summaryrefslogtreecommitdiff
path: root/drivers/md/raid5.c
AgeCommit message (Collapse)AuthorFilesLines
2020-11-10md/raid5: fix oops during stripe resizingSong Liu1-2/+2
commit b44c018cdf748b96b676ba09fdbc5b34fc443ada upstream. KoWei reported crash during raid5 reshape: [ 1032.252932] Oops: 0002 [#1] SMP PTI [...] [ 1032.252943] RIP: 0010:memcpy_erms+0x6/0x10 [...] [ 1032.252947] RSP: 0018:ffffba1ac0c03b78 EFLAGS: 00010286 [ 1032.252949] RAX: 0000784ac0000000 RBX: ffff91bec3d09740 RCX: 0000000000001000 [ 1032.252951] RDX: 0000000000001000 RSI: ffff91be6781c000 RDI: 0000784ac0000000 [ 1032.252953] RBP: ffffba1ac0c03bd8 R08: 0000000000001000 R09: ffffba1ac0c03bf8 [ 1032.252954] R10: 0000000000000000 R11: 0000000000000000 R12: ffffba1ac0c03bf8 [ 1032.252955] R13: 0000000000001000 R14: 0000000000000000 R15: 0000000000000000 [ 1032.252958] FS: 0000000000000000(0000) GS:ffff91becf500000(0000) knlGS:0000000000000000 [ 1032.252959] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1032.252961] CR2: 0000784ac0000000 CR3: 000000031780a002 CR4: 00000000001606e0 [ 1032.252962] Call Trace: [ 1032.252969] ? async_memcpy+0x179/0x1000 [async_memcpy] [ 1032.252977] ? raid5_release_stripe+0x8e/0x110 [raid456] [ 1032.252982] handle_stripe_expansion+0x15a/0x1f0 [raid456] [ 1032.252988] handle_stripe+0x592/0x1270 [raid456] [ 1032.252993] handle_active_stripes.isra.0+0x3cb/0x5a0 [raid456] [ 1032.252999] raid5d+0x35c/0x550 [raid456] [ 1032.253002] ? schedule+0x42/0xb0 [ 1032.253006] ? schedule_timeout+0x10e/0x160 [ 1032.253011] md_thread+0x97/0x160 [ 1032.253015] ? wait_woken+0x80/0x80 [ 1032.253019] kthread+0x104/0x140 [ 1032.253022] ? md_start_sync+0x60/0x60 [ 1032.253024] ? kthread_park+0x90/0x90 [ 1032.253027] ret_from_fork+0x35/0x40 This is because cache_size_mutex was unlocked too early in resize_stripes, which races with grow_one_stripe() that grow_one_stripe() allocates a stripe with wrong pool_size. Fix this issue by unlocking cache_size_mutex after updating pool_size. Cc: <stable@vger.kernel.org> # v4.4+ Reported-by: KoWei Sung <winders@amazon.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21md/raid5: Fix Force reconstruct-write io stuck in degraded raid5ChangSyun Peng1-1/+2
commit a1c6ae3d9f3dd6aa5981a332a6f700cf1c25edef upstream. In degraded raid5, we need to read parity to do reconstruct-write when data disks fail. However, we can not read parity from handle_stripe_dirtying() in force reconstruct-write mode. Reproducible Steps: 1. Create degraded raid5 mdadm -C /dev/md2 --assume-clean -l5 -n3 /dev/sda2 /dev/sdb2 missing 2. Set rmw_level to 0 echo 0 > /sys/block/md2/md/rmw_level 3. IO to raid5 Now some io may be stuck in raid5. We can use handle_stripe_fill() to read the parity in this situation. Cc: <stable@vger.kernel.org> # v4.4+ Reviewed-by: Alex Wu <alexwu@synology.com> Reviewed-by: BingJing Chang <bingjingc@synology.com> Reviewed-by: Danny Shih <dannyshih@synology.com> Signed-off-by: ChangSyun Peng <allenpeng@synology.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05md/raid6: Set R5_ReadError when there is read failure on parity diskXiao Ni1-1/+3
commit 143f6e733b73051cd22dcb80951c6c929da413ce upstream. 7471fb77ce4d ("md/raid6: Fix anomily when recovering a single device in RAID6.") avoids rereading P when it can be computed from other members. However, this misses the chance to re-write the right data to P. This patch sets R5_ReadError if the re-read fails. Also, when re-read is skipped, we also missed the chance to reset rdev->read_errors to 0. It can fail the disk when there are many read errors on P member disk (other disks don't have read error) V2: upper layer read request don't read parity/Q data. So there is no need to consider such situation. This is Reported-by: kbuild test robot <lkp@intel.com> Fixes: 7471fb77ce4d ("md/raid6: Fix anomily when recovering a single device in RAID6.") Cc: <stable@vger.kernel.org> #4.4+ Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-11md/raid: raid5 preserve the writeback action after the parity checkNigel Croxon1-1/+9
commit b2176a1dfb518d870ee073445d27055fea64dfb8 upstream. The problem is that any 'uptodate' vs 'disks' check is not precise in this path. Put a "WARN_ON(!test_bit(R5_UPTODATE, &dev->flags)" on the device that might try to kick off writes and then skip the action. Better to prevent the raid driver from taking unexpected action *and* keep the system alive vs killing the machine with BUG_ON. Note: fixed warning reported by kbuild test robot <lkp@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Nigel Croxon <ncroxon@redhat.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-11Revert "Don't jump to compute_result state from check_result state"Song Liu1-4/+15
commit a25d8c327bb41742dbd59f8c545f59f3b9c39983 upstream. This reverts commit 4f4fd7c5798bbdd5a03a60f6269cf1177fbd11ef. Cc: Dan Williams <dan.j.williams@intel.com> Cc: Nigel Croxon <ncroxon@redhat.com> Cc: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-16Don't jump to compute_result state from check_result stateNigel Croxon1-15/+4
commit 4f4fd7c5798bbdd5a03a60f6269cf1177fbd11ef upstream. Changing state from check_state_check_result to check_state_compute_result not only is unsafe but also doesn't appear to serve a valid purpose. A raid6 check should only be pushing out extra writes if doing repair and a mis-match occurs. The stripe dev management will already try and do repair writes for failing sectors. This patch makes the raid6 check_state_check_result handling work more like raid5's. If somehow too many failures for a check, just quit the check operation for the stripe. When any checks pass, don't try and use check_state_compute_result for a purpose it isn't needed for and is unsafe for. Just mark the stripe as in sync for passing its parity checks and let the stripe dev read/write code and the bad blocks list do their job handling I/O errors. Repro steps from Xiao: These are the steps to reproduce this problem: 1. redefined OPT_MEDIUM_ERR_ADDR to 12000 in scsi_debug.c 2. insmod scsi_debug.ko dev_size_mb=11000 max_luns=1 num_tgts=1 3. mdadm --create /dev/md127 --level=6 --raid-devices=5 /dev/sde1 /dev/sde2 /dev/sde3 /dev/sde5 /dev/sde6 sde is the disk created by scsi_debug 4. echo "2" >/sys/module/scsi_debug/parameters/opts 5. raid-check It panic: [ 4854.730899] md: data-check of RAID array md127 [ 4854.857455] sd 5:0:0:0: [sdr] tag#80 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE [ 4854.859246] sd 5:0:0:0: [sdr] tag#80 Sense Key : Medium Error [current] [ 4854.860694] sd 5:0:0:0: [sdr] tag#80 Add. Sense: Unrecovered read error [ 4854.862207] sd 5:0:0:0: [sdr] tag#80 CDB: Read(10) 28 00 00 00 2d 88 00 04 00 00 [ 4854.864196] print_req_error: critical medium error, dev sdr, sector 11656 flags 0 [ 4854.867409] sd 5:0:0:0: [sdr] tag#100 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE [ 4854.869469] sd 5:0:0:0: [sdr] tag#100 Sense Key : Medium Error [current] [ 4854.871206] sd 5:0:0:0: [sdr] tag#100 Add. Sense: Unrecovered read error [ 4854.872858] sd 5:0:0:0: [sdr] tag#100 CDB: Read(10) 28 00 00 00 2e e0 00 00 08 00 [ 4854.874587] print_req_error: critical medium error, dev sdr, sector 12000 flags 4000 [ 4854.876456] sd 5:0:0:0: [sdr] tag#101 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE [ 4854.878552] sd 5:0:0:0: [sdr] tag#101 Sense Key : Medium Error [current] [ 4854.880278] sd 5:0:0:0: [sdr] tag#101 Add. Sense: Unrecovered read error [ 4854.881846] sd 5:0:0:0: [sdr] tag#101 CDB: Read(10) 28 00 00 00 2e e8 00 00 08 00 [ 4854.883691] print_req_error: critical medium error, dev sdr, sector 12008 flags 4000 [ 4854.893927] sd 5:0:0:0: [sdr] tag#166 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE [ 4854.896002] sd 5:0:0:0: [sdr] tag#166 Sense Key : Medium Error [current] [ 4854.897561] sd 5:0:0:0: [sdr] tag#166 Add. Sense: Unrecovered read error [ 4854.899110] sd 5:0:0:0: [sdr] tag#166 CDB: Read(10) 28 00 00 00 2e e0 00 00 10 00 [ 4854.900989] print_req_error: critical medium error, dev sdr, sector 12000 flags 0 [ 4854.902757] md/raid:md127: read error NOT corrected!! (sector 9952 on sdr1). [ 4854.904375] md/raid:md127: read error NOT corrected!! (sector 9960 on sdr1). [ 4854.906201] ------------[ cut here ]------------ [ 4854.907341] kernel BUG at drivers/md/raid5.c:4190! raid5.c:4190 above is this BUG_ON: handle_parity_checks6() ... BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ Cc: <stable@vger.kernel.org> # v3.16+ OriginalAuthor: David Jeffery <djeffery@redhat.com> Cc: Xiao Ni <xni@redhat.com> Tested-by: David Jeffery <djeffery@redhat.com> Signed-off-by: David Jeffy <djeffery@redhat.com> Signed-off-by: Nigel Croxon <ncroxon@redhat.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23md: Fix failed allocation of md_register_threadAditya Pakki1-0/+2
commit e406f12dde1a8375d77ea02d91f313fb1a9c6aec upstream. mddev->sync_thread can be set to NULL on kzalloc failure downstream. The patch checks for such a scenario and frees allocated resources. Committer node: Added similar fix to raid5.c, as suggested by Guoqing. Cc: stable@vger.kernel.org # v3.16+ Acked-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Aditya Pakki <pakki001@umn.edu> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-19md/raid5: fix data corruption of replacements after originals droppedBingJing Chang1-0/+6
[ Upstream commit d63e2fc804c46e50eee825c5d3a7228e07048b47 ] During raid5 replacement, the stripes can be marked with R5_NeedReplace flag. Data can be read from being-replaced devices and written to replacing spares without reading all other devices. (It's 'replace' mode. s.replacing = 1) If a being-replaced device is dropped, the replacement progress will be interrupted and resumed with pure recovery mode. However, existing stripes before being interrupted cannot read from the dropped device anymore. It prints lots of WARN_ON messages. And it results in data corruption because existing stripes write problematic data into its replacement device and update the progress. \# Erase disks (1MB + 2GB) dd if=/dev/zero of=/dev/sda bs=1MB count=2049 dd if=/dev/zero of=/dev/sdb bs=1MB count=2049 dd if=/dev/zero of=/dev/sdc bs=1MB count=2049 dd if=/dev/zero of=/dev/sdd bs=1MB count=2049 mdadm -C /dev/md0 -amd -R -l5 -n3 -x0 /dev/sd[abc] -z 2097152 \# Ensure array stores non-zero data dd if=/root/data_4GB.iso of=/dev/md0 bs=1MB \# Start replacement mdadm /dev/md0 -a /dev/sdd mdadm /dev/md0 --replace /dev/sda Then, Hot-plug out /dev/sda during recovery, and wait for recovery done. echo check > /sys/block/md0/md/sync_action cat /sys/block/md0/md/mismatch_cnt # it will be greater than 0. Soon after you hot-plug out /dev/sda, you will see many WARN_ON messages. The replacement recovery will be interrupted shortly. After the recovery finishes, it will result in data corruption. Actually, it's just an unhandled case of replacement. In commit <f94c0b6658c7> (md/raid5: fix interaction of 'replace' and 'recovery'.), if a NeedReplace device is not UPTODATE then that is an error, the commit just simply print WARN_ON but also mark these corrupted stripes with R5_WantReplace. (it means it's ready for writes.) To fix this case, we can leverage 'sync and replace' mode mentioned in commit <9a3e1101b827> (md/raid5: detect and handle replacements during recovery.). We can add logics to detect and use 'sync and replace' mode for these stripes. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Alex Wu <alexwu@synology.com> Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30md: raid5: avoid string overflow warningArnd Bergmann1-3/+4
[ Upstream commit 53b8d89ddbdbb0e4625a46d2cdbb6f106c52f801 ] gcc warns about a possible overflow of the kmem_cache string, when adding four characters to a string of the same length: drivers/md/raid5.c: In function 'setup_conf': drivers/md/raid5.c:2207:34: error: '-alt' directive writing 4 bytes into a region of size between 1 and 32 [-Werror=format-overflow=] sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); ^~~~ drivers/md/raid5.c:2207:2: note: 'sprintf' output between 5 and 36 bytes into a destination of size 32 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If I'm counting correctly, we need 11 characters for the fixed part of the string and 18 characters for a 64-bit pointer (when no gendisk is used), so that leaves three characters for conf->level, which should always be sufficient. This makes the code use snprintf() with the correct length, to make the code more robust against changes, and to get the compiler to shut up. In commit f4be6b43f1ac ("md/raid5: ensure we create a unique name for kmem_cache when mddev has no gendisk") from 2010, Neil said that the pointer could be removed "shortly" once devices without gendisk are disallowed. I have no idea if that happened, but if it did, that should probably be changed as well. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Shaohua Li <sh.li@alibaba-inc.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-04-13md/raid5: make use of spin_lock_irq over local_irq_disable + spin_lockJulia Cartwright1-10/+7
[ Upstream commit 3d05f3aed5d721c2c77d20288c29ab26c6193ed5 ] On mainline, there is no functional difference, just less code, and symmetric lock/unlock paths. On PREEMPT_RT builds, this fixes the following warning, seen by Alexander GQ Gerasiov, due to the sleeping nature of spinlocks. BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:993 in_atomic(): 0, irqs_disabled(): 1, pid: 58, name: kworker/u12:1 CPU: 5 PID: 58 Comm: kworker/u12:1 Tainted: G W 4.9.20-rt16-stand6-686 #1 Hardware name: Supermicro SYS-5027R-WRF/X9SRW-F, BIOS 3.2a 10/28/2015 Workqueue: writeback wb_workfn (flush-253:0) Call Trace: dump_stack+0x47/0x68 ? migrate_enable+0x4a/0xf0 ___might_sleep+0x101/0x180 rt_spin_lock+0x17/0x40 add_stripe_bio+0x4e3/0x6c0 [raid456] ? preempt_count_add+0x42/0xb0 raid5_make_request+0x737/0xdd0 [raid456] Reported-by: Alexander GQ Gerasiov <gq@redlab-i.ru> Tested-by: Alexander GQ Gerasiov <gq@redlab-i.ru> Signed-off-by: Julia Cartwright <julia@ni.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-03-22md/raid6: Fix anomily when recovering a single device in RAID6.NeilBrown1-1/+12
[ Upstream commit 7471fb77ce4dc4cb81291189947fcdf621a97987 ] When recoverying a single missing/failed device in a RAID6, those stripes where the Q block is on the missing device are handled a bit differently. In these cases it is easy to check that the P block is correct, so we do. This results in the P block be destroy. Consequently the P block needs to be read a second time in order to compute Q. This causes lots of seeks and hurts performance. It shouldn't be necessary to re-read P as it can be computed from the DATA. But we only compute blocks on missing devices, since c337869d9501 ("md: do not compute parity unless it is on a failed drive"). So relax the change made in that commit to allow computing of the P block in a RAID6 which it is the only missing that block. This makes RAID6 recovery run much faster as the disk just "before" the recovering device is no longer seeking back-and-forth. Reported-by-tested-by: Brad Campbell <lists2009@fnarfbargle.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-20raid5: Set R5_Expanded on parity devices as well as data.NeilBrown1-1/+4
[ Upstream commit 235b6003fb28f0dd8e7ed8fbdb088bb548291766 ] When reshaping a fully degraded raid5/raid6 to a larger nubmer of devices, the new device(s) are not in-sync and so that can make the newly grown stripe appear to be "failed". To avoid this, we set the R5_Expanded flag to say "Even though this device is not fully in-sync, this block is safe so don't treat the device as failed for this stripe". This flag is set for data devices, not not for parity devices. Consequently, if you have a RAID6 with two devices that are partly recovered and a spare, and start a reshape to include the spare, then when the reshape gets past the point where the recovery was up to, it will think the stripes are failed and will get into an infinite loop, failing to make progress. So when contructing parity on an EXPAND_READY stripe, set R5_Expanded. Reported-by: Curt <lightspd@gmail.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-05md/raid5: preserve STRIPE_ON_UNPLUG_LIST in break_stripe_batch_listDennis Yang1-1/+2
commit 184a09eb9a2fe425e49c9538f1604b05ed33cfef upstream. In release_stripe_plug(), if a stripe_head has its STRIPE_ON_UNPLUG_LIST set, it indicates that this stripe_head is already in the raid5_plug_cb list and release_stripe() would be called instead to drop a reference count. Otherwise, the STRIPE_ON_UNPLUG_LIST bit would be set for this stripe_head and it will get queued into the raid5_plug_cb list. Since break_stripe_batch_list() did not preserve STRIPE_ON_UNPLUG_LIST, A stripe could be re-added to plug list while it is still on that list in the following situation. If stripe_head A is added to another stripe_head B's batch list, in this case A will have its batch_head != NULL and be added into the plug list. After that, stripe_head B gets handled and called break_stripe_batch_list() to reset all the batched stripe_head(including A which is still on the plug list)'s state and reset their batch_head to NULL. Before the plug list gets processed, if there is another write request comes in and get stripe_head A, A will have its batch_head == NULL (cleared by calling break_stripe_batch_list() on B) and be added to plug list once again. Signed-off-by: Dennis Yang <dennisyang@qnap.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-05md/raid5: fix a race condition in stripe batchShaohua Li1-2/+8
commit 3664847d95e60a9a943858b7800f8484669740fc upstream. We have a race condition in below scenario, say have 3 continuous stripes, sh1, sh2 and sh3, sh1 is the stripe_head of sh2 and sh3: CPU1 CPU2 CPU3 handle_stripe(sh3) stripe_add_to_batch_list(sh3) -> lock(sh2, sh3) -> lock batch_lock(sh1) -> add sh3 to batch_list of sh1 -> unlock batch_lock(sh1) clear_batch_ready(sh1) -> lock(sh1) and batch_lock(sh1) -> clear STRIPE_BATCH_READY for all stripes in batch_list -> unlock(sh1) and batch_lock(sh1) ->clear_batch_ready(sh3) -->test_and_clear_bit(STRIPE_BATCH_READY, sh3) --->return 0 as sh->batch == NULL -> sh3->batch_head = sh1 -> unlock (sh2, sh3) In CPU1, handle_stripe will continue handle sh3 even it's in batch stripe list of sh1. By moving sh3->batch_head assignment in to batch_lock, we make it impossible to clear STRIPE_BATCH_READY before batch_head is set. Thanks Stephane for helping debug this tricky issue. Reported-and-tested-by: Stephane Thiell <sthiell@stanford.edu> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-27md/raid5: release/flush io in raid5_do_work()Song Liu1-0/+2
commit 9c72a18e46ebe0f09484cce8ebf847abdab58498 upstream. In raid5, there are scenarios where some ios are deferred to a later time, and some IO need a flush to complete. To make sure we make progress with these IOs, we need to call the following functions: flush_deferred_bios(conf); r5l_flush_stripe_to_raid(conf->log); Both of these functions are called in raid5d(), but missing in raid5_do_work(). As a result, these functions are not called when multi-threading (group_thread_cnt > 0) is enabled. This patch adds calls to these function to raid5_do_work(). Note for stable branches: r5l_flush_stripe_to_raid(conf->log) is need for 4.4+ flush_deferred_bios(conf) is only needed for 4.11+ Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-07md/raid5: add thread_group worker async_tx_issue_pending_allOfer Heifetz1-0/+2
commit 7e96d559634b73a8158ee99a7abece2eacec2668 upstream. Since thread_group worker and raid5d kthread are not in sync, if worker writes stripe before raid5d then requests will be waiting for issue_pendig. Issue observed when building raid5 with ext4, in some build runs jbd2 would get hung and requests were waiting in the HW engine waiting to be issued. Fix this by adding a call to async_tx_issue_pending_all in the raid5_do_work. Signed-off-by: Ofer Heifetz <oferh@marvell.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-28Raid5 should update rdev->sectors after reshapeXiao Ni1-3/+1
commit b5d27718f38843a74552e9a93d32e2391fd3999f upstream. The raid5 md device is created by the disks which we don't use the total size. For example, the size of the device is 5G and it just uses 3G of the devices to create one raid5 device. Then change the chunksize and wait reshape to finish. After reshape finishing stop the raid and assemble it again. It fails. mdadm -CR /dev/md0 -l5 -n3 /dev/loop[0-2] --size=3G --chunk=32 --assume-clean mdadm /dev/md0 --grow --chunk=64 wait reshape to finish mdadm -S /dev/md0 mdadm -As The error messages: [197519.814302] md: loop1 does not have a valid v1.2 superblock, not importing! [197519.821686] md: md_import_device returned -22 After reshape the data offset is changed. It selects backwards direction in this condition. In function super_1_load it compares the available space of the underlying device with sb->data_size. The new data offset gets bigger after reshape. So super_1_load returns -EINVAL. rdev->sectors is updated in md_finish_reshape. Then sb->data_size is set in super_1_sync based on rdev->sectors. So add md_finish_reshape in end_reshape. Signed-off-by: Xiao Ni <xni@redhat.com> Acked-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-28md: don't use flush_signals in userspace processesMikulas Patocka1-1/+4
commit f9c79bc05a2a91f4fba8bfd653579e066714b1ec upstream. The function flush_signals clears all pending signals for the process. It may be used by kernel threads when we need to prepare a kernel thread for responding to signals. However using this function for an userspaces processes is incorrect - clearing signals without the program expecting it can cause misbehavior. The raid1 and raid5 code uses flush_signals in its request routine because it wants to prepare for an interruptible wait. This patch drops flush_signals and uses sigprocmask instead to block all signals (including SIGKILL) around the schedule() call. The signals are not lost, but the schedule() call won't respond to them. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Acked-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-25md: update slab_cache before releasing new stripes when stripes resizingDennis Yang1-2/+4
commit 583da48e388f472e8818d9bb60ef6a1d40ee9f9d upstream. When growing raid5 device on machine with small memory, there is chance that mdadm will be killed and the following bug report can be observed. The same bug could also be reproduced in linux-4.10.6. [57600.075774] BUG: unable to handle kernel NULL pointer dereference at (null) [57600.083796] IP: [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.110378] PGD 421cf067 PUD 4442d067 PMD 0 [57600.114678] Oops: 0002 [#1] SMP [57600.180799] CPU: 1 PID: 25990 Comm: mdadm Tainted: P O 4.2.8 #1 [57600.187849] Hardware name: To be filled by O.E.M. To be filled by O.E.M./MAHOBAY, BIOS QV05AR66 03/06/2013 [57600.197490] task: ffff880044e47240 ti: ffff880043070000 task.ti: ffff880043070000 [57600.204963] RIP: 0010:[<ffffffff81a6aa87>] [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.213057] RSP: 0018:ffff880043073810 EFLAGS: 00010046 [57600.218359] RAX: 0000000000000000 RBX: 000000000000000c RCX: ffff88011e296dd0 [57600.225486] RDX: 0000000000000001 RSI: ffffe8ffffcb46c0 RDI: 0000000000000000 [57600.232613] RBP: ffff880043073878 R08: ffff88011e5f8170 R09: 0000000000000282 [57600.239739] R10: 0000000000000005 R11: 28f5c28f5c28f5c3 R12: ffff880043073838 [57600.246872] R13: ffffe8ffffcb46c0 R14: 0000000000000000 R15: ffff8800b9706a00 [57600.253999] FS: 00007f576106c700(0000) GS:ffff88011e280000(0000) knlGS:0000000000000000 [57600.262078] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [57600.267817] CR2: 0000000000000000 CR3: 00000000428fe000 CR4: 00000000001406e0 [57600.274942] Stack: [57600.276949] ffffffff8114ee35 ffff880043073868 0000000000000282 000000000000eb3f [57600.284383] ffffffff81119043 ffff880043073838 ffff880043073838 ffff88003e197b98 [57600.291820] ffffe8ffffcb46c0 ffff88003e197360 0000000000000286 ffff880043073968 [57600.299254] Call Trace: [57600.301698] [<ffffffff8114ee35>] ? cache_flusharray+0x35/0xe0 [57600.307523] [<ffffffff81119043>] ? __page_cache_release+0x23/0x110 [57600.313779] [<ffffffff8114eb53>] kmem_cache_free+0x63/0xc0 [57600.319344] [<ffffffff81579942>] drop_one_stripe+0x62/0x90 [57600.324915] [<ffffffff81579b5b>] raid5_cache_scan+0x8b/0xb0 [57600.330563] [<ffffffff8111b98a>] shrink_slab.part.36+0x19a/0x250 [57600.336650] [<ffffffff8111e38c>] shrink_zone+0x23c/0x250 [57600.342039] [<ffffffff8111e4f3>] do_try_to_free_pages+0x153/0x420 [57600.348210] [<ffffffff8111e851>] try_to_free_pages+0x91/0xa0 [57600.353959] [<ffffffff811145b1>] __alloc_pages_nodemask+0x4d1/0x8b0 [57600.360303] [<ffffffff8157a30b>] check_reshape+0x62b/0x770 [57600.365866] [<ffffffff8157a4a5>] raid5_check_reshape+0x55/0xa0 [57600.371778] [<ffffffff81583df7>] update_raid_disks+0xc7/0x110 [57600.377604] [<ffffffff81592b73>] md_ioctl+0xd83/0x1b10 [57600.382827] [<ffffffff81385380>] blkdev_ioctl+0x170/0x690 [57600.388307] [<ffffffff81195238>] block_ioctl+0x38/0x40 [57600.393525] [<ffffffff811731c5>] do_vfs_ioctl+0x2b5/0x480 [57600.399010] [<ffffffff8115e07b>] ? vfs_write+0x14b/0x1f0 [57600.404400] [<ffffffff811733cc>] SyS_ioctl+0x3c/0x70 [57600.409447] [<ffffffff81a6ad97>] entry_SYSCALL_64_fastpath+0x12/0x6a [57600.415875] Code: 00 00 00 00 55 48 89 e5 8b 07 85 c0 74 04 31 c0 5d c3 ba 01 00 00 00 f0 0f b1 17 85 c0 75 ef b0 01 5d c3 90 31 c0 ba 01 00 00 00 <f0> 0f b1 17 85 c0 75 01 c3 55 89 c6 48 89 e5 e8 85 d1 63 ff 5d [57600.435460] RIP [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.441208] RSP <ffff880043073810> [57600.444690] CR2: 0000000000000000 [57600.448000] ---[ end trace cbc6b5cc4bf9831d ]--- The problem is that resize_stripes() releases new stripe_heads before assigning new slab cache to conf->slab_cache. If the shrinker function raid5_cache_scan() gets called after resize_stripes() starting releasing new stripes but right before new slab cache being assigned, it is possible that these new stripe_heads will be freed with the old slab_cache which was already been destoryed and that triggers this bug. Signed-off-by: Dennis Yang <dennisyang@qnap.com> Fixes: edbe83ab4c27 ("md/raid5: allow the stripe_cache to grow and shrink.") Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-01-09md/raid5: limit request size according to implementation limitsKonstantin Khlebnikov1-0/+9
commit e8d7c33232e5fdfa761c3416539bc5b4acd12db5 upstream. Current implementation employ 16bit counter of active stripes in lower bits of bio->bi_phys_segments. If request is big enough to overflow this counter bio will be completed and freed too early. Fortunately this not happens in default configuration because several other limits prevent that: stripe_cache_size * nr_disks effectively limits count of active stripes. And small max_sectors_kb at lower disks prevent that during normal read/write operations. Overflow easily happens in discard if it's enabled by module parameter "devices_handle_discard_safely" and stripe_cache_size is set big enough. This patch limits requests size with 256Mb - 8Kb to prevent overflows. Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Shaohua Li <shli@kernel.org> Cc: Neil Brown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12md/raid5: preserve STRIPE_PREREAD_ACTIVE in break_stripe_batch_listNeilBrown1-1/+1
commit 550da24f8d62fe81f3c13e3ec27602d6e44d43dc upstream. break_stripe_batch_list breaks up a batch and copies some flags from the batch head to the members, preserving others. It doesn't preserve or copy STRIPE_PREREAD_ACTIVE. This is not normally a problem as STRIPE_PREREAD_ACTIVE is cleared when a stripe_head is added to a batch, and is not set on stripe_heads already in a batch. However there is no locking to ensure one thread doesn't set the flag after it has just been cleared in another. This does occasionally happen. md/raid5 maintains a count of the number of stripe_heads with STRIPE_PREREAD_ACTIVE set: conf->preread_active_stripes. When break_stripe_batch_list clears STRIPE_PREREAD_ACTIVE inadvertently this could becomes incorrect and will never again return to zero. md/raid5 delays the handling of some stripe_heads until preread_active_stripes becomes zero. So when the above mention race happens, those stripe_heads become blocked and never progress, resulting is write to the array handing. So: change break_stripe_batch_list to preserve STRIPE_PREREAD_ACTIVE in the members of a batch. URL: https://bugzilla.kernel.org/show_bug.cgi?id=108741 URL: https://bugzilla.redhat.com/show_bug.cgi?id=1258153 URL: http://thread.gmane.org/5649C0E9.2030204@zoner.cz Reported-by: Martin Svec <martin.svec@zoner.cz> (and others) Tested-by: Tom Weber <linux@junkyard.4t2.com> Fixes: 1b956f7a8f9a ("md/raid5: be more selective about distributing flags across batch.") Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12RAID5: revert e9e4c377e2f563 to fix a livelockShaohua Li1-19/+8
commit 6ab2a4b806ae21b6c3e47c5ff1285ec06d505325 upstream. Revert commit e9e4c377e2f563(md/raid5: per hash value and exclusive wait_for_stripe) The problem is raid5_get_active_stripe waits on conf->wait_for_stripe[hash]. Assume hash is 0. My test release stripes in this order: - release all stripes with hash 0 - raid5_get_active_stripe still sleeps since active_stripes > max_nr_stripes * 3 / 4 - release all stripes with hash other than 0. active_stripes becomes 0 - raid5_get_active_stripe still sleeps, since nobody wakes up wait_for_stripe[0] The system live locks. The problem is active_stripes isn't a per-hash count. Revert the patch makes the live lock go away. Cc: Yuanhan Liu <yuanhan.liu@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12RAID5: check_reshape() shouldn't call mddev_suspendShaohua Li1-0/+18
commit 27a353c026a879a1001e5eac4bda75b16262c44a upstream. check_reshape() is called from raid5d thread. raid5d thread shouldn't call mddev_suspend(), because mddev_suspend() waits for all IO finish but IO is handled in raid5d thread, we could easily deadlock here. This issue is introduced by 738a273 ("md/raid5: fix allocation of 'scribble' array.") Reported-and-tested-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-04-12md/raid5: Compare apples to apples (or sectors to sectors)Jes Sorensen1-2/+2
commit e7597e69dec59b65c5525db1626b9d34afdfa678 upstream. 'max_discard_sectors' is in sectors, while 'stripe' is in bytes. This fixes the problem where DISCARD would get disabled on some larger RAID5 configurations (6 or more drives in my testing), while it worked as expected with smaller configurations. Fixes: 620125f2bf8 ("MD: raid5 trim support") Signed-off-by: Jes Sorensen <Jes.Sorensen@redhat.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-11-05Merge tag 'md/4.4' of git://neil.brown.name/mdLinus Torvalds1-57/+132
Pull md updates from Neil Brown: "Two major components to this update. 1) The clustered-raid1 support from SUSE is nearly complete. There are a few outstanding issues being worked on. Maybe half a dozen patches will bring this to a usable state. 2) The first stage of journalled-raid5 support from Facebook makes an appearance. With a journal device configured (typically NVRAM or SSD), the "RAID5 write hole" should be closed - a crash during degraded operations cannot result in data corruption. The next stage will be to use the journal as a write-behind cache so that latency can be reduced and in some cases throughput increased by performing more full-stripe writes. * tag 'md/4.4' of git://neil.brown.name/md: (66 commits) MD: when RAID journal is missing/faulty, block RESTART_ARRAY_RW MD: set journal disk ->raid_disk MD: kick out journal disk if it's not fresh raid5-cache: start raid5 readonly if journal is missing MD: add new bit to indicate raid array with journal raid5-cache: IO error handling raid5: journal disk can't be removed raid5-cache: add trim support for log MD: fix info output for journal disk raid5-cache: use bio chaining raid5-cache: small log->seq cleanup raid5-cache: new helper: r5_reserve_log_entry raid5-cache: inline r5l_alloc_io_unit into r5l_new_meta raid5-cache: take rdev->data_offset into account early on raid5-cache: refactor bio allocation raid5-cache: clean up r5l_get_meta raid5-cache: simplify state machine when caches flushes are not needed raid5-cache: factor out a helper to run all stripes for an I/O unit raid5-cache: rename flushed_ios to finished_ios raid5-cache: free I/O units earlier ...
2015-11-01MD: set journal disk ->raid_diskShaohua Li1-2/+4
Set journal disk ->raid_disk to >=0, I choose raid_disks + 1 instead of 0, because we already have a disk with ->raid_disk 0 and this causes sysfs entry creation conflict. A lot of places assumes disk with ->raid_disk >=0 is normal raid disk, so we add check for journal disk. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5-cache: start raid5 readonly if journal is missingShaohua Li1-0/+7
If raid array is expected to have journal (eg, journal is set in MD superblock feature map) and the array is started without journal disk, start the array readonly. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5-cache: IO error handlingShaohua Li1-1/+3
There are 3 places the raid5-cache dispatches IO. The discard IO error doesn't matter, so we ignore it. The superblock write IO error can be handled in MD core. The remaining are log write and flush. When the IO error happens, we mark log disk faulty and fail all write IO. Read IO is still allowed to run. Userspace will get a notification too and corresponding daemon can choose setting raid array readonly for example. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5: journal disk can't be removedShaohua Li1-0/+11
raid5-cache uses journal disk rdev->bdev, rdev->mddev in several places. Don't allow journal disk disappear magically. On the other hand, we do need to update superblock for other disks to bump up ->events, so next time journal disk will be identified as stale. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5-cache: move reclaim stop to quiesceShaohua Li1-0/+1
Move reclaim stop to quiesce handling, where is safer for this stuff. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5-cache: optimize FLUSH IO with log enabledShaohua Li1-2/+9
With log enabled, bio is written to raid disks after the bio is settled down in log disk. The recovery guarantees we can recovery the bio data from log disk, so we we skip FLUSH IO. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5-cache: switching to state machine for log disk cache flushShaohua Li1-1/+6
Before we write stripe data to raid disks, we must guarantee stripe data is settled down in log disk. To do this, we flush log disk cache and wait the flush finish. That wait introduces sleep time in raid5d thread and impact performance. This patch moves the log disk cache flush process to the stripe handling state machine, which can remove the wait in raid5d. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5: enable log for raid array with cache diskShaohua Li1-0/+11
Now log is safe to enable for raid array with cache disk Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5: don't allow resize/reshape with cache(log) supportShaohua Li1-0/+14
If cache(log) support is enabled, don't allow resize/reshape in current stage. In the future, we can flush all data from cache(log) to raid before resize/reshape and then allow resize/reshape. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-11-01raid5: disable batch with log enabledShaohua Li1-0/+4
With log enabled, r5l_write_stripe will add the stripe to log. With batch, several stripes are linked together. The stripes must be in the same state. While with log, the log/reclaim unit is stripe, we can't guarantee the several stripes are in the same state. Disabling batch for log now. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-31md/raid5: fix locking in handle_stripe_clean_event()Roman Gushchin1-2/+4
After commit 566c09c53455 ("raid5: relieve lock contention in get_active_stripe()") __find_stripe() is called under conf->hash_locks + hash. But handle_stripe_clean_event() calls remove_hash() under conf->device_lock. Under some cirscumstances the hash chain can be circuited, and we get an infinite loop with disabled interrupts and locked hash lock in __find_stripe(). This leads to hard lockup on multiple CPUs and following system crash. I was able to reproduce this behavior on raid6 over 6 ssd disks. The devices_handle_discard_safely option should be set to enable trim support. The following script was used: for i in `seq 1 32`; do dd if=/dev/zero of=large$i bs=10M count=100 & done neilb: original was against a 3.x kernel. I forward-ported to 4.3-rc. This verison is suitable for any kernel since Commit: 59fc630b8b5f ("RAID5: batch adjacent full stripe write") (v4.1+). I'll post a version for earlier kernels to stable. Signed-off-by: Roman Gushchin <klamm@yandex-team.ru> Fixes: 566c09c53455 ("raid5: relieve lock contention in get_active_stripe()") Signed-off-by: NeilBrown <neilb@suse.com> Cc: Shaohua Li <shli@kernel.org> Cc: <stable@vger.kernel.org> # 3.13 - 4.2
2015-10-24raid5: log reclaim supportShaohua Li1-0/+6
This is the reclaim support for raid5 log. A stripe write will have following steps: 1. reconstruct the stripe, read data/calculate parity. ops_run_io prepares to write data/parity to raid disks 2. hijack ops_run_io. stripe data/parity is appending to log disk 3. flush log disk cache 4. ops_run_io run again and do normal operation. stripe data/parity is written in raid array disks. raid core can return io to upper layer. 5. flush cache of all raid array disks 6. update super block 7. log disk space used by the stripe can be reused In practice, several stripes consist of an io_unit and we will batch several io_unit in different steps, but the whole process doesn't change. It's possible io return just after data/parity hit log disk, but then read IO will need read from log disk. For simplicity, IO return happens at step 4, where read IO can directly read from raid disks. Currently reclaim run if there is specific reclaimable space (1/4 disk size or 10G) or we are out of space. Reclaim is just to free log disk spaces, it doesn't impact data consistency. The size based force reclaim is to make sure log isn't too big, so recovery doesn't scan log too much. Recovery make sure raid disks and log disk have the same data of a stripe. If crash happens before 4, recovery might/might not recovery stripe's data/parity depending on if data/parity and its checksum matches. In either case, this doesn't change the syntax of an IO write. After step 3, stripe is guaranteed recoverable, because stripe's data/parity is persistent in log disk. In some cases, log disk content and raid disks content of a stripe are the same, but recovery will still copy log disk content to raid disks, this doesn't impact data consistency. space reuse happens after superblock update and cache flush. There is one situation we want to avoid. A broken meta in the middle of a log causes recovery can't find meta at the head of log. If operations require meta at the head persistent in log, we must make sure meta before it persistent in log too. The case is stripe data/parity is in log and we start write stripe to raid disks (before step 4). stripe data/parity must be persistent in log before we do the write to raid disks. The solution is we restrictly maintain io_unit list order. In this case, we only write stripes of an io_unit to raid disks till the io_unit is the first one whose data/parity is in log. The io_unit list order is important for other cases too. For example, some io_unit are reclaimable and others not. They can be mixed in the list, we shouldn't reuse space of an unreclaimable io_unit. Includes fixes to problems which were... Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24raid5: add basic stripe logShaohua Li1-0/+4
This introduces a simple log for raid5. Data/parity writing to raid array first writes to the log, then write to raid array disks. If crash happens, we can recovery data from the log. This can speed up raid resync and fix write hole issue. The log structure is pretty simple. Data/meta data is stored in block unit, which is 4k generally. It has only one type of meta data block. The meta data block can track 3 types of data, stripe data, stripe parity and flush block. MD superblock will point to the last valid meta data block. Each meta data block has checksum/seq number, so recovery can scan the log correctly. We store a checksum of stripe data/parity to the metadata block, so meta data and stripe data/parity can be written to log disk together. otherwise, meta data write must wait till stripe data/parity is finished. For stripe data, meta data block will record stripe data sector and size. Currently the size is always 4k. This meta data record can be made simpler if we just fix write hole (eg, we can record data of a stripe's different disks together), but this format can be extended to support caching in the future, which must record data address/size. For stripe parity, meta data block will record stripe sector. It's size should be 4k (for raid5) or 8k (for raid6). We always store p parity first. This format should work for caching too. flush block indicates a stripe is in raid array disks. Fixing write hole doesn't need this type of meta data, it's for caching extension. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24raid5: add a new state for stripe log handlingShaohua Li1-0/+3
When a stripe finishes construction, we write the stripe to raid in ops_run_io normally. With log, we do a bunch of other operations before the stripe is written to raid. Mainly write the stripe to log disk, flush disk cache and so on. The operations are still driven by raid5d and run in the stripe state machine. We introduce a new state for such stripe (trapped into log). The stripe is in this state from the time it first enters ops_run_io (finish construction) to the time it is written to raid. Since we know the state is only for log, we bypass other check/operation in handle_stripe. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-24raid5: export some functionsShaohua Li1-51/+49
Next several patches use some raid5 functions, rename them with raid5 prefix and export out. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-12md-cluster: Use a small window for resyncGoldwyn Rodrigues1-1/+1
Suspending the entire device for resync could take too long. Resync in small chunks. cluster's resync window (32M) is maintained in r1conf as cluster_sync_low and cluster_sync_high and processed in raid1's sync_request(). If the current resync is outside the cluster resync window: 1. Set the cluster_sync_low to curr_resync_completed. 2. Check if the sync will fit in the new window, if not issue a wait_barrier() and set cluster_sync_low to sector_nr. 3. Set cluster_sync_high to cluster_sync_low + resync_window. 4. Send a message to all nodes so they may add it in their suspension list. bitmap_cond_end_sync is modified to allow to force a sync inorder to get the curr_resync_completed uptodate with the sector passed. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: NeilBrown <neilb@suse.de>
2015-10-02md: drop null test before destroy functionsJulia Lawall1-2/+1
Remove unneeded NULL test. The semantic patch that makes this change is as follows: (http://coccinelle.lip6.fr/) // <smpl> @@ expression x; @@ -if (x != NULL) \(kmem_cache_destroy\|mempool_destroy\|dma_pool_destroy\)(x); // </smpl> Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr> Signed-off-by: NeilBrown <neilb@suse.com>
2015-10-02md/raid5: don't index beyond end of array in need_this_block().NeilBrown1-2/+2
When need_this_block probably shouldn't be called when there are more than 2 failed devices, we really don't want it to try indexing beyond the end of the failed_num[] of fdev[] arrays. So limit the loops to at most 2 iterations. Reported-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.de>
2015-10-02raid5: update analysis state for failed stripeShaohua Li1-0/+4
handle_failed_stripe() makes the stripe fail, eg, all IO will return with a failure, but it doesn't update stripe_head_state. Later handle_stripe() has special handling for raid6 for handle_stripe_fill(). That check before handle_stripe_fill() doesn't skip the failed stripe and we get a kernel crash in need_this_block. This patch clear the analysis state to make sure no functions wrongly called after handle_failed_stripe() Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: NeilBrown <neilb@suse.com>
2015-09-05Merge linux-block/for-4.3/core into md/for-linuxNeilBrown1-86/+61
There were a few conflicts that are fairly easy to resolve. Signed-off-by: NeilBrown <neilb@suse.com>
2015-09-02Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-blockLinus Torvalds1-86/+61
Pull core block updates from Jens Axboe: "This first core part of the block IO changes contains: - Cleanup of the bio IO error signaling from Christoph. We used to rely on the uptodate bit and passing around of an error, now we store the error in the bio itself. - Improvement of the above from myself, by shrinking the bio size down again to fit in two cachelines on x86-64. - Revert of the max_hw_sectors cap removal from a revision again, from Jeff Moyer. This caused performance regressions in various tests. Reinstate the limit, bump it to a more reasonable size instead. - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me. Most devices have huge trim limits, which can cause nasty latencies when deleting files. Enable the admin to configure the size down. We will look into having a more sane default instead of UINT_MAX sectors. - Improvement of the SGP gaps logic from Keith Busch. - Enable the block core to handle arbitrarily sized bios, which enables a nice simplification of bio_add_page() (which is an IO hot path). From Kent. - Improvements to the partition io stats accounting, making it faster. From Ming Lei. - Also from Ming Lei, a basic fixup for overflow of the sysfs pending file in blk-mq, as well as a fix for a blk-mq timeout race condition. - Ming Lin has been carrying Kents above mentioned patches forward for a while, and testing them. Ming also did a few fixes around that. - Sasha Levin found and fixed a use-after-free problem introduced by the bio->bi_error changes from Christoph. - Small blk cgroup cleanup from Viresh Kumar" * 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits) blk: Fix bio_io_vec index when checking bvec gaps block: Replace SG_GAPS with new queue limits mask block: bump BLK_DEF_MAX_SECTORS to 2560 Revert "block: remove artifical max_hw_sectors cap" blk-mq: fix race between timeout and freeing request blk-mq: fix buffer overflow when reading sysfs file of 'pending' Documentation: update notes in biovecs about arbitrarily sized bios block: remove bio_get_nr_vecs() fs: use helper bio_add_page() instead of open coding on bi_io_vec block: kill merge_bvec_fn() completely md/raid5: get rid of bio_fits_rdev() md/raid5: split bio for chunk_aligned_read block: remove split code in blkdev_issue_{discard,write_same} btrfs: remove bio splitting and merge_bvec_fn() calls bcache: remove driver private bio splitting code block: simplify bio_add_page() block: make generic_make_request handle arbitrarily sized bios blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL) block: don't access bio->bi_error after bio_put() block: shrink struct bio down to 2 cache lines again ...
2015-08-31md/raid5: ensure device failure recorded before write request returns.NeilBrown1-1/+23
When a write to one of the devices of a RAID5/6 fails, the failure is recorded in the metadata of the other devices so that after a restart the data on the failed drive wont be trusted even if that drive seems to be working again (maybe a cable was unplugged). Similarly when we record a bad-block in response to a write failure, we must not let the write complete until the bad-block update is safe. Currently there is no interlock between the write request completing and the metadata update. So it is possible that the write will complete, the app will confirm success in some way, and then the machine will crash before the metadata update completes. This is an extremely small hole for a racy to fit in, but it is theoretically possible and so should be closed. So: - set MD_CHANGE_PENDING when requesting a metadata update for a failed device, so we can know with certainty when it completes - queue requests that completed when MD_CHANGE_PENDING is set to only be processed after the metadata update completes - call raid_end_bio_io() on bios in that queue when the time comes. Signed-off-by: NeilBrown <neilb@suse.com>
2015-08-31md/raid5: use bio_list for the list of bios to return.NeilBrown1-26/+15
This will make it easier to splice two lists together which will be needed in future patch. Signed-off-by: NeilBrown <neilb@suse.com>
2015-08-31md/raid5: handle possible race as reshape completes.NeilBrown1-0/+5
It is possible (though unlikely) for a reshape to be interrupted between the time that end_reshape is called and the time when raid5_finish_reshape is called. This can leave conf->reshape_progress set to MaxSector, but mddev->reshape_position not. This combination confused reshape_request() when ->reshape_backwards. As conf->reshape_progress is so high, it seems the reshape hasn't really begun. But assuming MaxSector is a valid address only leads to sorrow. So ensure reshape_position and reshape_progress both agree, and add an extra check in reshape_request() just in case they don't. Signed-off-by: NeilBrown <neilb@suse.com>
2015-08-31md: be careful when testing resync_max against curr_resync_completed.NeilBrown1-1/+2
While it generally shouldn't happen, it is not impossible for curr_resync_completed to exceed resync_max. This can particularly happen when reshaping RAID5 - the current status isn't copied to curr_resync_completed promptly, so when it is, it can exceed resync_max. This happens when the reshape is 'frozen', resync_max is set low, and reshape is re-enabled. Taking a difference between two unsigned numbers is always dangerous anyway, so add a test to behave correctly if curr_resync_completed > resync_max Signed-off-by: NeilBrown <neilb@suse.com>