_pe as this is where DMA is actually initialized.
This change is here because those lines had to be changed anyway.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is to make extended ownership and multiple groups support patches
simpler for review.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is a pretty mechanical patch to make next patches simpler.
New tce_iommu_unuse_page() helper does put_page() now but it might skip
that after the memory registering patch applied.
As we are here, this removes unnecessary checks for a value returned
by pfn_to_page() as it cannot possibly return NULL.
This moves tce_iommu_disable() later to let tce_iommu_clear() know if
the container has been enabled because if it has not been, then
put_page() must not be called on TCEs from the TCE table. This situation
is not yet possible but it will after KVM acceleration patchset is
applied.
This changes code to work with physical addresses rather than linear
mapping addresses for better code readability. Following patches will
add an xchg() callback for an IOMMU table which will accept/return
physical addresses (unlike current tce_build()) which will eliminate
redundant conversions.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
At the moment DMA map/unmap requests are handled irrespective to
the container's state. This allows the user space to pin memory which
it might not be allowed to pin.
This adds checks to MAP/UNMAP that the container is enabled, otherwise
-EPERM is returned.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
There moves locked pages accounting to helpers.
Later they will be reused for Dynamic DMA windows (DDW).
This reworks debug messages to show the current value and the limit.
This stores the locked pages number in the container so when unlocking
the iommu table pointer won't be needed. This does not have an effect
now but it will with the multiple tables per container as then we will
allow attaching/detaching groups on fly and we may end up having
a container with no group attached but with the counter incremented.
While we are here, update the comment explaining why RLIMIT_MEMLOCK
might be required to be bigger than the guest RAM. This also prints
pid of the current process in pr_warn/pr_debug.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This makes use of the it_page_size from the iommu_table struct
as page size can differ.
This replaces missing IOMMU_PAGE_SHIFT macro in commented debug code
as recently introduced IOMMU_PAGE_XXX macros do not include
IOMMU_PAGE_SHIFT.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This checks that the TCE table page size is not bigger that the size of
a page we just pinned and going to put its physical address to the table.
Otherwise the hardware gets unwanted access to physical memory between
the end of the actual page and the end of the aligned up TCE page.
Since compound_order() and compound_head() work correctly on non-huge
pages, there is no need for additional check whether the page is huge.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This moves page pinning (get_user_pages_fast()/put_page()) code out of
the platform IOMMU code and puts it to VFIO IOMMU driver where it belongs
to as the platform code does not deal with page pinning.
This makes iommu_take_ownership()/iommu_release_ownership() deal with
the IOMMU table bitmap only.
This removes page unpinning from iommu_take_ownership() as the actual
TCE table might contain garbage and doing put_page() on it is undefined
behaviour.
Besides the last part, the rest of the patch is mechanical.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
[aw: for the vfio related changes]
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The patch adds new IOCTL commands for sPAPR VFIO container device
to support EEH functionality for PCI devices, which have been passed
through from host to somebody else via VFIO.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The powerpc iommu uses a hardcoded page size of 4K. This patch changes
the name of the IOMMU_PAGE_* macros to reflect the hardcoded values. A
future patch will use the existing names to support dynamic page
sizes.
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
VFIO implements platform independent stuff such as
a PCI driver, BAR access (via read/write on a file descriptor
or direct mapping when possible) and IRQ signaling.
The platform dependent part includes IOMMU initialization
and handling. This implements an IOMMU driver for VFIO
which does mapping/unmapping pages for the guest IO and
provides information about DMA window (required by a POWER
guest).
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|