summaryrefslogtreecommitdiff
path: root/drivers/s390/scsi/zfcp_scsi.c
AgeCommit message (Collapse)AuthorFilesLines
2023-03-25scsi: zfcp: Declare SCSI host template constBart Van Assche1-1/+1
Make it explicit that the SCSI host template is not modified. Acked-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20230322195515.1267197-9-bvanassche@acm.org Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-02-22scsi: zfcp: Change the type of all fsf request id fields and variables to u64Benjamin Block1-1/+1
We use different integer types throughout zfcp to store the FSF request ID and related values; some places use 'unsigned long' and others 'u64'. On s390x these are effectively the same type, but this might cause confusions and is generally inconsistent. The specification for the used hardware specifies this value as a 64-bit number, and ultimately we use this value to communicate with the hardware, so it makes sense to change the type of all these variables to 'u64' where we can. The only exception being when we store it in the 'host_scribble' field of a 'struct scsi_cmnd'; for this case we add a build time check to make sure they are compatible. Link: https://lore.kernel.org/r/9c9cbe5acc2b419a22dce2fed847e3db91b60201.1677000450.git.bblock@linux.ibm.com Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-10-17scsi: zfcp: Switch to attribute groupsBart Van Assche1-2/+2
struct device supports attribute groups directly but does not support struct device_attribute directly. Hence switch to attribute groups. Link: https://lore.kernel.org/r/20211012233558.4066756-7-bvanassche@acm.org Acked-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-10-17scsi: zfcp_scsi: Call scsi_done() directlyBart Van Assche1-2/+2
Conditional statements are faster than indirect calls. Hence call scsi_done() directly. Link: https://lore.kernel.org/r/20211007202923.2174984-8-bvanassche@acm.org Acked-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2021-06-01scsi: core: Introduce scsi_build_sense()Hannes Reinecke1-4/+1
Introduce scsi_build_sense() as a wrapper around scsi_build_sense_buffer() to format the buffer and set the correct SCSI status. Link: https://lore.kernel.org/r/20210427083046.31620-8-hare@suse.de Reviewed-by: Bart Van Assche <bvanassche@acm.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-12scsi: zfcp: Move allocation of the shost object to after xconf- and xport-dataBenjamin Block1-9/+31
At the moment we allocate and register the Scsi_Host object corresponding to a zfcp adapter (FCP device) very early in the life cycle of the adapter - even before we fully discover and initialize the underlying firmware/hardware. This had the advantage that we could already use the Scsi_Host object, and fill in all its information during said discover and initialize. Due to commit 737eb78e82d5 ("block: Delay default elevator initialization") (first released in v5.4), we noticed a regression that would prevent us from using any storage volume if zfcp is configured with support for DIF or DIX (zfcp.dif=1 || zfcp.dix=1). Doing so would result in an illegal memory access as soon as the first request is sent with such an configuration. As example for a crash resulting from this: scsi host0: scsi_eh_0: sleeping scsi host0: zfcp qdio: 0.0.1900 ZFCP on SC 4bd using AI:1 QEBSM:0 PRI:1 TDD:1 SIGA: W AP scsi 0:0:0:0: scsi scan: INQUIRY pass 1 length 36 Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 0000000000000000 TEID: 0000000000000483 Fault in home space mode while using kernel ASCE. AS:0000000035c7c007 R3:00000001effcc007 S:00000001effd1000 P:000000000000003d Oops: 0004 ilc:3 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: ... CPU: 1 PID: 783 Comm: kworker/u760:5 Kdump: loaded Not tainted 5.6.0-rc2-bb-next+ #1 Hardware name: ... Workqueue: scsi_wq_0 fc_scsi_scan_rport [scsi_transport_fc] Krnl PSW : 0704e00180000000 000003ff801fcdae (scsi_queue_rq+0x436/0x740 [scsi_mod]) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0fffffffffffffff 0000000000000000 0000000187150120 0000000000000000 000003ff80223d20 000000000000018e 000000018adc6400 0000000187711000 000003e0062337e8 00000001ae719000 0000000187711000 0000000187150000 00000001ab808100 0000000187150120 000003ff801fcd74 000003e0062336a0 Krnl Code: 000003ff801fcd9e: e310a35c0012 lt %r1,860(%r10) 000003ff801fcda4: a7840010 brc 8,000003ff801fcdc4 #000003ff801fcda8: e310b2900004 lg %r1,656(%r11) >000003ff801fcdae: d71710001000 xc 0(24,%r1),0(%r1) 000003ff801fcdb4: e310b2900004 lg %r1,656(%r11) 000003ff801fcdba: 41201018 la %r2,24(%r1) 000003ff801fcdbe: e32010000024 stg %r2,0(%r1) 000003ff801fcdc4: b904002b lgr %r2,%r11 Call Trace: [<000003ff801fcdae>] scsi_queue_rq+0x436/0x740 [scsi_mod] ([<000003ff801fcd74>] scsi_queue_rq+0x3fc/0x740 [scsi_mod]) [<00000000349c9970>] blk_mq_dispatch_rq_list+0x390/0x680 [<00000000349d1596>] blk_mq_sched_dispatch_requests+0x196/0x1a8 [<00000000349c7a04>] __blk_mq_run_hw_queue+0x144/0x160 [<00000000349c7ab6>] __blk_mq_delay_run_hw_queue+0x96/0x228 [<00000000349c7d5a>] blk_mq_run_hw_queue+0xd2/0xe0 [<00000000349d194a>] blk_mq_sched_insert_request+0x192/0x1d8 [<00000000349c17b8>] blk_execute_rq_nowait+0x80/0x90 [<00000000349c1856>] blk_execute_rq+0x6e/0xb0 [<000003ff801f8ac2>] __scsi_execute+0xe2/0x1f0 [scsi_mod] [<000003ff801fef98>] scsi_probe_and_add_lun+0x358/0x840 [scsi_mod] [<000003ff8020001c>] __scsi_scan_target+0xc4/0x228 [scsi_mod] [<000003ff80200254>] scsi_scan_target+0xd4/0x100 [scsi_mod] [<000003ff802d8b96>] fc_scsi_scan_rport+0x96/0xc0 [scsi_transport_fc] [<0000000034245ce8>] process_one_work+0x458/0x7d0 [<00000000342462a2>] worker_thread+0x242/0x448 [<0000000034250994>] kthread+0x15c/0x170 [<0000000034e1979c>] ret_from_fork+0x30/0x38 INFO: lockdep is turned off. Last Breaking-Event-Address: [<000003ff801fbc36>] scsi_add_cmd_to_list+0x9e/0xa8 [scsi_mod] Kernel panic - not syncing: Fatal exception: panic_on_oops While this issue is exposed by the commit named above, this is only by accident. The real issue exists for longer already - basically since it's possible to use blk-mq via scsi-mq, and blk-mq pre-allocates all requests for a tag-set during initialization of the same. For a given Scsi_Host object this is done when adding the object to the midlayer (`scsi_add_host()` and such). In `scsi_mq_setup_tags()` the midlayer calculates how much memory is required for a single scsi_cmnd, and its additional data, which also might include space for additional protection data - depending on whether the Scsi_Host has any form of protection capabilities (`scsi_host_get_prot()`). The problem is now thus, because zfcp does this step before we actually know whether the firmware/hardware has these capabilities, we don't set any protection capabilities in the Scsi_Host object. And so, no space is allocated for additional protection data for requests in the Scsi_Host tag-set. Once we go through discover and initialize the FCP device firmware/hardware fully (this is done via the firmware commands "Exchange Config Data" and "Exchange Port Data") we find out whether it actually supports DIF and DIX, and we set the corresponding capabilities in the Scsi_Host object (in `zfcp_scsi_set_prot()`). Now the Scsi_Host potentially has protection capabilities, but the already allocated requests in the tag-set don't have any space allocated for that. When we then trigger target scanning or add scsi_devices manually, the midlayer will use requests from that tag-set, and before sending most requests, it will also call `scsi_mq_prep_fn()`. To prepare the scsi_cmnd this function will check again whether the used Scsi_Host has any protection capabilities - and now it potentially has - and if so, it will try to initialize the assumed to be preallocated structures and thus it causes the crash, like shown above. Before delaying the default elevator initialization with the commit named above, we always would also allocate an elevator for any scsi_device before ever sending any requests - in contrast to now, where we do it after device-probing. That elevator in turn would have its own tag-set, and that is initialized after we went through discovery and initialization of the underlying firmware/hardware. So requests from that tag-set can be allocated properly, and if used - unless the user changes/disabled the default elevator - this would hide the underlying issue. To fix this for any configuration - with or without an elevator - we move the allocation and registration of the Scsi_Host object for a given FCP device to after the first complete discovery and initialization of the underlying firmware/hardware. By doing that we can make all basic properties of the Scsi_Host known to the midlayer by the time we call `scsi_add_host()`, including whether we have any protection capabilities. To do that we have to delay all the accesses that we would have done in the past during discovery and initialization, and do them instead once we are finished with it. The previous patches ramp up to this by fencing and factoring out all these accesses, and make it possible to re-do them later on. In addition we make also use of the diagnostic buffers we recently added with commit 92953c6e0aa7 ("scsi: zfcp: signal incomplete or error for sync exchange config/port data") commit 7e418833e689 ("scsi: zfcp: diagnostics buffer caching and use for exchange port data") commit 088210233e6f ("scsi: zfcp: add diagnostics buffer for exchange config data") (first released in v5.5), because these already cache all the information we need for that "re-do operation" - the information cached are always updated during xconf or xport data, so it won't be stale. In addition to the move and re-do, this patch also updates the function-documentation of `zfcp_scsi_adapter_register()` and changes how it reports if a Scsi_Host object already exists. In that case future recovery-operations can skip this step completely and behave much like they would do in the past - zfcp does not release a once allocated Scsi_Host object unless the corresponding FCP device is deconstructed completely. Link: https://lore.kernel.org/r/030dd6da318bbb529f0b5268ec65cebcd20fc0a3.1588956679.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-12scsi: zfcp: Move fc_host updates during xport data handling into fenced functionBenjamin Block1-0/+19
When executing exchange port data for a FCP device for the first time, or after an adapter recovery, we update several properties of the fibre channel host object which represents that FCP device. When moving the scsi host object allocation and registration - and thus also the fibre channel host object allocation - to after the first exchange config and exchange port data, this is not possible for the former case. Move all these update into separate, and fenced function that first checks whether the scsi host object already exists or not, before making the updates. During the first ever exchange port data in the adapter life cycle this will make the exchange port data handler skip over this update step, but we can repeat it later, after we allocated the scsi host object. For any further recovery of that adapter the work flow is only changed slightly because then the scsi host object already exists and we don't free it until we release the adapter completely at the end of its life cycle. Link: https://lore.kernel.org/r/ae454c2dc6da0b02907c489af91d0b211d331825.1588956679.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-12scsi: zfcp: Move shost updates during xconfig data handling into fenced functionBenjamin Block1-1/+71
When executing exchange config data for a FCP device for the first time, or after an adapter recovery, we update several properties of the scsi host or fibre channel host object that represent that FCP device. When moving the scsi host object allocation and registration - and thus also the fibre channel host object allocation - to after the first exchange config and exchange port data, this is not possible for the former case. Move all these update into separate, and fenced function that first checks whether the scsi host object already exists or not, before making the updates. During the first ever exchange config data in the adapter life cycle this will make the exchange config data handler skip over this update step, but we can repeat it later, after we allocated the scsi host object. For any further recovery of that adapter the work flow is only changed slightly because then the scsi host object already exists and we don't free it until we release the adapter completely at the end of its life cycle. Link: https://lore.kernel.org/r/5fc3f4d38d4334f7aa595497c6f7865fb1102e0f.1588956679.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-03-17scsi: zfcp: wire previously driver-specific sysfs attributes also to fc_hostSteffen Maier1-0/+4
Manufacturer, HBA model, firmware version, and hardware version. Use the same value format as for the driver-specific attributes. Keep the driver-specific attributes for stable user space sysfs API. Link: https://lore.kernel.org/r/20200312174505.51294-4-maier@linux.ibm.com Reviewed-by: Jens Remus <jremus@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-03-17scsi: zfcp: expose fabric name as common fc_host sysfs attributeSteffen Maier1-0/+1
FICON Express8S or older, as well as card features newer than FICON Express16S+ have no certain firmware level requirement. FICON Express16S or FICON Express16S+ have the following minimum firmware level requirements to show a proper fabric name value: z13 machine FICON Express16S , MCL P08424.005 , LIC version 0x00000721 z14 machine FICON Express16S , MCL P42611.008 , LIC version 0x10200069 FICON Express16S+ , MCL P42625.010 , LIC version 0x10300147 Otherwise, the read value is not the fabric name. Each FCP channel of these card features might need one SAN fabric re-login after concurrent microcode update in order to show the proper fabric name. Possible ways to trigger a SAN fabric re-login are one of: Pull fibres between FCP channel port and SAN switch port on either side and re-plug, disable SAN switch port adjacent to FCP channel port and re-enable switch port, or at Service Element toggle off all CHPIDs of FCP channel over all LPARs and toggle CHPIDs on again. Zfcp operating subchannels (FCP devices) on such FCP channel recovers a fabric re-login. Initialize fabric name for any topology and have it an invalid WWPN 0x0 for anything but fabric topology. Otherwise for e.g. point-to-point topology one could see the initial -1 from fc_host_setup() and after a link unplug our fabric name would turn to 0x0 (with subsequent commit ("zfcp: fix fc_host attributes that should be unknown on local link down") and stay 0x0 on link replug. I did not initialize to 0x0 somewhere even earlier in the code path such that it would not flap from real to 0x0 to real on e.g. an exchange config data with fabric topology. Link: https://lore.kernel.org/r/20200312174505.51294-3-maier@linux.ibm.com Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Reviewed-by: Jens Remus <jremus@linux.ibm.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-10-29scsi: zfcp: signal incomplete or error for sync exchange config/port dataBenjamin Block1-2/+2
Adds a new FSF-Request status flag (ZFCP_STATUS_FSFREQ_XDATAINCOMPLETE) that signal that the data received using Exchange Config Data or Exchange Port Data was incomplete. This new flags is set in the respective handlers during the response path. With this patch, only the synchronous FSF-functions for each command got support for the new flag, otherwise it is transparent. Together with this new flag and already existing status flags the synchronous FSF-functions are extended to now detect whether the received data is complete, incomplete or completely invalid (this includes cases where a command ran into a timeout). This is now signaled back to the caller, where previously only failures on the request path would result in a bad return-code. For complete data the return-code remains 0. For incomplete data a new return-code -EAGAIN is added to the function-interface. For completely invalid data the already existing return-code -EIO is reused - formerly this was used to signal failures on the request path. Existing callers of the FSF-functions are adjusted so that they behave as before for return-code 0 and -EAGAIN, to not change the user-interface. As -EIO existed all along, it was already exposed to the user - and needed handling - and will now also be exposed in this new special case. Link: https://lore.kernel.org/r/e14f0702fa2b00a4d1f37c7981a13f2dd1ea2c83.1572018130.git.bblock@linux.ibm.com Reviewed-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-05-30scsi: zfcp: fix to prevent port_remove with pure auto scan LUNs (only sdevs)Steffen Maier1-0/+9
When the user tries to remove a zfcp port via sysfs, we only rejected it if there are zfcp unit children under the port. With purely automatically scanned LUNs there are no zfcp units but only SCSI devices. In such cases, the port_remove erroneously continued. We close the port and this implicitly closes all LUNs under the port. The SCSI devices survive with their private zfcp_scsi_dev still holding a reference to the "removed" zfcp_port (still allocated but invisible in sysfs) [zfcp_get_port_by_wwpn in zfcp_scsi_slave_alloc]. This is not a problem as long as the fc_rport stays blocked. Once (auto) port scan brings back the removed port, we unblock its fc_rport again by design. However, there is no mechanism that would recover (open) the LUNs under the port (no "ersfs_3" without zfcp_unit [zfcp_erp_strategy_followup_success]). Any pending or new I/O to such LUN leads to repeated: Done: NEEDS_RETRY Result: hostbyte=DID_IMM_RETRY driverbyte=DRIVER_OK See also v4.10 commit 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN recovery"). Even a manual LUN recovery (echo 0 > /sys/bus/scsi/devices/H:C:T:L/zfcp_failed) does not help, as the LUN links to the old "removed" port which remains to lack ZFCP_STATUS_COMMON_RUNNING [zfcp_erp_required_act]. The only workaround is to first ensure that the fc_rport is blocked (e.g. port_remove again in case it was re-discovered by (auto) port scan), then delete the SCSI devices, and finally re-discover by (auto) port scan. The port scan includes an fc_rport unblock, which in turn triggers a new scan on the scsi target to freshly get new pure auto scan LUNs. Fix this by rejecting port_remove also if there are SCSI devices (even without any zfcp_unit) under this port. Re-use mechanics from v3.7 commit d99b601b6338 ("[SCSI] zfcp: restore refcount check on port_remove"). However, we have to give up zfcp_sysfs_port_units_mutex earlier in unit_add to prevent a deadlock with scsi_host scan taking shost->scan_mutex first and then zfcp_sysfs_port_units_mutex now in our zfcp_scsi_slave_alloc(). Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: b62a8d9b45b9 ("[SCSI] zfcp: Use SCSI device data zfcp scsi dev instead of zfcp unit") Fixes: f8210e34887e ("[SCSI] zfcp: Allow midlayer to scan for LUNs when running in NPIV mode") Cc: <stable@vger.kernel.org> #2.6.37+ Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-03-28scsi: zfcp: fix scsi_eh host reset with port_forced ERP for non-NPIV FCP devicesSteffen Maier1-0/+4
Suppose more than one non-NPIV FCP device is active on the same channel. Send I/O to storage and have some of the pending I/O run into a SCSI command timeout, e.g. due to bit errors on the fibre. Now the error situation stops. However, we saw FCP requests continue to timeout in the channel. The abort will be successful, but the subsequent TUR fails. Scsi_eh starts. The LUN reset fails. The target reset fails. The host reset only did an FCP device recovery. However, for non-NPIV FCP devices, this does not close and reopen ports on the SAN-side if other non-NPIV FCP device(s) share the same open ports. In order to resolve the continuing FCP request timeouts, we need to explicitly close and reopen ports on the SAN-side. This was missing since the beginning of zfcp in v2.6.0 history commit ea127f975424 ("[PATCH] s390 (7/7): zfcp host adapter."). Note: The FSF requests for forced port reopen could run into FSF request timeouts due to other reasons. This would trigger an internal FCP device recovery. Pending forced port reopen recoveries would get dismissed. So some ports might not get fully reopened during this host reset handler. However, subsequent I/O would trigger the above described escalation and eventually all ports would be forced reopen to resolve any continuing FCP request timeouts due to earlier bit errors. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Cc: <stable@vger.kernel.org> #3.0+ Reviewed-by: Jens Remus <jremus@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2019-01-29scsi: zfcp: fix sysfs block queue limit output for max_segment_sizeSteffen Maier1-0/+2
Since v2.6.35 commit 683229845f17 ("[SCSI] zfcp: Report scatter-gather limits to SCSI and block layer"), zfcp set dma_parms.max_segment_size == PAGE_SIZE (but without using the setter dma_set_max_seg_size()) and scsi_host_template.dma_boundary == PAGE_SIZE - 1. v5.0-rc1 commit 50c2e9107f17 ("scsi: introduce a max_segment_size host_template parameters") introduced a new field scsi_host_template.max_segment_size. If an LLDD such as zfcp does not set it, scsi_host_alloc() uses BLK_MAX_SEGMENT_SIZE = 65536 for Scsi_Host.max_segment_size. __scsi_init_queue() announced the minimum of Scsi_Host.max_segment_size and dma_parms.max_segment_size to the block layer. For zfcp: min(65536, 4096) == 4096 which was still good. v5.0 commit a8cf59a6692c ("scsi: communicate max segment size to the DMA mapping code") announces Scsi_Host.max_segment_size to the block layer and overwrites dma_parms.max_segment_size with Scsi_Host.max_segment_size. For zfcp dma_parms.max_segment_size == Scsi_Host.max_segment_size == 65536 which is also reflected in block queue limits. $ cd /sys/bus/ccw/drivers/zfcp $ cd 0.0.3c40/host5/rport-5:0-4/target5:0:4/5:0:4:10/block/sdi/queue $ cat max_segment_size 65536 Zfcp I/O still works because dma_boundary implicitly still keeps the effective max segment size <= PAGE_SIZE. However, dma_boundary does not seem visible to user space, but max_segment_size is visible and shows a misleading wrong value. Fix it and inherit the stable tag of a8cf59a6692c. Devices on our bus ccw support DMA but no DMA mapping. Of multiple device types on the ccw bus, only zfcp needs dma_parms for SCSI limits. So, leave dma_parms setup in zfcp and do not move it to the bus. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: 50c2e9107f ("scsi: introduce a max_segment_size host_template parameters") Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-12-19scsi: flip the default on use_clusteringChristoph Hellwig1-1/+0
Most SCSI drivers want to enable "clustering", that is merging of segments so that they might span more than a single page. Remove the ENABLE_CLUSTERING define, and require drivers to explicitly set DISABLE_CLUSTERING to disable this feature. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-12-08scsi: zfcp: make DIX experimental, disabled, and independent of DIFFedor Loshakov1-3/+7
Introduce separate zfcp module parameters to individually select support for: DIF which should work (zfcp.dif, which used to be DIF+DIX, disabled) or DIX+DIF which can cause trouble (zfcp.dix, new, disabled). If DIX is enabled, we warn on zfcp driver initialization. As before, this also reduces the maximum I/O request size to half, to support the worst case of merged single sector requests with one protection data scatter gather element per sector. This can impact the maximum throughput. In DIF-only mode (zfcp.dif=1 zfcp.dix=0), we can use the full maximum I/O request size as there is no protection data for zfcp. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Fedor Loshakov <loshakov@linux.ibm.com> Reviewed-by: Jens Remus <jremus@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-11-15scsi: zfcp: drop duplicate fsf_command from zfcp_fsf_req which is also in ↵Steffen Maier1-1/+3
QTCB header Status read buffers (SRBs, unsolicited notifications) never use a QTCB [zfcp_fsf_req_create()]. zfcp_fsf_req_send() already uses this to distinguish SRBs from other FSF request types. We can re-use this method in zfcp_fsf_req_complete(). Introduce a helper function to make the check for req->qtcb less magic. SRBs always are FSF_QTCB_UNSOLICITED_STATUS, so we can hard-code this for the two trace functions dealing with SRBs. All other FSF request types have a QTCB and we can get the fsf_command from there. zfcp_dbf_hba_fsf_response() and thus zfcp_dbf_hba_fsf_res() are only called for non-SRB requests so it's safe to dereference the QTCB [zfcp_fsf_req_complete() returns early on SRB, else calls zfcp_fsf_protstatus_eval() which calls zfcp_dbf_hba_fsf_response()]. In zfcp_scsi_forget_cmnd() we guard the QTCB dereference with a preceding NULL check and rely on boolean shortcut evaluation. As a side effect, this causes an alignment hole which we can close in a later patch after having cleaned up all fields of struct zfcp_fsf_req. Before: $ pahole -C zfcp_fsf_req drivers/s390/scsi/zfcp.ko ... u32 status; /* 136 4 */ u32 fsf_command; /* 140 4 */ struct fsf_qtcb * qtcb; /* 144 8 */ ... After: $ pahole -C zfcp_fsf_req drivers/s390/scsi/zfcp.ko ... u32 status; /* 136 4 */ /* XXX 4 bytes hole, try to pack */ struct fsf_qtcb * qtcb; /* 144 8 */ ... Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-06-10Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsiLinus Torvalds1-33/+108
Pull SCSI updates from James Bottomley: "This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc, xfcp, hisi_sas, cxlflash, qla2xxx. In the absence of Nic, we're also taking target updates which are mostly minor except for the tcmu refactor. The only real core change to worry about is the removal of high page bouncing (in sas, storvsc and iscsi). This has been well tested and no problems have shown up so far" * tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (268 commits) scsi: lpfc: update driver version to 12.0.0.4 scsi: lpfc: Fix port initialization failure. scsi: lpfc: Fix 16gb hbas failing cq create. scsi: lpfc: Fix crash in blk_mq layer when executing modprobe -r lpfc scsi: lpfc: correct oversubscription of nvme io requests for an adapter scsi: lpfc: Fix MDS diagnostics failure (Rx < Tx) scsi: hisi_sas: Mark PHY as in reset for nexus reset scsi: hisi_sas: Fix return value when get_free_slot() failed scsi: hisi_sas: Terminate STP reject quickly for v2 hw scsi: hisi_sas: Add v2 hw force PHY function for internal ATA command scsi: hisi_sas: Include TMF elements in struct hisi_sas_slot scsi: hisi_sas: Try wait commands before before controller reset scsi: hisi_sas: Init disks after controller reset scsi: hisi_sas: Create a scsi_host_template per HW module scsi: hisi_sas: Reset disks when discovered scsi: hisi_sas: Add LED feature for v3 hw scsi: hisi_sas: Change common allocation mode of device id scsi: hisi_sas: change slot index allocation mode scsi: hisi_sas: Introduce hisi_sas_phy_set_linkrate() scsi: hisi_sas: fix a typo in hisi_sas_task_prep() ...
2018-05-18scsi: zfcp: support SCSI_ADAPTER_RESET via scsi_host sysfs attribute host_resetSteffen Maier1-0/+26
Make use of feature introduced with v3.2 commit 294436914454 ("[SCSI] scsi: Added support for adapter and firmware reset"). The common code interface was introduced for commit 95d31262b3c1 ("[SCSI] qla4xxx: Added support for adapter and firmware reset"). $ echo adapter > /sys/class/scsi_host/host<N>/host_reset Example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : REC Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 ZFCP_DBF_REC_TRIG Tag : scshr_y SCSI sysfs host_reset yes LUN : 0xffffffffffffffff none (invalid) WWPN : 0x0000000000000000 none (invalid) D_ID : 0x00000000 none (invalid) Adapter status : 0x4500050b Port status : 0x00000000 none (invalid) LUN status : 0x00000000 none (invalid) Ready count : 0x00000001 Running count : 0x00000000 ERP want : 0x04 ZFCP_ERP_ACTION_REOPEN_ADAPTER ERP need : 0x04 ZFCP_ERP_ACTION_REOPEN_ADAPTER This is the common code equivalent to the zfcp-specific &dev_attr_adapter_failed.attr in zfcp_sysfs_adapter_attrs.attrs[]: $ echo 0 > /sys/bus/ccw/drivers/zfcp/<devbusid>/failed The unsupported case returns EOPNOTSUPP: $ echo firmware > /sys/class/scsi_host/host<N>/host_reset -bash: echo: write error: Operation not supported Example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : scshr_n SCSI sysfs host_reset no Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0xffffffff none (invalid) SCSI LUN : 0xffffffff none (invalid) SCSI LUN high : 0xffffffff none (invalid) SCSI result : 0xffffffa1 -EOPNOTSUPP==-95 SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0xff none (invalid) FCP rsp IU : 00000000 00000000 00000000 00000000 none (invalid) 00000000 00000000 For any other invalid value, common code returns EINVAL without invoking our callback: $ echo foo > /sys/class/scsi_host/host<N>/host_reset -bash: echo: write error: Invalid argument Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: explicitly support initiator in scsi_host_templateSteffen Maier1-0/+1
While the default did already correctly print "Initiator" let's make it explicit and convert zfcp to the feature. $ cat /sys/class/scsi_host/host0/supported_mode Initiator $ cat /sys/class/scsi_host/host0/active_mode Initiator The default worked, because not setting the field has it initialized to zero == MODE_UNKNOWN. scsi_host_alloc() sets shost->active_mode = MODE_INITIATOR in this case. The sysfs accessor function show_shost_supported_mode() assumes MODE_INITIATOR in this case. This default behavior was introduced with v2.6.24 commit 7a39ac3f25be ("[SCSI] make supported_mode default to initiator."). The feature flag was introduced with v2.6.24 commit 5dc2b89e1242 ("[SCSI] add supported_mode and active_mode attributes to the host"). So there was no release where zfcp would have shown "unknown". Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: consistently use function name space prefixSteffen Maier1-22/+24
I've been mixing up zfcp_task_mgmt_function() [SCSI] and zfcp_fsf_fcp_task_mgmt() [FSF] so often lately that I wanted to fix this. SCSI changes complement v2.6.27 commit f76af7d7e363 ("[SCSI] zfcp: Cleanup of code in zfcp_scsi.c"). While at it, also fixup the other inconsistencies elsewhere. ERP changes complement v2.6.27 commit 287ac01acf22 ("[SCSI] zfcp: Cleanup code in zfcp_erp.c") which introduced status_change_set(). FC changes complement v2.6.32 commit 6f53a2d2ecae ("[SCSI] zfcp: Apply common naming conventions to zfcp_fc"). by renaming a leftover introduced with v2.6.27 commit cc8c282963bd ("[SCSI] zfcp: Automatically attach remote ports"). FSF changes fixup v2.6.32 commit a4623c467ff7 ("[SCSI] zfcp: Improve request allocation through mempools"). which replaced zfcp_fsf_alloc_qtcb() introduced with v2.6.27 commit c41f8cbddd4e ("[SCSI] zfcp: zfcp_fsf cleanup."). SCSI fc_host statistics were introduced with v2.6.16 commit f6cd94b126aa ("[SCSI] zfcp: transport class adaptations"). SCSI fc_host port_state was introduced with v2.6.27 commit 85a82392fe6f ("[SCSI] zfcp: Add port_state attribute to sysfs"). SCSI rport setter for dev_loss_tmo was introduced with v2.6.18 commit 338151e06608 ("[SCSI] zfcp: make use of fc_remote_port_delete when target port is unavailable"). Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: workqueue: set description for port work items with their WWPN ↵Steffen Maier1-0/+3
as context As a prerequisite, complement commit 3d1cb2059d93 ("workqueue: include workqueue info when printing debug dump of a worker task") to be usable with kernel modules by exporting the symbol set_worker_desc(). Current built-in user was introduced with commit ef3b101925f2 ("writeback: set worker desc to identify writeback workers in task dumps"). Can help distinguishing work items which do not have adapter scope. Description is printed out with task dump for debugging on WARN, BUG, panic, or magic-sysrq [show-task-states(t)]. Example: $ echo 0 >| /sys/bus/ccw/drivers/zfcp/0.0.1880/0x50050763031bd327/failed & $ echo 't' >| /proc/sysrq-trigger $ dmesg sysrq: SysRq : Show State task PC stack pid father ... zfcp_q_0.0.1880 S14640 2165 2 0x02000000 Call Trace: ([<00000000009df464>] __schedule+0xbf4/0xc78) [<00000000009df57c>] schedule+0x94/0xc0 [<0000000000168654>] rescuer_thread+0x33c/0x3a0 [<000000000016f8be>] kthread+0x166/0x178 [<00000000009e71f2>] kernel_thread_starter+0x6/0xc [<00000000009e71ec>] kernel_thread_starter+0x0/0xc no locks held by zfcp_q_0.0.1880/2165. ... kworker/u512:2 D11280 2193 2 0x02000000 Workqueue: zfcp_q_0.0.1880 zfcp_scsi_rport_work [zfcp] (zrpd-50050763031bd327) ^^^^^^^^^^^^^^^^^^^^^ Call Trace: ([<00000000009df464>] __schedule+0xbf4/0xc78) [<00000000009df57c>] schedule+0x94/0xc0 [<00000000009e50c0>] schedule_timeout+0x488/0x4d0 [<00000000001e425c>] msleep+0x5c/0x78 >>test code only<< [<000003ff8008a21e>] zfcp_scsi_rport_work+0xbe/0x100 [zfcp] [<0000000000167154>] process_one_work+0x3b4/0x718 [<000000000016771c>] worker_thread+0x264/0x408 [<000000000016f8be>] kthread+0x166/0x178 [<00000000009e71f2>] kernel_thread_starter+0x6/0xc [<00000000009e71ec>] kernel_thread_starter+0x0/0xc 2 locks held by kworker/u512:2/2193: #0: (name){++++.+}, at: [<0000000000166f4e>] process_one_work+0x1ae/0x718 #1: ((&(&port->rport_work)->work)){+.+.+.}, at: [<0000000000166f4e>] process_one_work+0x1ae/0x718 ... ============================================= Showing busy workqueues and worker pools: workqueue zfcp_q_0.0.1880: flags=0x2000a pwq 512: cpus=0-255 flags=0x4 nice=0 active=1/1 in-flight: 2193:zfcp_scsi_rport_work [zfcp] pool 512: cpus=0-255 flags=0x4 nice=0 hung=0s workers=4 idle: 5 2354 2311 Work items with adapter scope are already identified by the workqueue name "zfcp_q_<devbusid>" and the work item function name. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: decouple our scsi_eh callbacks from scsi_cmndSteffen Maier1-4/+37
Note: zfcp_scsi_eh_host_reset_handler() will be converted in a later patch. zfcp_scsi_eh_device_reset_handler() now only depends on scsi_device. zfcp_scsi_eh_target_reset_handler() now only depends on scsi_target. All derive other objects from these intended callback arguments. zfcp_scsi_eh_target_reset_handler() is special: The FCP channel requires a valid LUN handle so we try to find ourselves a stand-in scsi_device as suggested by Hannes Reinecke. If it cannot find a stand-in scsi device, trace a record like the following (formatted with zfcpdbf from s390-tools): Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : tr_nosd target reset, no SCSI device Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x00000000 SCSI ID/target denoting scope SCSI LUN : 0xffffffff none (invalid) SCSI LUN high : 0xffffffff none (invalid) SCSI result : 0x00002003 field re-used for midlayer value: FAILED SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0xff none (invalid) FCP rsp IU : 00000000 00000000 00000000 00000000 none (invalid) 00000000 00000000 Actually change the signature of zfcp_task_mgmt_function() used by zfcp_scsi_eh_device_reset_handler() & zfcp_scsi_eh_target_reset_handler(). Since it was prepared in a previous patch, we only need to delete a local auto variable which is now the intended argument. Suggested-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: decouple TMFs from scsi_cmnd by using fc_block_rportSteffen Maier1-1/+2
Intentionally retrieve the rport by walking SCSI common code objects rather than zfcp_sdev->port->rport. The latter is used for pairing the calls to fc_remote_port_add() and fc_remote_port_delete(). [see v2.6.31 commit 379d6bf6573e ("[SCSI] zfcp: Add port only once to FC transport class")] zfcp_scsi_rport_register() sets zfcp_port.rport to what fc_remote_port_add() returned. zfcp_scsi_rport_block() sets zfcp_port.rport = NULL after having called fc_remote_port_delete(). Hence, while an rport is blocked (or in any subsequent state due to scsi_transport_fc timeouts such as fast_io_fail_tmo or dev_loss_tmo), zfcp_port.rport is NULL and cannot serve as argument to fc_block_rport(). During zfcp recovery, a just recovered zfcp_port can have the UNBLOCKED status flag, but an async rport unblocking has only started via zfcp_scsi_schedule_rport_register() in zfcp_erp_try_rport_unblock() [see v4.10 commit 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN recovery")] in zfcp_erp_action_cleanup(). Now zfcp_erp_wait() can return. This would be sufficient to successfully send a TMF. But the rport can still be blocked and zfcp_port.rport can still be NULL until zfcp_port.rport_work was scheduled and has actually called fc_remote_port_add() and assigned its return value to zfcp_port.rport. We need an unblocked rport for a successful scsi_eh TUR. Similarly, for a zfcp_port which has just lost its UNBLOCKED status flag, the return of zfcp_erp_wait() can race with zfcp_port.rport_work queued by zfcp_scsi_schedule_rport_block(). Therefore we cannot reliably access zfcp_port.rport. However, we'd like to get fc_rport_block()'s opinion on when fast_io_fail_tmo triggered. While we might use flush_work(&port->rport_work) to sync with the work item, we can simply use the other way to get an rport pointer. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: decouple SCSI setup of TMF from scsi_cmndSteffen Maier1-1/+1
Actually change the signature of zfcp_fsf_fcp_task_mgmt(). Since it was prepared in the previous patch, we only need to delete a local auto variable which is now the intended argument. Prepare zfcp_fsf_fcp_task_mgmt's caller zfcp_task_mgmt_function() to have its function body only depend on a scsi_device and derived objects. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: decouple SCSI traces for scsi_eh / TMF from scsi_cmndSteffen Maier1-7/+8
The SCSI command pointer passed to scsi_eh callbacks is just one arbitrary command of potentially many that are in the eh queue to be processed. The command is only used to indirectly pass the TMF scope in terms of SCSI ID/target and SCSI LUN for LUN reset. Hence, zfcp had filled in SCSI trace record fields which do not really belong to the TMF. This was confusing. Therefore, refactor the TMF tracing to work without SCSI command. Since the FCP channel always requires a valid LUN handle, we use SCSI device as common context for any TMF (even target reset). To make it even clearer, we set all bits to 1 for the fields, which do not belong to the TMF, to indicate that these fields are invalid. The old zfcp_dbf_scsi() became zfcp_dbf_scsi_common() to now handle both SCSI commands and TMFs. The old argument scsi_cmnd is now optional and can be NULL with TMFs. The new argument scsi_device is mandatory to carry context, as well as SCSI ID/target and SCSI LUN in case of TMFs. New example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : [lt]r_.... Request ID : 0x<reqid> ID of FSF FCP request with TM flag For cases without FSF request: 0x0 for none (invalid) SCSI ID : 0x<scsi_id> SCSI ID/target denoting scope SCSI LUN : 0x<scsi_lun> SCSI LUN denoting scope SCSI LUN high : 0x<scsi_lun_high> SCSI LUN denoting scope SCSI result : 0xffffffff none (invalid) SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0x00 FCP_RSP info code of TMF FCP rsp IU : 00000000 00000000 00000100 00000000 ext FCP_RSP IU 00000000 00000008 ext FCP_RSP IU FCP rsp IU len : 32 FCP_RSP IU length Payload time : ... FCP rsp IU all : 00000000 00000000 00000100 00000000 full FCP_RSP IU 00000000 00000008 00000000 00000000 full FCP_RSP IU Signed-off-by: Steffen Maier <maier@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: fix missing REC trigger trace on terminate_rport_io early returnSteffen Maier1-0/+5
get_device() and its internally used kobject_get() only return NULL if they get passed NULL as argument. zfcp_get_port_by_wwpn() loops over adapter->port_list so the iteration variable port is always non-NULL. Struct device is embedded in struct zfcp_port so &port->dev is always non-NULL. This is the argument to get_device(). However, if we get an fc_rport in terminate_rport_io() for which we cannot find a match within zfcp_get_port_by_wwpn(), the latter can return NULL. v2.6.30 commit 70932935b61e ("[SCSI] zfcp: Fix oops when port disappears") introduced an early return without adding a trace record for this case. Even if we don't need recovery in this case, for debugging we should still see that our callback was invoked originally by scsi_transport_fc. Example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : REC Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : sctrpin SCSI terminate rport I/O, no zfcp port LUN : 0xffffffffffffffff none (invalid) WWPN : 0x<wwpn> WWPN D_ID : 0x<n_port_id> N_Port-ID Adapter status : 0x... Port status : 0xffffffff unknown (-1) LUN status : 0x00000000 none (invalid) Ready count : 0x... Running count : 0x... ERP want : 0x03 ZFCP_ERP_ACTION_REOPEN_PORT_FORCED ERP need : 0xc0 ZFCP_ERP_ACTION_NONE Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: 70932935b61e ("[SCSI] zfcp: Fix oops when port disappears") Cc: <stable@vger.kernel.org> #2.6.38+ Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: fix missing SCSI trace for retry of abort / scsi_eh TMFSteffen Maier1-0/+2
We already have a SCSI trace for the end of abort and scsi_eh TMF. Due to zfcp_erp_wait() and fc_block_scsi_eh() time can pass between the start of our eh callback and an actual send/recv of an abort / TMF request. In order to see the temporal sequence including any abort / TMF send retries, add a trace before the above two blocking functions. This supports problem determination with scsi_eh and parallel zfcp ERP. No need to explicitly trace the beginning of our eh callback, since we typically can send an abort / TMF and see its HBA response (in the worst case, it's a pseudo response on dismiss all of adapter recovery, e.g. due to an FSF request timeout [fsrth_1] of the abort / TMF). If we cannot send, we now get a trace record for the first "abrt_wt" or "[lt]r_wait" which denotes almost the beginning of the callback. No need to explicitly trace the wakeup after the above two blocking functions because the next retry loop causes another trace in any case and that is sufficient. Example trace records formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : abrt_wt abort, before zfcp_erp_wait() Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x<scsi_id> SCSI LUN : 0x<scsi_lun> SCSI LUN high : 0x<scsi_lun_high> SCSI result : 0x<scsi_result_of_cmd_to_be_aborted> SCSI retries : 0x<retries_of_cmd_to_be_aborted> SCSI allowed : 0x<allowed_retries_of_cmd_to_be_aborted> SCSI scribble : 0x<req_id_of_cmd_to_be_aborted> SCSI opcode : <CDB_of_cmd_to_be_aborted> FCP rsp inf cod: 0x.. none (invalid) FCP rsp IU : ... none (invalid) Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : lr_wait LUN reset, before zfcp_erp_wait() Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0x<scsi_id> SCSI LUN : 0x<scsi_lun> SCSI LUN high : 0x<scsi_lun_high> SCSI result : 0x... unrelated SCSI retries : 0x.. unrelated SCSI allowed : 0x.. unrelated SCSI scribble : 0x... unrelated SCSI opcode : ... unrelated FCP rsp inf cod: 0x.. none (invalid) FCP rsp IU : ... none (invalid) Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: 63caf367e1c9 ("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp") Fixes: af4de36d911a ("[SCSI] zfcp: Block scsi_eh thread for rport state BLOCKED") Cc: <stable@vger.kernel.org> #2.6.38+ Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18scsi: zfcp: fix missing SCSI trace for result of eh_host_reset_handlerSteffen Maier1-5/+6
For problem determination we need to see whether and why we were successful or not. This allows deduction of scsi_eh escalation. Example trace record formatted with zfcpdbf from s390-tools: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : schrh_r SCSI host reset handler result Request ID : 0x0000000000000000 none (invalid) SCSI ID : 0xffffffff none (invalid) SCSI LUN : 0xffffffff none (invalid) SCSI LUN high : 0xffffffff none (invalid) SCSI result : 0x00002002 field re-used for midlayer value: SUCCESS or in other cases: 0x2009 == FAST_IO_FAIL SCSI retries : 0xff none (invalid) SCSI allowed : 0xff none (invalid) SCSI scribble : 0xffffffffffffffff none (invalid) SCSI opcode : ffffffff ffffffff ffffffff ffffffff none (invalid) FCP rsp inf cod: 0xff none (invalid) FCP rsp IU : 00000000 00000000 00000000 00000000 none (invalid) 00000000 00000000 v2.6.35 commit a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh") introduced the first return with something other than the previously hardcoded single SUCCESS return path. Signed-off-by: Steffen Maier <maier@linux.ibm.com> Fixes: a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh") Cc: <stable@vger.kernel.org> #2.6.38+ Reviewed-by: Jens Remus <jremus@linux.ibm.com> Reviewed-by: Benjamin Block <bblock@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-08scsi: zfcp: fix infinite iteration on ERP ready listJens Remus1-7/+7
zfcp_erp_adapter_reopen() schedules blocking of all of the adapter's rports via zfcp_scsi_schedule_rports_block() and enqueues a reopen adapter ERP action via zfcp_erp_action_enqueue(). Both are separately processed asynchronously and concurrently. Blocking of rports is done in a kworker by zfcp_scsi_rport_work(). It calls zfcp_scsi_rport_block(), which then traces a DBF REC "scpdely" via zfcp_dbf_rec_trig(). zfcp_dbf_rec_trig() acquires the DBF REC spin lock and then iterates with list_for_each() over the adapter's ERP ready list without holding the ERP lock. This opens a race window in which the current list entry can be moved to another list, causing list_for_each() to iterate forever on the wrong list, as the erp_ready_head is never encountered as terminal condition. Meanwhile the ERP action can be processed in the ERP thread by zfcp_erp_thread(). It calls zfcp_erp_strategy(), which acquires the ERP lock and then calls zfcp_erp_action_to_running() to move the ERP action from the ready to the running list. zfcp_erp_action_to_running() can move the ERP action using list_move() just during the aforementioned race window. It then traces a REC RUN "erator1" via zfcp_dbf_rec_run(). zfcp_dbf_rec_run() tries to acquire the DBF REC spin lock. If this is held by the infinitely looping kworker, it effectively spins forever. Example Sequence Diagram: Process ERP Thread rport_work ------------------- ------------------- ------------------- zfcp_erp_adapter_reopen() zfcp_erp_adapter_block() zfcp_scsi_schedule_rports_block() lock ERP zfcp_scsi_rport_work() zfcp_erp_action_enqueue(ZFCP_ERP_ACTION_REOPEN_ADAPTER) list_add_tail() on ready !(rport_task==RPORT_ADD) wake_up() ERP thread zfcp_scsi_rport_block() zfcp_dbf_rec_trig() zfcp_erp_strategy() zfcp_dbf_rec_trig() unlock ERP lock DBF REC zfcp_erp_wait() lock ERP | zfcp_erp_action_to_running() | list_for_each() ready | list_move() current entry | ready to running | zfcp_dbf_rec_run() endless loop over running | zfcp_dbf_rec_run_lvl() | lock DBF REC spins forever Any adapter recovery can trigger this, such as setting the device offline or reboot. V4.9 commit 4eeaa4f3f1d6 ("zfcp: close window with unblocked rport during rport gone") introduced additional tracing of (un)blocking of rports. It missed that the adapter->erp_lock must be held when calling zfcp_dbf_rec_trig(). This fix uses the approach formerly introduced by commit aa0fec62391c ("[SCSI] zfcp: Fix sparse warning by providing new entry in dbf") that got later removed by commit ae0904f60fab ("[SCSI] zfcp: Redesign of the debug tracing for recovery actions."). Introduce zfcp_dbf_rec_trig_lock(), a wrapper for zfcp_dbf_rec_trig() that acquires and releases the adapter->erp_lock for read. Reported-by: Sebastian Ott <sebott@linux.ibm.com> Signed-off-by: Jens Remus <jremus@linux.ibm.com> Fixes: 4eeaa4f3f1d6 ("zfcp: close window with unblocked rport during rport gone") Cc: <stable@vger.kernel.org> # 2.6.32+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Steffen Maier <maier@linux.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-11-02Merge tag 'spdx_identifiers-4.14-rc8' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull initial SPDX identifiers from Greg KH: "License cleanup: add SPDX license identifiers to some files Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>" * tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: License cleanup: add SPDX license identifier to uapi header files with a license License cleanup: add SPDX license identifier to uapi header files with no license License cleanup: add SPDX GPL-2.0 license identifier to files with no license
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-17scsi: zfcp: fix erp_action use-before-initialize in REC action traceSteffen Maier1-0/+5
v4.10 commit 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN recovery") extended accessing parent pointer fields of struct zfcp_erp_action for tracing. If an erp_action has never been enqueued before, these parent pointer fields are uninitialized and NULL. Examples are zfcp objects freshly added to the parent object's children list, before enqueueing their first recovery subsequently. In zfcp_erp_try_rport_unblock(), we iterate such list. Accessing erp_action fields can cause a NULL pointer dereference. Since the kernel can read from lowcore on s390, it does not immediately cause a kernel page fault. Instead it can cause hangs on trying to acquire the wrong erp_action->adapter->dbf->rec_lock in zfcp_dbf_rec_action_lvl() ^bogus^ while holding already other locks with IRQs disabled. Real life example from attaching lots of LUNs in parallel on many CPUs: crash> bt 17723 PID: 17723 TASK: ... CPU: 25 COMMAND: "zfcperp0.0.1800" LOWCORE INFO: -psw : 0x0404300180000000 0x000000000038e424 -function : _raw_spin_lock_wait_flags at 38e424 ... #0 [fdde8fc90] zfcp_dbf_rec_action_lvl at 3e0004e9862 [zfcp] #1 [fdde8fce8] zfcp_erp_try_rport_unblock at 3e0004dfddc [zfcp] #2 [fdde8fd38] zfcp_erp_strategy at 3e0004e0234 [zfcp] #3 [fdde8fda8] zfcp_erp_thread at 3e0004e0a12 [zfcp] #4 [fdde8fe60] kthread at 173550 #5 [fdde8feb8] kernel_thread_starter at 10add2 zfcp_adapter zfcp_port zfcp_unit <address>, 0x404040d600000000 scsi_device NULL, returning early! zfcp_scsi_dev.status = 0x40000000 0x40000000 ZFCP_STATUS_COMMON_RUNNING crash> zfcp_unit <address> struct zfcp_unit { erp_action = { adapter = 0x0, port = 0x0, unit = 0x0, }, } zfcp_erp_action is always fully embedded into its container object. Such container object is never moved in its object tree (only add or delete). Hence, erp_action parent pointers can never change. To fix the issue, initialize the erp_action parent pointers before adding the erp_action container to any list and thus before it becomes accessible from outside of its initializing function. In order to also close the time window between zfcp_erp_setup_act() memsetting the entire erp_action to zero and setting the parent pointers again, drop the memset and instead explicitly initialize individually all erp_action fields except for parent pointers. To be extra careful not to introduce any other unintended side effect, even keep zeroing the erp_action fields for list and timer. Also double-check with WARN_ON_ONCE that erp_action parent pointers never change, so we get to know when we would deviate from previous behavior. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: 6f2ce1c6af37 ("scsi: zfcp: fix rport unblock race with LUN recovery") Cc: <stable@vger.kernel.org> #2.6.32+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-11scsi: zfcp: fix missing trace records for early returns in TMF eh handlersSteffen Maier1-2/+6
For problem determination we need to see that we were in scsi_eh as well as whether and why we were successful or not. The following commits introduced new early returns without adding a trace record: v2.6.35 commit a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh") on fc_block_scsi_eh() returning != 0 which is FAST_IO_FAIL, v2.6.30 commit 63caf367e1c9 ("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp") on not having gotten an FSF request after the maximum number of retry attempts and thus could not issue a TMF and has to return FAILED. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: a1dbfddd02d2 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh") Fixes: 63caf367e1c9 ("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp") Cc: <stable@vger.kernel.org> #2.6.38+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-11scsi: zfcp: fix passing fsf_req to SCSI trace on TMF to correlate with HBASteffen Maier1-4/+4
Without this fix we get SCSI trace records on task management functions which cannot be correlated to HBA trace records because all fields related to the FSF request are empty (zero). Also, the FCP_RSP_IU is missing as well as any sense data if available. This was caused by v2.6.14 commit 8a36e4532ea1 ("[SCSI] zfcp: enhancement of zfcp debug features") introducing trace records for TMFs but hard coding NULL for a possibly existing TMF FSF request. The scsi_cmnd scribble is also zero or unrelated for the TMF request so it also could not lookup a suitable FSF request from there. A broken example trace record formatted with zfcpdbf from the s390-tools package: Timestamp : ... Area : SCSI Subarea : 00 Level : 1 Exception : - CPU ID : .. Caller : 0x... Record ID : 1 Tag : lr_fail Request ID : 0x0000000000000000 ^^^^^^^^^^^^^^^^ no correlation to HBA record SCSI ID : 0x<scsitarget> SCSI LUN : 0x<scsilun> SCSI result : 0x000e0000 SCSI retries : 0x00 SCSI allowed : 0x05 SCSI scribble : 0x0000000000000000 SCSI opcode : 2a000017 3bb80000 08000000 00000000 FCP rsp inf cod: 0x00 ^^ no TMF response FCP rsp IU : 00000000 00000000 00000000 00000000 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 00000000 00000000 ^^^^^^^^^^^^^^^^^ no interesting FCP_RSP_IU Sense len : ... ^^^^^^^^^^^^^^^^^^^^ no sense data length Sense info : ... ^^^^^^^^^^^^^^^^^^^^ no sense data content, even if present There are some true cases where we really do not have an FSF request: "rsl_fai" from zfcp_dbf_scsi_fail_send() called for early returns / completions in zfcp_scsi_queuecommand(), "abrt_or", "abrt_bl", "abrt_ru", "abrt_ar" from zfcp_scsi_eh_abort_handler() where we did not get as far, "lr_nres", "tr_nres" from zfcp_task_mgmt_function() where we're successful and do not need to do anything because adapter stopped. For these cases it's correct to pass NULL for fsf_req to _zfcp_dbf_scsi(). Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: 8a36e4532ea1 ("[SCSI] zfcp: enhancement of zfcp debug features") Cc: <stable@vger.kernel.org> #2.6.38+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-11scsi: zfcp: convert bool-definitions to use 'true' instead of '1'Benjamin Block1-1/+1
Better form and cleans remaining warnings. Found with scripts/coccinelle/misc/boolinit.cocci. Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-02-07scsi: remove eh_timed_out methods in the transport templateChristoph Hellwig1-0/+1
Instead define the timeout behavior purely based on the host_template eh_timed_out method and wire up the existing transport implementations in the host templates. This also clears up the confusion that the transport template method overrides the host template one, so some drivers have to re-override the transport template one. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-12-14scsi: zfcp: fix rport unblock race with LUN recoverySteffen Maier1-3/+1
It is unavoidable that zfcp_scsi_queuecommand() has to finish requests with DID_IMM_RETRY (like fc_remote_port_chkready()) during the time window when zfcp detected an unavailable rport but fc_remote_port_delete(), which is asynchronous via zfcp_scsi_schedule_rport_block(), has not yet blocked the rport. However, for the case when the rport becomes available again, we should prevent unblocking the rport too early. In contrast to other FCP LLDDs, zfcp has to open each LUN with the FCP channel hardware before it can send I/O to a LUN. So if a port already has LUNs attached and we unblock the rport just after port recovery, recoveries of LUNs behind this port can still be pending which in turn force zfcp_scsi_queuecommand() to unnecessarily finish requests with DID_IMM_RETRY. This also opens a time window with unblocked rport (until the followup LUN reopen recovery has finished). If a scsi_cmnd timeout occurs during this time window fc_timed_out() cannot work as desired and such command would indeed time out and trigger scsi_eh. This prevents a clean and timely path failover. This should not happen if the path issue can be recovered on FC transport layer such as path issues involving RSCNs. Fix this by only calling zfcp_scsi_schedule_rport_register(), to asynchronously trigger fc_remote_port_add(), after all LUN recoveries as children of the rport have finished and no new recoveries of equal or higher order were triggered meanwhile. Finished intentionally includes any recovery result no matter if successful or failed (still unblock rport so other successful LUNs work). For simplicity, we check after each finished LUN recovery if there is another LUN recovery pending on the same port and then do nothing. We handle the special case of a successful recovery of a port without LUN children the same way without changing this case's semantics. For debugging we introduce 2 new trace records written if the rport unblock attempt was aborted due to still unfinished or freshly triggered recovery. The records are only written above the default trace level. Benjamin noticed the important special case of new recovery that can be triggered between having given up the erp_lock and before calling zfcp_erp_action_cleanup() within zfcp_erp_strategy(). We must avoid the following sequence: ERP thread rport_work other context ------------------------- -------------- -------------------------------- port is unblocked, rport still blocked, due to pending/running ERP action, so ((port->status & ...UNBLOCK) != 0) and (port->rport == NULL) unlock ERP zfcp_erp_action_cleanup() case ZFCP_ERP_ACTION_REOPEN_LUN: zfcp_erp_try_rport_unblock() ((status & ...UNBLOCK) != 0) [OLD!] zfcp_erp_port_reopen() lock ERP zfcp_erp_port_block() port->status clear ...UNBLOCK unlock ERP zfcp_scsi_schedule_rport_block() port->rport_task = RPORT_DEL queue_work(rport_work) zfcp_scsi_rport_work() (port->rport_task != RPORT_ADD) port->rport_task = RPORT_NONE zfcp_scsi_rport_block() if (!port->rport) return zfcp_scsi_schedule_rport_register() port->rport_task = RPORT_ADD queue_work(rport_work) zfcp_scsi_rport_work() (port->rport_task == RPORT_ADD) port->rport_task = RPORT_NONE zfcp_scsi_rport_register() (port->rport == NULL) rport = fc_remote_port_add() port->rport = rport; Now the rport was erroneously unblocked while the zfcp_port is blocked. This is another situation we want to avoid due to scsi_eh potential. This state would at least remain until the new recovery from the other context finished successfully, or potentially forever if it failed. In order to close this race, we take the erp_lock inside zfcp_erp_try_rport_unblock() when checking the status of zfcp_port or LUN. With that, the possible corresponding rport state sequences would be: (unblock[ERP thread],block[other context]) if the ERP thread gets erp_lock first and still sees ((port->status & ...UNBLOCK) != 0), (block[other context],NOP[ERP thread]) if the ERP thread gets erp_lock after the other context has already cleard ...UNBLOCK from port->status. Since checking fields of struct erp_action is unsafe because they could have been overwritten (re-used for new recovery) meanwhile, we only check status of zfcp_port and LUN since these are only changed under erp_lock elsewhere. Regarding the check of the proper status flags (port or port_forced are similar to the shown adapter recovery): [zfcp_erp_adapter_shutdown()] zfcp_erp_adapter_reopen() zfcp_erp_adapter_block() * clear UNBLOCK ---------------------------------------+ zfcp_scsi_schedule_rports_block() | write_lock_irqsave(&adapter->erp_lock, flags);-------+ | zfcp_erp_action_enqueue() | | zfcp_erp_setup_act() | | * set ERP_INUSE -----------------------------------|--|--+ write_unlock_irqrestore(&adapter->erp_lock, flags);--+ | | .context-switch. | | zfcp_erp_thread() | | zfcp_erp_strategy() | | write_lock_irqsave(&adapter->erp_lock, flags);------+ | | ... | | | zfcp_erp_strategy_check_target() | | | zfcp_erp_strategy_check_adapter() | | | zfcp_erp_adapter_unblock() | | | * set UNBLOCK -----------------------------------|--+ | zfcp_erp_action_dequeue() | | * clear ERP_INUSE ---------------------------------|-----+ ... | write_unlock_irqrestore(&adapter->erp_lock, flags);-+ Hence, we should check for both UNBLOCK and ERP_INUSE because they are interleaved. Also we need to explicitly check ERP_FAILED for the link down case which currently does not clear the UNBLOCK flag in zfcp_fsf_link_down_info_eval(). Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: 8830271c4819 ("[SCSI] zfcp: Dont fail SCSI commands when transitioning to blocked fc_rport") Fixes: a2fa0aede07c ("[SCSI] zfcp: Block FC transport rports early on errors") Fixes: 5f852be9e11d ("[SCSI] zfcp: Fix deadlock between zfcp ERP and SCSI") Fixes: 338151e06608 ("[SCSI] zfcp: make use of fc_remote_port_delete when target port is unavailable") Fixes: 3859f6a248cb ("[PATCH] zfcp: add rports to enable scsi_add_device to work again") Cc: <stable@vger.kernel.org> #2.6.32+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-12-14scsi: zfcp: fix use-after-"free" in FC ingress path after TMFBenjamin Block1-2/+55
When SCSI EH invokes zFCP's callbacks for eh_device_reset_handler() and eh_target_reset_handler(), it expects us to relent the ownership over the given scsi_cmnd and all other scsi_cmnds within the same scope - LUN or target - when returning with SUCCESS from the callback ('release' them). SCSI EH can then reuse those commands. We did not follow this rule to release commands upon SUCCESS; and if later a reply arrived for one of those supposed to be released commands, we would still make use of the scsi_cmnd in our ingress tasklet. This will at least result in undefined behavior or a kernel panic because of a wrong kernel pointer dereference. To fix this, we NULLify all pointers to scsi_cmnds (struct zfcp_fsf_req *)->data in the matching scope if a TMF was successful. This is done under the locks (struct zfcp_adapter *)->abort_lock and (struct zfcp_reqlist *)->lock to prevent the requests from being removed from the request-hashtable, and the ingress tasklet from making use of the scsi_cmnd-pointer in zfcp_fsf_fcp_cmnd_handler(). For cases where a reply arrives during SCSI EH, but before we get a chance to NULLify the pointer - but before we return from the callback -, we assume that the code is protected from races via the CAS operation in blk_complete_request() that is called in scsi_done(). The following stacktrace shows an example for a crash resulting from the previous behavior: Unable to handle kernel pointer dereference at virtual kernel address fffffee17a672000 Oops: 0038 [#1] SMP CPU: 2 PID: 0 Comm: swapper/2 Not tainted task: 00000003f7ff5be0 ti: 00000003f3d38000 task.ti: 00000003f3d38000 Krnl PSW : 0404d00180000000 00000000001156b0 (smp_vcpu_scheduled+0x18/0x40) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 EA:3 Krnl GPRS: 000000200000007e 0000000000000000 fffffee17a671fd8 0000000300000015 ffffffff80000000 00000000005dfde8 07000003f7f80e00 000000004fa4e800 000000036ce8d8f8 000000036ce8d9c0 00000003ece8fe00 ffffffff969c9e93 00000003fffffffd 000000036ce8da10 00000000003bf134 00000003f3b07918 Krnl Code: 00000000001156a2: a7190000 lghi %r1,0 00000000001156a6: a7380015 lhi %r3,21 #00000000001156aa: e32050000008 ag %r2,0(%r5) >00000000001156b0: 482022b0 lh %r2,688(%r2) 00000000001156b4: ae123000 sigp %r1,%r2,0(%r3) 00000000001156b8: b2220020 ipm %r2 00000000001156bc: 8820001c srl %r2,28 00000000001156c0: c02700000001 xilf %r2,1 Call Trace: ([<0000000000000000>] 0x0) [<000003ff807bdb8e>] zfcp_fsf_fcp_cmnd_handler+0x3de/0x490 [zfcp] [<000003ff807be30a>] zfcp_fsf_req_complete+0x252/0x800 [zfcp] [<000003ff807c0a48>] zfcp_fsf_reqid_check+0xe8/0x190 [zfcp] [<000003ff807c194e>] zfcp_qdio_int_resp+0x66/0x188 [zfcp] [<000003ff80440c64>] qdio_kick_handler+0xdc/0x310 [qdio] [<000003ff804463d0>] __tiqdio_inbound_processing+0xf8/0xcd8 [qdio] [<0000000000141fd4>] tasklet_action+0x9c/0x170 [<0000000000141550>] __do_softirq+0xe8/0x258 [<000000000010ce0a>] do_softirq+0xba/0xc0 [<000000000014187c>] irq_exit+0xc4/0xe8 [<000000000046b526>] do_IRQ+0x146/0x1d8 [<00000000005d6a3c>] io_return+0x0/0x8 [<00000000005d6422>] vtime_stop_cpu+0x4a/0xa0 ([<0000000000000000>] 0x0) [<0000000000103d8a>] arch_cpu_idle+0xa2/0xb0 [<0000000000197f94>] cpu_startup_entry+0x13c/0x1f8 [<0000000000114782>] smp_start_secondary+0xda/0xe8 [<00000000005d6efe>] restart_int_handler+0x56/0x6c [<0000000000000000>] 0x0 Last Breaking-Event-Address: [<00000000003bf12e>] arch_spin_lock_wait+0x56/0xb0 Suggested-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com> Fixes: ea127f9754 ("[PATCH] s390 (7/7): zfcp host adapter.") (tglx/history.git) Cc: <stable@vger.kernel.org> #2.6.32+ Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2016-08-12zfcp: close window with unblocked rport during rport goneSteffen Maier1-1/+7
On a successful end of reopen port forced, zfcp_erp_strategy_followup_success() re-uses the port erp_action and the subsequent zfcp_erp_action_cleanup() now sees ZFCP_ERP_SUCCEEDED with erp_action->action==ZFCP_ERP_ACTION_REOPEN_PORT instead of ZFCP_ERP_ACTION_REOPEN_PORT_FORCED but must not perform zfcp_scsi_schedule_rport_register(). We can detect this because the fresh port reopen erp_action is in its very first step ZFCP_ERP_STEP_UNINITIALIZED. Otherwise this opens a time window with unblocked rport (until the followup port reopen recovery would block it again). If a scsi_cmnd timeout occurs during this time window fc_timed_out() cannot work as desired and such command would indeed time out and trigger scsi_eh. This prevents a clean and timely path failover. This should not happen if the path issue can be recovered on FC transport layer such as path issues involving RSCNs. Also, unnecessary and repeated DID_IMM_RETRY for pending and undesired new requests occur because internally zfcp still has its zfcp_port blocked. As follow-on errors with scsi_eh, it can cause, in the worst case, permanently lost paths due to one of: sd <scsidev>: [<scsidisk>] Medium access timeout failure. Offlining disk! sd <scsidev>: Device offlined - not ready after error recovery For fix validation and to aid future debugging with other recoveries we now also trace (un)blocking of rports. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Fixes: 5767620c383a ("[SCSI] zfcp: Do not unblock rport from REOPEN_PORT_FORCED") Fixes: a2fa0aede07c ("[SCSI] zfcp: Block FC transport rports early on errors") Fixes: 5f852be9e11d ("[SCSI] zfcp: Fix deadlock between zfcp ERP and SCSI") Fixes: 338151e06608 ("[SCSI] zfcp: make use of fc_remote_port_delete when target port is unavailable") Fixes: 3859f6a248cb ("[PATCH] zfcp: add rports to enable scsi_add_device to work again") Cc: <stable@vger.kernel.org> #2.6.32+ Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2015-06-01scsi: Do not set cmd_per_lun to 1 in the host templateHannes Reinecke1-1/+0
'0' is now used as the default cmd_per_lun value, so there's no need to explicitly set it to '1' in the host template. Signed-off-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: James Bottomley <JBottomley@Odin.com>
2014-11-24scsi: drop reason argument from ->change_queue_depthChristoph Hellwig1-9/+2
Drop the now unused reason argument from the ->change_queue_depth method. Also add a return value to scsi_adjust_queue_depth, and rename it to scsi_change_queue_depth now that it can be used as the default ->change_queue_depth implementation. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de>
2014-11-24scsi: avoid ->change_queue_depth indirection for queue full trackingChristoph Hellwig1-13/+2
All drivers use the implementation for ramping the queue up and down, so instead of overloading the change_queue_depth method call the implementation diretly if the driver opts into it by setting the track_queue_depth flag in the host template. Note that a few drivers validated the new queue depth in their change_queue_depth method, but as we never go over the queue depth set during slave_configure or the sysfs file this isn't nessecary and can safely be removed. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Venkatesh Srinivas <venkateshs@google.com>
2014-11-12scsi: don't set tagging state from scsi_adjust_queue_depthChristoph Hellwig1-5/+3
Remove the tagged argument from scsi_adjust_queue_depth, and just let it handle the queue depth. For most drivers those two are fairly separate, given that most modern drivers don't care about the SCSI "tagged" status of a command at all, and many old drivers allow queuing of multiple untagged commands in the driver. Instead we start out with the ->simple_tags flag set before calling ->slave_configure, which is how all drivers actually looking at ->simple_tags except for one worke anyway. The one other case looks broken, but I've kept the behavior as-is for now. Except for that we only change ->simple_tags from the ->change_queue_type, and when rejecting a tag message in a single driver, so keeping this churn out of scsi_adjust_queue_depth is a clear win. Now that the usage of scsi_adjust_queue_depth is more obvious we can also remove all the trivial instances in ->slave_alloc or ->slave_configure that just set it to the cmd_per_lun default. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mike Christie <michaelc@cs.wisc.edu> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
2013-06-01[SCSI] zfcp: block queue limits with data routerSteffen Maier1-3/+7
Commit 86a9668a8d29ea711613e1cb37efa68e7c4db564 "[SCSI] zfcp: support for hardware data router" reduced the initial block queue limits in the scsi_host_template to the absolute minimum and adjusted them later on. However, the adjustment was too late for the BSG devices of Scsi_Host and fc_host. Therefore, ioctl(..., SG_IO, ...) with request or response size > 4kB to a BSG device of an fc_host or a Scsi_Host fails with EINVAL. As a result, users of such ioctl such as HBA_SendCTPassThru() in libzfcphbaapi return with error HBA_STATUS_ERROR. Initialize the block queue limits in zfcp_scsi_host_template to the greatest common denominator (GCD). While we cannot exploit the slightly enlarged maximum request size with data router, this should be neglectible. Doing so also avoids running into trouble after live guest relocation (LGR) / migration from a data router FCP device to an FCP device that does not support data router. In that case, zfcp would figure out the new limits on adapter recovery, but the fc_host and Scsi_Host (plus in fact all sdevs) still exist with the old and now too large queue limits. It should also OK, not to use half the size as in the DIX case, because fc_host and Scsi_Host do not transport FCP requests including SCSI commands using protection data. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Reviewed-by: Martin Peschke <mpeschke@linux.vnet.ibm.com> Cc: <stable@vger.kernel.org> #3.2+ Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-07-20s390/comments: unify copyright messages and remove file namesHeiko Carstens1-1/+1
Remove the file name from the comment at top of many files. In most cases the file name was wrong anyway, so it's rather pointless. Also unify the IBM copyright statement. We did have a lot of sightly different statements and wanted to change them one after another whenever a file gets touched. However that never happened. Instead people start to take the old/"wrong" statements to use as a template for new files. So unify all of them in one go. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
2011-12-14[SCSI] zfcp: return early from slave_destroy if slave_alloc returned earlySteffen Maier1-0/+4
zfcp_scsi_slave_destroy erroneously always tried to finish its task even if the corresponding previous zfcp_scsi_slave_alloc returned early. This can lead to kernel page faults on accessing uninitialized fields of struct zfcp_scsi_dev in zfcp_erp_lun_shutdown_wait. Take the port field of the struct to determine if slave_alloc returned early. This zfcp bug is exposed by 4e6c82b (in turn fixing f7c9c6b to be compatible with 21208ae) which can call slave_destroy for a corresponding previous slave_alloc that did not finish. This patch is based on James Bottomley's fix suggestion in http://www.spinics.net/lists/linux-scsi/msg55449.html. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Cc: <stable@kernel.org> #2.6.38+ Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-11-01s390: add missing module.h/export.h includesHeiko Carstens1-0/+1
Fix several compile errors on s390 caused by splitting module.h. Some include additions [e.g. qdio_setup.c, zfcp_qdio.c] are in anticipation of pending changes queued for s390 that increase the modular use footprint. [PG: added additional obvious changes since Heiko's original patch] Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2011-08-27[SCSI] zfcp: support for hardware data routerSwen Schillig1-5/+5
FICON Express8S supports hardware data router, which requires an adapted qdio request format. This part 2/2 exploits the functionality in zfcp. Signed-off-by: Swen Schillig <swen@vnet.ibm.com> Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-08-27[SCSI] zfcp: non-experimental support for DIF/DIXSteffen Maier1-4/+1
DIF/DIX support for zfcp is no longer experimental, and config option is no longer necessary. Return error from queuecommand for unsupported data directions. Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com> Signed-off-by: James Bottomley <JBottomley@Parallels.com>