Age | Commit message (Collapse) | Author | Files | Lines |
|
Sometimes t7xx_cldma_gpd_set_next_ptr() is called under spin lock,
so add 'gfp_mask' parameter in t7xx_cldma_gpd_set_next_ptr() to pass
the flag.
Fixes: 39d439047f1d ("net: wwan: t7xx: Add control DMA interface")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Link: https://lore.kernel.org/r/20220519032108.2996400-1-yangyingliang@huawei.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
t7xx_request_irq() error: uninitialized symbol 'ret'.
t7xx_core_hk_handler() error: potentially dereferencing uninitialized 'event'.
If the condition to enter the loop that waits for the handshake event
is false on the first iteration then the uninitialized 'event' will be
dereferenced, fix this by initializing 'event' to NULL.
t7xx_port_proxy_recv_skb() warn: variable dereferenced before check 'skb'.
No need to check skb at t7xx_port_proxy_recv_skb() since we know it
is always called with a valid skb by t7xx_cldma_gpd_rx_from_q().
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Link: https://lore.kernel.org/r/20220518195529.126246-1-ricardo.martinez@linux.intel.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
skb_data_area_size() helper was used to calculate the size of the
DMA mapped buffer passed to the HW. Instead of doing this, use the
size passed to allocate the skbs.
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
t7xx_dl_add_timedout() now return int 'ret', but the return type
is bool. Change the return type to int for furthor errcode upstream.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Introduce the mechanism to lock/unlock the device 'deep sleep' mode.
When the PCIe link state is L1.2 or L2, the host side still can keep
the device is in D0 state from the host side point of view. At the same
time, if the device's 'deep sleep' mode is unlocked, the device will
go to 'deep sleep' while it is still in D0 state on the host side.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Enables runtime power management callbacks including runtime_suspend
and runtime_resume. Autosuspend is used to prevent overhead by frequent
wake-ups.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Eliot Lee <eliot.lee@intel.com>
Signed-off-by: Eliot Lee <eliot.lee@intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Implements suspend, resumes, freeze, thaw, poweroff, and restore
`dev_pm_ops` callbacks.
From the host point of view, the t7xx driver is one entity. But, the
device has several modules that need to be addressed in different ways
during power management (PM) flows.
The driver uses the term 'PM entities' to refer to the 2 DPMA and
2 CLDMA HW blocks that need to be managed during PM flows.
When a dev_pm_ops function is called, the PM entities list is iterated
and the matching function is called for each entry in the list.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Creates the Cross Core Modem Network Interface (CCMNI) which implements
the wwan_ops for registration with the WWAN framework, CCMNI also
implements the net_device_ops functions used by the network device.
Network device operations include open, close, start transmission, TX
timeout and change MTU.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Co-developed-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Data Path Modem AP Interface (DPMAIF) HIF layer provides methods
for initialization, ISR, control and event handling of TX/RX flows.
DPMAIF TX
Exposes the 'dmpaif_tx_send_skb' function which can be used by the
network device to transmit packets.
The uplink data management uses a Descriptor Ring Buffer (DRB).
First DRB entry is a message type that will be followed by 1 or more
normal DRB entries. Message type DRB will hold the skb information
and each normal DRB entry holds a pointer to the skb payload.
DPMAIF RX
The downlink buffer management uses Buffer Address Table (BAT) and
Packet Information Table (PIT) rings.
The BAT ring holds the address of skb data buffer for the HW to use,
while the PIT contains metadata about a whole network packet including
a reference to the BAT entry holding the data buffer address.
The driver reads the PIT and BAT entries written by the modem, when
reaching a threshold, the driver will reload the PIT and BAT rings.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Data Path Modem AP Interface (DPMAIF) HW layer provides HW abstraction
for the upper layer (DPMAIF HIF). It implements functions to do the HW
configuration, TX/RX control and interrupt handling.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adds AT and MBIM ports to the port proxy infrastructure.
The initialization method is responsible for creating the corresponding
ports using the WWAN framework infrastructure. The implemented WWAN port
operations are start, stop, and TX.
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Control Port implements driver control messages such as modem-host
handshaking, controls port enumeration, and handles exception messages.
The handshaking process between the driver and the modem happens during
the init sequence. The process involves the exchange of a list of
supported runtime features to make sure that modem and host are ready
to provide proper feature lists including port enumeration. Further
features can be enabled and controlled in this handshaking process.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Port-proxy provides a common interface to interact with different types
of ports. Ports export their configuration via `struct t7xx_port` and
operate as defined by `struct port_ops`.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Co-developed-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Registers the t7xx device driver with the kernel. Setup all the core
components: PCIe layer, Modem Host Cross Core Interface (MHCCIF),
modem control operations, modem state machine, and build
infrastructure.
* PCIe layer code implements driver probe and removal.
* MHCCIF provides interrupt channels to communicate events
such as handshake, PM and port enumeration.
* Modem control implements the entry point for modem init,
reset and exit.
* The modem status monitor is a state machine used by modem control
to complete initialization and stop. It is used also to propagate
exception events reported by other components.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Cross Layer DMA (CLDMA) Hardware interface (HIF) enables the control
path of Host-Modem data transfers. CLDMA HIF layer provides a common
interface to the Port Layer.
CLDMA manages 8 independent RX/TX physical channels with data flow
control in HW queues. CLDMA uses ring buffers of General Packet
Descriptors (GPD) for TX/RX. GPDs can represent multiple or single
data buffers (DB).
CLDMA HIF initializes GPD rings, registers ISR handlers for CLDMA
interrupts, and initializes CLDMA HW registers.
CLDMA TX flow:
1. Port Layer write
2. Get DB address
3. Configure GPD
4. Triggering processing via HW register write
CLDMA RX flow:
1. CLDMA HW sends a RX "done" to host
2. Driver starts thread to safely read GPD
3. DB is sent to Port layer
4. Create a new buffer for GPD ring
Note: This patch does not enable compilation since it has dependencies
such as t7xx_pcie_mac_clear_int()/t7xx_pcie_mac_set_int() and
struct t7xx_pci_dev which are added by the core patch.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|