Age | Commit message (Collapse) | Author | Files | Lines |
|
shiraz.hashim@st.com email-id doesn't exist anymore as he has left the
company. Replace ST's id with shiraz.linux.kernel@gmail.com.
It also updates .mailmap file to fix address for 'git shortlog'.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Shiraz Hashim <shiraz.linux.kernel@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
use "omap-elm" as DRIVER_NAME
Signed-off-by: Pekon Gupta <pekon@ti.com>
Reviewed-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
ELM hardware can process up to maximum of 8 hannels in parallel for
ECC error detection. Currently the number of channels getting configured for
processing is static determined by macro ERROR_VECTOR_MAX. However, the actual
number of channels that need to be processed is the ECC step number.
This patch just avoids configuring extra unused channels.
Signed-off-by: Pekon Gupta <pekon@ti.com>
Reviewed-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
This patch refactors elm_load_syndrome() to make it scalable for newer
ECC schemes by removing scheme specific macros (like ECC_BYTES*xx),
and instead using ECC control information passed during elm_config.
Signed-off-by: Pekon Gupta <pekon@ti.com>
Reviewed-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
ELM hardware engine is used by BCH ecc-schemes for detecting and locating ECC
errors. This patch adds the following checks for ELM hardware engine:
- ELM internal buffers are of 1K,
so it cannot process data with ecc-step-size > 1K.
- ELM engine can execute upto maximum of 8 threads in parallel,
so in *page-mode* (when complete page is processed in single iteration),
ELM cannot support ecc-steps > 8.
Signed-off-by: Pekon Gupta <pekon@ti.com>
Reviewed-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Reported-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Reported-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Reported-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Reported-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Reported-by: Brian Norris <computersforpeace@gmail.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
[Brian: tweaked a bit]
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The old API expected a "partitions" property provided a phandle to a
separate partitions node, which itself contained yet more nodes each
representing one partition. The new API rids the requirement for the
superfluous intermediary partitions node. This patch provides the
added information required for automatic parsing by the core.
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Until now the dynamically configurable message sequences for read, write
and enable 32bit addressing have been global. Brian makes a good point
why this should not be the case. If there are ever two FSM's located on
the same platform, we could be potentially introducing a race condition
on "needlessly shared data".
Suggested-by: Brian Norris <computersforpeace@gmail.com>
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
This patch allows us to prepare some of the message sequences which will
be required to talk to the S25FLxxx family of Serial Flash devices. It
also allows us to do some required extra operations after any busy wait
failures.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
When an erase is requested by userspace the MTD framework calls back
into the driver to conduct the actual command issue. Here we provide the
routines which do exactly that. We can choose to either do an entire chip
erase or by sector.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
When we write data to the Serial Flash chip we'll wait a predetermined
period of time before giving up. During that period of time we poll the
status register until completion.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
When we write data to the FIFO the FSM Controller subsequently writes
that data out to the Serial Flash chip.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
When a read is issued by userspace the MTD framework calls back into
the driver to conduct the actual command issue and data extraction.
Here we provide the routines which do exactly that.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Most chips require a predefined set of FSM message sequences for read,
write and erase operations. This patch provides a way to set them up,
which it will do so if a chip specific initialisation routine isn't
been provided.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
In the FSM driver we handle chip differences by providing the possibility
of calling back into a chip specific initialisation routine. In this patch
we provide one for the N25Qxxx series, which endeavours to setup things
like the read, write and erase sequences, as they differ from the
default. We also configure 32bit support and the amount of dummy cycles to
use.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The N25Qxxx Serial Flash devices required different sequence
configurations depending on whether they're running in 24bit (3Byte)
or 32bit (4Byte) mode. We provide those here.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Message sequences can vary depending on how many pads (lines) are
required to address the chip (mode & dummy), how many data pads (lines)
are required to write out to the chip which will determine speed
amongst other things which are detailed by the SFDP specification. We
are able to use multiple configurations for each chip, but they need
to me matched to a device's capabilities. These configurations are
listed in preference order - most preferred first.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The FSM Serial Flash Controller is driven by issuing a standard set of
register writes we call a message sequence. This patch supplies a method
to prepare the message sequence responsible for updating a chip's VCR.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Most Serial Flash chips support 24bit addressing as a default but more
recent incarnations can support 32bit. Based on information provided
though platform specific data and capabilities we can determine whether
or not our current chip can. This patch provides a means to setup the
FSM message sequence to put the chip into 32bit mode.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Based on information we can obtain though platform specific data and/or
chip capabilities we are able to determine whether or not we can handle
a SoC reset or not. To find out why this is important please read the
comment provided in the patch.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Firstly we search for our preference read/write configuration based on a
given chip's capabilities. Then we actually set up the message sequence
accordingly.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The FSM Serial Flash Controller is driven by issuing a standard set of
register writes we call a message sequence. This patch supplies a method
to prepare the message sequence responsible for setting 32bit addressing
mode on the Flash chip.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The FSM Serial Flash Controller is driven by issuing a standard set of
register writes we call a message sequence. This patch supplies a method
to prepare the message sequence responsible for erasing a single sector.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
It's important for us to determine which device was used to boot from in
order to make some correct decisions surrounding Power Management. On
each of the platforms which support the FSM this is communicated via
a set of mode pins held in the system configuration area. This patch
determine the boot device and stores the result.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The FSM Serial Flash Controller is driven by issuing a standard set of
register writes we call a message sequence. This patch supplies a method
to prepare read/write FSM message sequence(s) based on chip capability
and configuration.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Take some known parameters, namely size and number of sectors and use
them to determine weather a device can support 32bit addressing or not.
If it can, set the associated flash capability flag for latter use.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Here we provide a means to traverse though all supplied FSM message
sequence configurations and pick one based on our chip's capabilities.
The first one we match will be the preferred one, as they are
presented in order of preference.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Using previously added infrastructure we can now extract a device's JEDEC
ID, compare it to a list of known and supported devices and make assumptions
based on known characteristics of a given chip.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Supply a lookup table of all the devices we intend to support. This table
is used to store device information such as; a human readable device name,
their JEDEC ID (plus the extended version), sector size and amount, a bit
store of a device's capabilities, its maximum running frequency and
possible use of a per-device configuration call-back.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
JEDEC have helped to standardise a great deal of the commands which
can be issued to a Serial Flash devices. Many of the Serial Flash
Discoverable Parameters (SFDP) commands are generic across devices.
This patch provides a shared point where these commands can be
defined.
Suggested-by: Mark Brown <broonie@kernel.org>
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Once we start supporting devices it will be handy go detect them
dynamically. This will be done using the chip's unique JEDEC ID. This
patch allows us to extract a device's JEDEC ID using the a predefined
FSM register write sequence.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
When invoked the driver will attempt to read any available data from
the FSM's data register. Any data collected from this FIFO would have
originated from the flash chip.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The FSM hardware works by setting a predetermined sequence of register
writes. Rather than open coding them inside each functional block we're
going to define them in a series of formatted 'sequence structures'.
This patch provides the framework which shall be used for every action.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
This patch uses default values to initialise a connected flash chip. This
includes; a device soft reset, setting of a safe working frequency, a
switch into Fast Sequencing Mode, configuring of timing data and a purge
of the FIFO.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Here we provide the FSM's register addresses, register bit names/offsets
and some commands which will prove useful as we start bulk the FMS's
driver out with functionality.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
This is a new driver. It's used to communicate with a special type of
optimised Serial Flash Controller called the FSM. The FSM uses a subset
of the SPI protocol to communicate with supported NOR-Flash devices.
Acked-by Angus Clark <angus.clark@st.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
If a write to one time programmable memory (OTP) hits the end of this
memory area, no more data can be written. The count variable in
mtdchar_write() in drivers/mtd/mtdchar.c is not decreased anymore.
We are trapped in the loop forever, mtdchar_write() will never return
in this case.
The desired behavior of a write in such a case is described in [1]:
- Try to write as much data as possible, truncate the write to fit into
the available memory and return the number of bytes that actually
have been written.
- If no data could be written at all, return -ENOSPC.
This patch fixes the behavior of OTP write if there is not enough space
for all data:
1) mtd_write_user_prot_reg() in drivers/mtd/mtdcore.c is modified to
return -ENOSPC if no data could be written at all.
2) mtdchar_write() is modified to handle -ENOSPC correctly. Exit if a
write returned -ENOSPC and yield the correct return value, either
then number of bytes that could be written, or -ENOSPC, if no data
could be written at all.
Furthermore the patch harmonizes the behavior of the OTP memory write
in drivers/mtd/devices/mtd_dataflash.c with the other implementations
and the requirements from [1]. Instead of returning -EINVAL if the data
does not fit into the OTP memory, we try to write as much data as
possible/truncate the write.
[1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/write.html
Signed-off-by: Christian Riesch <christian.riesch@omicron.at>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
fixme applied : check device size is a multiple of erasesize.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
Acked-by: Marek Vasut <marex@denx.de>
|
|
Signed-off-by: Christian Riesch <christian.riesch@omicron.at>
Cc: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
Signed-off-by: Yusuke Goda <yusuke.goda.sx@renesas.com>
Signed-off-by: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Signed-off-by: Geert Uytterhoeven <geert+renesas@linux-m68k.org>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|
|
The site-specific OOM messages are unnecessary, because they
duplicate the MM subsystem generic OOM message.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
|