summaryrefslogtreecommitdiff
path: root/drivers/md/bcache/writeback.c
AgeCommit message (Collapse)AuthorFilesLines
2018-12-13bcache: option to automatically run gc thread after writebackColy Li1-0/+27
The option gc_after_writeback is disabled by default, because garbage collection will discard SSD data which drops cached data. Echo 1 into /sys/fs/bcache/<UUID>/internal/gc_after_writeback will enable this option, which wakes up gc thread when writeback accomplished and all cached data is clean. This option is helpful for people who cares writing performance more. In heavy writing workload, all cached data can be clean only happens when writeback thread cleans all cached data in I/O idle time. In such situation a following gc running may help to shrink bcache B+ tree and discard more clean data, which may be helpful for future writing requests. If you are not sure whether this is helpful for your own workload, please leave it as disabled by default. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-13bcache: do not mark writeback_running too earlyShenghui Wang1-1/+2
A fresh backing device is not attached to any cache_set, and has no writeback kthread created until first attached to some cache_set. But bch_cached_dev_writeback_init run " dc->writeback_running = true; WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); " for any newly formatted backing devices. For a fresh standalone backing device, we can get something like following even if no writeback kthread created: ------------------------ /sys/block/bcache0/bcache# cat writeback_running 1 /sys/block/bcache0/bcache# cat writeback_rate_debug rate: 512.0k/sec dirty: 0.0k target: 0.0k proportional: 0.0k integral: 0.0k change: 0.0k/sec next io: -15427384ms The none ZERO fields are misleading as no alive writeback kthread yet. Set dc->writeback_running false as no writeback thread created in bch_cached_dev_writeback_init(). We have writeback thread created and woken up in bch_cached_dev_writeback _start(). Set dc->writeback_running true before bch_writeback_queue() called, as a writeback thread will check if dc->writeback_running is true before writing back dirty data, and hung if false detected. After the change, we can get the following output for a fresh standalone backing device: ----------------------- /sys/block/bcache0/bcache$ cat writeback_running 0 /sys/block/bcache0/bcache# cat writeback_rate_debug rate: 0.0k/sec dirty: 0.0k target: 0.0k proportional: 0.0k integral: 0.0k change: 0.0k/sec next io: 0ms v1 -> v2: Set dc->writeback_running before bch_writeback_queue() called, Signed-off-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-23bcache: release dc->writeback_lock properly in bch_writeback_thread()Shan Hai1-1/+3
The writeback thread would exit with a lock held when the cache device is detached via sysfs interface, fix it by releasing the held lock before exiting the while-loop. Fixes: fadd94e05c02 (bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set) Signed-off-by: Shan Hai <shan.hai@oracle.com> Signed-off-by: Coly Li <colyli@suse.de> Tested-by: Shenghui Wang <shhuiw@foxmail.com> Cc: stable@vger.kernel.org #4.17+ Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-12bcache: fix code comments styleColy Li1-1/+2
This patch fixes 3 style issues warned by checkpatch.pl, - Comment lines are not aligned - Comments use "/*" on subsequent lines - Comment lines use a trailing "*/" Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-12bcache: style fixes for lines over 80 charactersColy Li1-2/+5
This patch fixes the lines over 80 characters into more lines, to minimize warnings by checkpatch.pl. There are still some lines exceed 80 characters, but it is better to be a single line and I don't change them. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-12bcache: style fix to add a blank line after declarationsColy Li1-0/+1
Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-12bcache: style fix to replace 'unsigned' by 'unsigned int'Coly Li1-9/+10
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned' with 'unsigned int'. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-09bcache: set max writeback rate when I/O request is idleColy Li1-30/+61
Commit b1092c9af9ed ("bcache: allow quick writeback when backing idle") allows the writeback rate to be faster if there is no I/O request on a bcache device. It works well if there is only one bcache device attached to the cache set. If there are many bcache devices attached to a cache set, it may introduce performance regression because multiple faster writeback threads of the idle bcache devices will compete the btree level locks with the bcache device who have I/O requests coming. This patch fixes the above issue by only permitting fast writebac when all bcache devices attached on the cache set are idle. And if one of the bcache devices has new I/O request coming, minimized all writeback throughput immediately and let PI controller __update_writeback_rate() to decide the upcoming writeback rate for each bcache device. Also when all bcache devices are idle, limited wrieback rate to a small number is wast of thoughput, especially when backing devices are slower non-rotation devices (e.g. SATA SSD). This patch sets a max writeback rate for each backing device if the whole cache set is idle. A faster writeback rate in idle time means new I/Os may have more available space for dirty data, and people may observe a better write performance then. Please note bcache may change its cache mode in run time, and this patch still works if the cache mode is switched from writeback mode and there is still dirty data on cache. Fixes: Commit b1092c9af9ed ("bcache: allow quick writeback when backing idle") Cc: stable@vger.kernel.org #4.16+ Signed-off-by: Coly Li <colyli@suse.de> Tested-by: Kai Krakow <kai@kaishome.de> Tested-by: Stefan Priebe <s.priebe@profihost.ag> Cc: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27bcache: fix I/O significant decline while backend devices registeringTang Junhui1-3/+26
I attached several backend devices in the same cache set, and produced lots of dirty data by running small rand I/O writes in a long time, then I continue run I/O in the others cached devices, and stopped a cached device, after a mean while, I register the stopped device again, I see the running I/O in the others cached devices dropped significantly, sometimes even jumps to zero. In currently code, bcache would traverse each keys and btree node to count the dirty data under read locker, and the writes threads can not get the btree write locker, and when there is a lot of keys and btree node in the registering device, it would last several seconds, so the write I/Os in others cached device are blocked and declined significantly. In this patch, when a device registering to a ache set, which exist others cached devices with running I/Os, we get the amount of dirty data of the device in an incremental way, and do not block other cached devices all the time. Patch v2: Rename some variables and macros name as Coly suggested. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-27bcache: simplify the calculation of the total amount of flash dirty dataTang Junhui1-1/+4
Currently we calculate the total amount of flash only devices dirty data by adding the dirty data of each flash only device under registering locker. It is very inefficient. In this patch, we add a member flash_dev_dirty_sectors in struct cache_set to record the total amount of flash only devices dirty data in real time, so we didn't need to calculate the total amount of dirty data any more. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-03bcache: count backing device I/O error for writeback I/OColy Li1-1/+3
Commit c7b7bd07404c5 ("bcache: add io_disable to struct cached_dev") counts backing device I/O requets and set dc->io_disable to true if error counters exceeds dc->io_error_limit. But it only counts I/O errors for regular I/O request, neglects errors of write back I/Os when backing device is offline. This patch counts the errors of writeback I/Os, in dirty_endio() if bio->bi_status is not 0, it means error happens when writing dirty keys to backing device, then bch_count_backing_io_errors() is called. By this fix, even there is no reqular I/O request coming, if writeback I/O errors exceed dc->io_error_limit, the bcache device may still be stopped for the broken backing device. Fixes: c7b7bd07404c5 ("bcache: add io_disable to struct cached_dev") Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-19bcache: add backing_request_endio() for bi_end_ioColy Li1-0/+1
In order to catch I/O error of backing device, a separate bi_end_io call back is required. Then a per backing device counter can record I/O errors number and retire the backing device if the counter reaches a per backing device I/O error limit. This patch adds backing_request_endio() to bcache backing device I/O code path, this is a preparation for further complicated backing device failure handling. So far there is no real code logic change, I make this change a separate patch to make sure it is stable and reliable for further work. Changelog: v2: Fix code comments typo, remove a redundant bch_writeback_add() line added in v4 patch set. v1: indeed this is new added in this patch set. [mlyle: truncated commit subject] Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Cc: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-19bcache: add CACHE_SET_IO_DISABLE to struct cache_set flagsColy Li1-9/+28
When too many I/Os failed on cache device, bch_cache_set_error() is called in the error handling code path to retire whole problematic cache set. If new I/O requests continue to come and take refcount dc->count, the cache set won't be retired immediately, this is a problem. Further more, there are several kernel thread and self-armed kernel work may still running after bch_cache_set_error() is called. It needs to wait quite a while for them to stop, or they won't stop at all. They also prevent the cache set from being retired. The solution in this patch is, to add per cache set flag to disable I/O request on this cache and all attached backing devices. Then new coming I/O requests can be rejected in *_make_request() before taking refcount, kernel threads and self-armed kernel worker can stop very fast when flags bit CACHE_SET_IO_DISABLE is set. Because bcache also do internal I/Os for writeback, garbage collection, bucket allocation, journaling, this kind of I/O should be disabled after bch_cache_set_error() is called. So closure_bio_submit() is modified to check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set, closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and return, generic_make_request() won't be called. A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit from cache_set->flags, to disable or enable cache set I/O for debugging. It is helpful to trigger more corner case issues for failed cache device. Changelog v4, add wait_for_kthread_stop(), and call it before exits writeback and gc kernel threads. v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index. remove "bcache: " prefix when printing out kernel message. v2, more changes by previous review, - Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui. - Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this is reported and inspired from origal patch of Pavel Vazharov. v1, initial version. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Cc: Michael Lyle <mlyle@lyle.org> Cc: Pavel Vazharov <freakpv@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-19bcache: stop dc->writeback_rate_update properlyColy Li1-1/+28
struct delayed_work writeback_rate_update in struct cache_dev is a delayed worker to call function update_writeback_rate() in period (the interval is defined by dc->writeback_rate_update_seconds). When a metadate I/O error happens on cache device, bcache error handling routine bch_cache_set_error() will call bch_cache_set_unregister() to retire whole cache set. On the unregister code path, this delayed work is stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update). dc->writeback_rate_update is a special delayed work from others in bcache. In its routine update_writeback_rate(), this delayed work is re-armed itself. That means when cancel_delayed_work_sync() returns, this delayed work can still be executed after several seconds defined by dc->writeback_rate_update_seconds. The problem is, after cancel_delayed_work_sync() returns, the cache set unregister code path will continue and release memory of struct cache set. Then the delayed work is scheduled to run, __update_writeback_rate() will reference the already released cache_set memory, and trigger a NULL pointer deference fault. This patch introduces two more bcache device flags, - BCACHE_DEV_WB_RUNNING bit set: bcache device is in writeback mode and running, it is OK for dc->writeback_rate_update to re-arm itself. bit clear:bcache device is trying to stop dc->writeback_rate_update, this delayed work should not re-arm itself and quit. - BCACHE_DEV_RATE_DW_RUNNING bit set: routine update_writeback_rate() is executing. bit clear: routine update_writeback_rate() quits. This patch also adds a function cancel_writeback_rate_update_dwork() to wait for dc->writeback_rate_update quits before cancel it by calling cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected quit dc->writeback_rate_update, after time_out seconds this function will give up and continue to call cancel_delayed_work_sync(). And here I explain how this patch stops self re-armed delayed work properly with the above stuffs. update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING. Before calling cancel_delayed_work_sync() wait utill flag BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling cancel_delayed_work_sync(), dc->writeback_rate_update must be already re- armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases delayed work routine update_writeback_rate() won't be executed after cancel_delayed_work_sync() returns. Inside update_writeback_rate() before calling schedule_delayed_work(), flag BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means someone is about to stop the delayed work. Because flag BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync() has to wait for this flag to be cleared, we don't need to worry about race condition here. If update_writeback_rate() is scheduled to run after checking BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync() in cancel_writeback_rate_update_dwork(), it is also safe. Because at this moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear and quit immediately. Because there are more dependences inside update_writeback_rate() to struct cache_set memory, dc->writeback_rate_update is not a simple self re-arm delayed work. After trying many different methods (e.g. hold dc->count, or use locks), this is the only way I can find which works to properly stop dc->writeback_rate_update delayed work. Changelog: v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING to bit index, for test_bit(). v2: Try to fix the race issue which is pointed out by Junhui. v1: The initial version for review Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-19bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is setColy Li1-3/+17
In patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", cached_dev_get() is called when creating dc->writeback_thread, and cached_dev_put() is called when exiting dc->writeback_thread. This modification works well unless people detach the bcache device manually by 'echo 1 > /sys/block/bcache<N>/bcache/detach' Because this sysfs interface only calls bch_cached_dev_detach() which wakes up dc->writeback_thread but does not stop it. The reason is, before patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", inside bch_writeback_thread(), if cache is not dirty after writeback, cached_dev_put() will be called here. And in cached_dev_make_request() when a new write request makes cache from clean to dirty, cached_dev_get() will be called there. Since we don't operate dc->count in these locations, refcount d->count cannot be dropped after cache becomes clean, and cached_dev_detach_finish() won't be called to detach bcache device. This patch fixes the issue by checking whether BCACHE_DEV_DETACHING is set inside bch_writeback_thread(). If this bit is set and cache is clean (no existing writeback_keys), break the while-loop, call cached_dev_put() and quit the writeback thread. Please note if cache is still dirty, even BCACHE_DEV_DETACHING is set the writeback thread should continue to perform writeback, this is the original design of manually detach. It is safe to do the following check without locking, let me explain why, + if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && + (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { If the kenrel thread does not sleep and continue to run due to conditions are not updated in time on the running CPU core, it just consumes more CPU cycles and has no hurt. This should-sleep-but-run is safe here. We just focus on the should-run-but-sleep condition, which means the writeback thread goes to sleep in mistake while it should continue to run. 1, First of all, no matter the writeback thread is hung or not, kthread_stop() from cached_dev_detach_finish() will wake up it and terminate by making kthread_should_stop() return true. And in normal run time, bit on index BCACHE_DEV_DETACHING is always cleared, the condition !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) is always true and can be ignored as constant value. 2, If one of the following conditions is true, the writeback thread should go to sleep, "!atomic_read(&dc->has_dirty)" or "!dc->writeback_running)" each of them independently controls the writeback thread should sleep or not, let's analyse them one by one. 2.1 condition "!atomic_read(&dc->has_dirty)" If dc->has_dirty is set from 0 to 1 on another CPU core, bcache will call bch_writeback_queue() immediately or call bch_writeback_add() which indirectly calls bch_writeback_queue() too. In bch_writeback_queue(), wake_up_process(dc->writeback_thread) is called. It sets writeback thread's task state to TASK_RUNNING and following an implicit memory barrier, then tries to wake up the writeback thread. In writeback thread, its task state is set to TASK_INTERRUPTIBLE before doing the condition check. If other CPU core sets the TASK_RUNNING state after writeback thread setting TASK_INTERRUPTIBLE, the writeback thread will be scheduled to run very soon because its state is not TASK_INTERRUPTIBLE. If other CPU core sets the TASK_RUNNING state before writeback thread setting TASK_INTERRUPTIBLE, the implict memory barrier of wake_up_process() will make sure modification of dc->has_dirty on other CPU core is updated and observed on the CPU core of writeback thread. Therefore the condition check will correctly be false, and continue writeback code without sleeping. 2.2 condition "!dc->writeback_running)" dc->writeback_running can be changed via sysfs file, every time it is modified, a following bch_writeback_queue() is alwasy called. So the change is always observed on the CPU core of writeback thread. If dc->writeback_running is changed from 0 to 1 on other CPU core, this condition check will observe the modification and allow writeback thread to continue to run without sleeping. Now we can see, even without a locking protection, multiple conditions check is safe here, no deadlock or process hang up will happen. I compose a separte patch because that patch "bcache: fix cached_dev->count usage for bch_cache_set_error()" already gets a "Reviewed-by:" from Hannes Reinecke. Also this fix is not trivial and good for a separate patch. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Huijun Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-19bcache: fix cached_dev->count usage for bch_cache_set_error()Coly Li1-3/+8
When bcache metadata I/O fails, bcache will call bch_cache_set_error() to retire the whole cache set. The expected behavior to retire a cache set is to unregister the cache set, and unregister all backing device attached to this cache set, then remove sysfs entries of the cache set and all attached backing devices, finally release memory of structs cache_set, cache, cached_dev and bcache_device. In my testing when journal I/O failure triggered by disconnected cache device, sometimes the cache set cannot be retired, and its sysfs entry /sys/fs/bcache/<uuid> still exits and the backing device also references it. This is not expected behavior. When metadata I/O failes, the call senquence to retire whole cache set is, bch_cache_set_error() bch_cache_set_unregister() bch_cache_set_stop() __cache_set_unregister() <- called as callback by calling clousre_queue(&c->caching) cache_set_flush() <- called as a callback when refcount of cache_set->caching is 0 cache_set_free() <- called as a callback when refcount of catch_set->cl is 0 bch_cache_set_release() <- called as a callback when refcount of catch_set->kobj is 0 I find if kernel thread bch_writeback_thread() quits while-loop when kthread_should_stop() is true and searched_full_index is false, clousre callback cache_set_flush() set by continue_at() will never be called. The result is, bcache fails to retire whole cache set. cache_set_flush() will be called when refcount of closure c->caching is 0, and in function bcache_device_detach() refcount of closure c->caching is released to 0 by clousre_put(). In metadata error code path, function bcache_device_detach() is called by cached_dev_detach_finish(). This is a callback routine being called when cached_dev->count is 0. This refcount is decreased by cached_dev_put(). The above dependence indicates, cache_set_flush() will be called when refcount of cache_set->cl is 0, and refcount of cache_set->cl to be 0 when refcount of cache_dev->count is 0. The reason why sometimes cache_dev->count is not 0 (when metadata I/O fails and bch_cache_set_error() called) is, in bch_writeback_thread(), refcount of cache_dev is not decreased properly. In bch_writeback_thread(), cached_dev_put() is called only when searched_full_index is true and cached_dev->writeback_keys is empty, a.k.a there is no dirty data on cache. In most of run time it is correct, but when bch_writeback_thread() quits the while-loop while cache is still dirty, current code forget to call cached_dev_put() before this kernel thread exits. This is why sometimes cache_set_flush() is not executed and cache set fails to be retired. The reason to call cached_dev_put() in bch_writeback_rate() is, when the cache device changes from clean to dirty, cached_dev_get() is called, to make sure during writeback operatiions both backing and cache devices won't be released. Adding following code in bch_writeback_thread() does not work, static int bch_writeback_thread(void *arg) } + if (atomic_read(&dc->has_dirty)) + cached_dev_put() + return 0; } because writeback kernel thread can be waken up and start via sysfs entry: echo 1 > /sys/block/bcache<N>/bcache/writeback_running It is difficult to check whether backing device is dirty without race and extra lock. So the above modification will introduce potential refcount underflow in some conditions. The correct fix is, to take cached dev refcount when creating the kernel thread, and put it before the kernel thread exits. Then bcache does not need to take a cached dev refcount when cache turns from clean to dirty, or to put a cached dev refcount when cache turns from ditry to clean. The writeback kernel thread is alwasy safe to reference data structure from cache set, cache and cached device (because a refcount of cache device is taken for it already), and no matter the kernel thread is stopped by I/O errors or system reboot, cached_dev->count can always be used correctly. The patch is simple, but understanding how it works is quite complicated. Changelog: v2: set dc->writeback_thread to NULL in this patch, as suggested by Hannes. v1: initial version for review. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-07bcache: set writeback_rate_update_seconds in range [1, 60] secondsColy Li1-1/+1
dc->writeback_rate_update_seconds can be set via sysfs and its value can be set to [1, ULONG_MAX]. It does not make sense to set such a large value, 60 seconds is long enough value considering the default 5 seconds works well for long time. Because dc->writeback_rate_update is a special delayed work, it re-arms itself inside the delayed work routine update_writeback_rate(). When stopping it by cancel_delayed_work_sync(), there should be a timeout to wait and make sure the re-armed delayed work is stopped too. A small max value of dc->writeback_rate_update_seconds is also helpful to decide a reasonable small timeout. This patch limits sysfs interface to set dc->writeback_rate_update_seconds in range of [1, 60] seconds, and replaces the hand-coded number by macros. Changelog: v2: fix a rebase typo in v4, which is pointed out by Michael Lyle. v1: initial version. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-02-07bcache: properly set task state in bch_writeback_thread()Coly Li1-2/+5
Kernel thread routine bch_writeback_thread() has the following code block, 447 down_write(&dc->writeback_lock); 448~450 if (check conditions) { 451 up_write(&dc->writeback_lock); 452 set_current_state(TASK_INTERRUPTIBLE); 453 454 if (kthread_should_stop()) 455 return 0; 456 457 schedule(); 458 continue; 459 } If condition check is true, its task state is set to TASK_INTERRUPTIBLE and call schedule() to wait for others to wake up it. There are 2 issues in current code, 1, Task state is set to TASK_INTERRUPTIBLE after the condition checks, if another process changes the condition and call wake_up_process(dc-> writeback_thread), then at line 452 task state is set back to TASK_INTERRUPTIBLE, the writeback kernel thread will lose a chance to be waken up. 2, At line 454 if kthread_should_stop() is true, writeback kernel thread will return to kernel/kthread.c:kthread() with TASK_INTERRUPTIBLE and call do_exit(). It is not good to enter do_exit() with task state TASK_INTERRUPTIBLE, in following code path might_sleep() is called and a warning message is reported by __might_sleep(): "WARNING: do not call blocking ops when !TASK_RUNNING; state=1 set at [xxxx]". For the first issue, task state should be set before condition checks. Ineed because dc->writeback_lock is required when modifying all the conditions, calling set_current_state() inside code block where dc-> writeback_lock is hold is safe. But this is quite implicit, so I still move set_current_state() before all the condition checks. For the second issue, frankley speaking it does not hurt when kernel thread exits with TASK_INTERRUPTIBLE state, but this warning message scares users, makes them feel there might be something risky with bcache and hurt their data. Setting task state to TASK_RUNNING before returning fixes this problem. In alloc.c:allocator_wait(), there is also a similar issue, and is also fixed in this patch. Changelog: v3: merge two similar fixes into one patch v2: fix the race issue in v1 patch. v1: initial buggy fix. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08bcache: fix writeback target calc on large devicesMichael Lyle1-4/+27
Bcache needs to scale the dirty data in the cache over the multiple backing disks in order to calculate writeback rates for each. The previous code did this by multiplying the target number of dirty sectors by the backing device size, and expected it to fit into a uint64_t; this blows up on relatively small backing devices. The new approach figures out the bdev's share in 16384ths of the overall cached data. This is chosen to cope well when bdevs drastically vary in size and to ensure that bcache can cross the petabyte boundary for each backing device. This has been improved based on Tang Junhui's feedback to ensure that every device gets a share of dirty data, no matter how small it is compared to the total backing pool. The existing mechanism is very limited; this is purely a bug fix to remove limits on volume size. However, there still needs to be change to make this "fair" over many volumes where some are idle. Reported-by: Jack Douglas <jack@douglastechnology.co.uk> Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08bcache: fix misleading error message in bch_count_io_errors()Coly Li1-1/+3
Bcache only does recoverable I/O for read operations by calling cached_dev_read_error(). For write opertions there is no I/O recovery for failed requests. But in bch_count_io_errors() no matter read or write I/Os, before errors counter reaches io error limit, pr_err() always prints "IO error on %, recoverying". For write requests this information is misleading, because there is no I/O recovery at all. This patch adds a parameter 'is_read' to bch_count_io_errors(), and only prints "recovering" by pr_err() when the bio direction is READ. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08bcache: allow quick writeback when backing idleMichael Lyle1-0/+21
If the control system would wait for at least half a second, and there's been no reqs hitting the backing disk for awhile: use an alternate mode where we have at most one contiguous set of writebacks in flight at a time. (But don't otherwise delay). If front-end IO appears, it will still be quick, as it will only have to contend with one real operation in flight. But otherwise, we'll be sending data to the backing disk as quickly as it can accept it (with one op at a time). Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Acked-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08bcache: writeback: properly order backing device IOMichael Lyle1-0/+29
Writeback keys are presently iterated and dispatched for writeback in order of the logical block address on the backing device. Multiple may be, in parallel, read from the cache device and then written back (especially when there are contiguous I/O). However-- there was no guarantee with the existing code that the writes would be issued in LBA order, as the reads from the cache device are often re-ordered. In turn, when writing back quickly, the backing disk often has to seek backwards-- this slows writeback and increases utilization. This patch introduces an ordering mechanism that guarantees that the original order of issue is maintained for the write portion of the I/O. Performance for writeback is significantly improved when there are multiple contiguous keys or high writeback rates. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn> Tested-by: Tang Junhui <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-08bcache: fix wrong return value in bch_debug_init()Tang Junhui1-38/+82
in bch_debug_init(), ret is always 0, and the return value is useless, change it to return 0 if be success after calling debugfs_create_dir(), else return a non-zero value. Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Michael Lyle <mlyle@lyle.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-06block: move bio_alloc_pages() to bcacheMing Lei1-1/+1
bcache is the only user of bio_alloc_pages(), so move this function into bcache, and avoid it being misused in the future. Also rename it to bch_bio_allo_pages() since it is bcache only. Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-15Merge branch 'for-4.15/block' of git://git.kernel.dk/linux-blockLinus Torvalds1-46/+71
Pull core block layer updates from Jens Axboe: "This is the main pull request for block storage for 4.15-rc1. Nothing out of the ordinary in here, and no API changes or anything like that. Just various new features for drivers, core changes, etc. In particular, this pull request contains: - A patch series from Bart, closing the whole on blk/scsi-mq queue quescing. - A series from Christoph, building towards hidden gendisks (for multipath) and ability to move bio chains around. - NVMe - Support for native multipath for NVMe (Christoph). - Userspace notifications for AENs (Keith). - Command side-effects support (Keith). - SGL support (Chaitanya Kulkarni) - FC fixes and improvements (James Smart) - Lots of fixes and tweaks (Various) - bcache - New maintainer (Michael Lyle) - Writeback control improvements (Michael) - Various fixes (Coly, Elena, Eric, Liang, et al) - lightnvm updates, mostly centered around the pblk interface (Javier, Hans, and Rakesh). - Removal of unused bio/bvec kmap atomic interfaces (me, Christoph) - Writeback series that fix the much discussed hundreds of millions of sync-all units. This goes all the way, as discussed previously (me). - Fix for missing wakeup on writeback timer adjustments (Yafang Shao). - Fix laptop mode on blk-mq (me). - {mq,name} tupple lookup for IO schedulers, allowing us to have alias names. This means you can use 'deadline' on both !mq and on mq (where it's called mq-deadline). (me). - blktrace race fix, oopsing on sg load (me). - blk-mq optimizations (me). - Obscure waitqueue race fix for kyber (Omar). - NBD fixes (Josef). - Disable writeback throttling by default on bfq, like we do on cfq (Luca Miccio). - Series from Ming that enable us to treat flush requests on blk-mq like any other request. This is a really nice cleanup. - Series from Ming that improves merging on blk-mq with schedulers, getting us closer to flipping the switch on scsi-mq again. - BFQ updates (Paolo). - blk-mq atomic flags memory ordering fixes (Peter Z). - Loop cgroup support (Shaohua). - Lots of minor fixes from lots of different folks, both for core and driver code" * 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits) nvme: fix visibility of "uuid" ns attribute blk-mq: fixup some comment typos and lengths ide: ide-atapi: fix compile error with defining macro DEBUG blk-mq: improve tag waiting setup for non-shared tags brd: remove unused brd_mutex blk-mq: only run the hardware queue if IO is pending block: avoid null pointer dereference on null disk fs: guard_bio_eod() needs to consider partitions xtensa/simdisk: fix compile error nvme: expose subsys attribute to sysfs nvme: create 'slaves' and 'holders' entries for hidden controllers block: create 'slaves' and 'holders' entries for hidden gendisks nvme: also expose the namespace identification sysfs files for mpath nodes nvme: implement multipath access to nvme subsystems nvme: track shared namespaces nvme: introduce a nvme_ns_ids structure nvme: track subsystems block, nvme: Introduce blk_mq_req_flags_t block, scsi: Make SCSI quiesce and resume work reliably block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-16bcache: rearrange writeback main thread ratelimitMichael Lyle1-1/+4
The time spent searching for things to write back "counts" for the actual rate achieved, so don't flush the accumulated rate with each chunk. This will maintain better fidelity to user-commanded rates, but it may slightly increase the burstiness of writeback. The writeback lock needs improvement to help mitigate this. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-16bcache: writeback rate shouldn't artifically clampMichael Lyle1-3/+4
The previous code artificially limited writeback rate to 1000000 blocks/second (NSEC_PER_MSEC), which is a rate that can be met on fast hardware. The rate limiting code works fine (though with decreased precision) up to 3 orders of magnitude faster, so use NSEC_PER_SEC. Additionally, ensure that uint32_t is used as a type for rate throughout the rate management so that type checking/clamp_t can work properly. bch_next_delay should be rewritten for increased precision and better handling of high rates and long sleep periods, but this is adequate for now. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reported-by: Coly Li <colyli@suse.de> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-16bcache: smooth writeback rate controlMichael Lyle1-1/+1
This works in conjunction with the new PI controller. Currently, in real-world workloads, the rate controller attempts to write back 1 sector per second. In practice, these minimum-rate writebacks are between 4k and 60k in test scenarios, since bcache aggregates and attempts to do contiguous writes and because filesystems on top of bcachefs typically write 4k or more. Previously, bcache used to guarantee to write at least once per second. This means that the actual writeback rate would exceed the configured amount by a factor of 8-120 or more. This patch adjusts to be willing to sleep up to 2.5 seconds, and to target writing 4k/second. On the smallest writes, it will sleep 1 second like before, but many times it will sleep longer and load the backing device less. This keeps the loading on the cache and backing device related to writeback more consistent when writing back at low rates. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-16bcache: implement PI controller for writeback rateMichael Lyle1-39/+52
bcache uses a control system to attempt to keep the amount of dirty data in cache at a user-configured level, while not responding excessively to transients and variations in write rate. Previously, the system was a PD controller; but the output from it was integrated, turning the Proportional term into an Integral term, and turning the Derivative term into a crude Proportional term. Performance of the controller has been uneven in production, and it has tended to respond slowly, oscillate, and overshoot. This patch set replaces the current control system with an explicit PI controller and tuning that should be correct for most hardware. By default, it attempts to write at a rate that would retire 1/40th of the current excess blocks per second. An integral term in turn works to remove steady state errors. IMO, this yields benefits in simplicity (removing weighted average filtering, etc) and system performance. Another small change is a tunable parameter is introduced to allow the user to specify a minimum rate at which dirty blocks are retired. There is a slight difference from earlier versions of the patch in integral handling to prevent excessive negative integral windup. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-16bcache: don't write back data if reading it failedMichael Lyle1-6/+14
If an IO operation fails, and we didn't successfully read data from the cache, don't writeback invalid/partial data to the backing disk. Signed-off-by: Michael Lyle <mlyle@lyle.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-09-07bcache: initialize dirty stripes in flash_dev_run()Tang Junhui1-4/+4
bcache uses a Proportion-Differentiation Controller algorithm to control writeback rate to cached devices. In the PD controller algorithm, dirty stripes of thin flash device should not be counted in, because flash only volumes never write back dirty data. Currently dirty stripe counter for thin flash device is not initialized when the thin flash device starts. Which means the following calculation in PD controller will reference an undefined dirty stripes number, and all cached devices attached to the same cache set where the thin flash device lies on may have an inaccurate writeback rate. This patch calles bch_sectors_dirty_init() in flash_dev_run(), to correctly initialize dirty stripe counter when the thin flash device starts to run. This patch also does following parameter data type change, -void bch_sectors_dirty_init(struct cached_dev *dc); +void bch_sectors_dirty_init(struct bcache_device *); to call this function conveniently in flash_dev_run(). (Commit log is composed by Coly Li) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-09-06bcache: fix for gc and write-back raceTang Junhui1-2/+7
gc and write-back get raced (see the email "bcache get stucked" I sended before): gc thread write-back thread | |bch_writeback_thread() |bch_gc_thread() | | |==>read_dirty() |==>bch_btree_gc() | |==>btree_root() //get btree root | | //node write locker | |==>bch_btree_gc_root() | | |==>read_dirty_submit() | |==>write_dirty() | |==>continue_at(cl, | | write_dirty_finish, | | system_wq); | |==>write_dirty_finish()//excute | | //in system_wq | |==>bch_btree_insert() | |==>bch_btree_map_leaf_nodes() | |==>__bch_btree_map_nodes() | |==>btree_root //try to get btree | | //root node read | | //lock | |-----stuck here |==>bch_btree_set_root() |==>bch_journal_meta() |==>bch_journal() |==>journal_try_write() |==>journal_write_unlocked() //journal_full(&c->journal) | //condition satisfied |==>continue_at(cl, journal_write, system_wq); //try to excute | //journal_write in system_wq | //but work queue is excuting | //write_dirty_finish() |==>closure_sync(); //wait journal_write execute | //over and wake up gc, |-------------stuck here |==>release root node write locker This patch alloc a separate work-queue for write-back thread to avoid such race. (Commit log re-organized by Coly Li to pass checkpatch.pl checking) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Acked-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-09-06bcache: correct cache_dirty_target in __update_writeback_rate()Tang Junhui1-1/+2
__update_write_rate() uses a Proportion-Differentiation Controller algorithm to control writeback rate. A dirty target number is used in this PD controller to control writeback rate. A larger target number will make the writeback rate smaller, on the versus, a smaller target number will make the writeback rate larger. bcache uses the following steps to calculate the target number, 1) cache_sectors = all-buckets-of-cache-set * buckets-size 2) cache_dirty_target = cache_sectors * cached-device-writeback_percent 3) target = cache_dirty_target * (sectors-of-cached-device/sectors-of-all-cached-devices-of-this-cache-set) The calculation at step 1) for cache_sectors is incorrect, which does not consider dirty blocks occupied by flash only volume. A flash only volume can be took as a bcache device without cached device. All data sectors allocated for it are persistent on cache device and marked dirty, they are not touched by bcache writeback and garbage collection code. So data blocks of flash only volume should be ignore when calculating cache_sectors of cache set. Current code does not subtract dirty sectors of flash only volume, which results a larger target number from the above 3 steps. And in sequence the cache device's writeback rate is smaller then a correct value, writeback speed is slower on all cached devices. This patch fixes the incorrect slower writeback rate by subtracting dirty sectors of flash only volumes in __update_writeback_rate(). (Commit log composed by Coly Li to pass checkpatch.pl checking) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-08-23block: replace bi_bdev with a gendisk pointer and partitions indexChristoph Hellwig1-3/+2
This way we don't need a block_device structure to submit I/O. The block_device has different life time rules from the gendisk and request_queue and is usually only available when the block device node is open. Other callers need to explicitly create one (e.g. the lightnvm passthrough code, or the new nvme multipathing code). For the actual I/O path all that we need is the gendisk, which exists once per block device. But given that the block layer also does partition remapping we additionally need a partition index, which is used for said remapping in generic_make_request. Note that all the block drivers generally want request_queue or sometimes the gendisk, so this removes a layer of indirection all over the stack. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-09block: switch bios to blk_status_tChristoph Hellwig1-2/+2
Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+1
<linux/sched/clock.h> We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which will have to be picked up from other headers and .c files. Create a trivial placeholder <linux/sched/clock.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-22block: bio: pass bvec table to bio_init()Ming Lei1-3/+2
Some drivers often use external bvec table, so introduce this helper for this case. It is always safe to access the bio->bi_io_vec in this way for this case. After converting to this usage, it will becomes a bit easier to evaluate the remaining direct access to bio->bi_io_vec, so it can help to prepare for the following multipage bvec support. Signed-off-by: Ming Lei <tom.leiming@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Fixed up the new O_DIRECT cases. Signed-off-by: Jens Axboe <axboe@fb.com>
2016-09-22block: export bio_free_pages to other modulesGuoqing Jiang1-4/+1
bio_free_pages is introduced in commit 1dfa0f68c040 ("block: add a helper to free bio bounce buffer pages"), we can reuse the func in other modules after it was imported. Cc: Christoph Hellwig <hch@infradead.org> Cc: Jens Axboe <axboe@fb.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Shaohua Li <shli@fb.com> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Acked-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07bcache: use bio op accessorsMike Christie1-2/+2
Separate the op from the rq_flag_bits and have bcache set/get the bio using bio_set_op_attrs/bio_op. Signed-off-by: Mike Christie <mchristi@redhat.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-05-24bcache: bch_writeback_thread() is not freezableJiri Kosina1-3/+0
bch_writeback_thread() is calling try_to_freeze(), but that's just an expensive no-op given the fact that the thread is not marked freezable. I/O helper kthreads, exactly such as the bcache writeback thread, actually shouldn't be freezable, because they are potentially necessary for finalizing the image write-out. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-31bcache: Change refill_dirty() to always scan entire disk if necessaryKent Overstreet1-7/+30
Previously, it would only scan the entire disk if it was starting from the very start of the disk - i.e. if the previous scan got to the end. This was broken by refill_full_stripes(), which updates last_scanned so that refill_dirty was never triggering the searched_from_start path. But if we change refill_dirty() to always scan the entire disk if necessary, regardless of what last_scanned was, the code gets cleaner and we fix that bug too. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13bcache: remove driver private bio splitting codeKent Overstreet1-2/+2
The bcache driver has always accepted arbitrarily large bios and split them internally. Now that every driver must accept arbitrarily large bios this code isn't nessecary anymore. Cc: linux-bcache@vger.kernel.org Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> [dpark: add more description in commit message] Signed-off-by: Dongsu Park <dpark@posteo.net> Signed-off-by: Ming Lin <ming.l@ssi.samsung.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29block: add a bi_error field to struct bioChristoph Hellwig1-5/+5
Currently we have two different ways to signal an I/O error on a BIO: (1) by clearing the BIO_UPTODATE flag (2) by returning a Linux errno value to the bi_end_io callback The first one has the drawback of only communicating a single possible error (-EIO), and the second one has the drawback of not beeing persistent when bios are queued up, and are not passed along from child to parent bio in the ever more popular chaining scenario. Having both mechanisms available has the additional drawback of utterly confusing driver authors and introducing bugs where various I/O submitters only deal with one of them, and the others have to add boilerplate code to deal with both kinds of error returns. So add a new bi_error field to store an errno value directly in struct bio and remove the existing mechanisms to clean all this up. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-08-05bcache: fix uninterruptible sleep in writeback threadSlava Pestov1-4/+10
There were two issues here: - writeback thread did not start until the device first became dirty - writeback thread used uninterruptible sleep once running Without this patch I see kernel warnings printed and a load average of 1.52 after booting my test VM. With this patch the warnings are gone and the load average is near 0.00 as expected. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-31Merge tag 'v3.13-rc6' into for-3.14/coreJens Axboe1-28/+25
Needed to bring blk-mq uptodate, since changes have been going in since for-3.14/core was established. Fixup merge issues related to the immutable biovec changes. Signed-off-by: Jens Axboe <axboe@kernel.dk> Conflicts: block/blk-flush.c fs/btrfs/check-integrity.c fs/btrfs/extent_io.c fs/btrfs/scrub.c fs/logfs/dev_bdev.c
2013-12-17bcache: New writeback PD controllerKent Overstreet1-24/+23
The old writeback PD controller could get into states where it had throttled all the way down and take way too long to recover - it was too complicated to really understand what it was doing. This rewrites a good chunk of it to hopefully be simpler and make more sense, and it also pays more attention to units which should make the behaviour a bit easier to understand. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-17bcache: Use uninterruptible sleep in writebackKent Overstreet1-2/+2
We're just waiting on kthread_should_stop(), nothing else, so interruptible sleep was wrong here. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-17bcache: kthread don't set writeback task to INTERUPTIBLEStefan Priebe1-2/+0
at the beginning (schedule_timout_interuptible) and others do his on their own This prevents wrong load average calculation (load of 1 per thread) Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-24block: Abstract out bvec iteratorKent Overstreet1-3/+3
Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6