summaryrefslogtreecommitdiff
path: root/drivers/md/bcache/writeback.c
AgeCommit message (Collapse)AuthorFilesLines
2018-09-09bcache: release dc->writeback_lock properly in bch_writeback_thread()Shan Hai1-1/+3
commit 3943b040f11ed0cc6d4585fd286a623ca8634547 upstream. The writeback thread would exit with a lock held when the cache device is detached via sysfs interface, fix it by releasing the held lock before exiting the while-loop. Fixes: fadd94e05c02 (bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set) Signed-off-by: Shan Hai <shan.hai@oracle.com> Signed-off-by: Coly Li <colyli@suse.de> Tested-by: Shenghui Wang <shhuiw@foxmail.com> Cc: stable@vger.kernel.org #4.17+ Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is setColy Li1-3/+17
[ Upstream commit fadd94e05c02afec7b70b0b14915624f1782f578 ] In patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", cached_dev_get() is called when creating dc->writeback_thread, and cached_dev_put() is called when exiting dc->writeback_thread. This modification works well unless people detach the bcache device manually by 'echo 1 > /sys/block/bcache<N>/bcache/detach' Because this sysfs interface only calls bch_cached_dev_detach() which wakes up dc->writeback_thread but does not stop it. The reason is, before patch "bcache: fix cached_dev->count usage for bch_cache_set_error()", inside bch_writeback_thread(), if cache is not dirty after writeback, cached_dev_put() will be called here. And in cached_dev_make_request() when a new write request makes cache from clean to dirty, cached_dev_get() will be called there. Since we don't operate dc->count in these locations, refcount d->count cannot be dropped after cache becomes clean, and cached_dev_detach_finish() won't be called to detach bcache device. This patch fixes the issue by checking whether BCACHE_DEV_DETACHING is set inside bch_writeback_thread(). If this bit is set and cache is clean (no existing writeback_keys), break the while-loop, call cached_dev_put() and quit the writeback thread. Please note if cache is still dirty, even BCACHE_DEV_DETACHING is set the writeback thread should continue to perform writeback, this is the original design of manually detach. It is safe to do the following check without locking, let me explain why, + if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && + (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { If the kenrel thread does not sleep and continue to run due to conditions are not updated in time on the running CPU core, it just consumes more CPU cycles and has no hurt. This should-sleep-but-run is safe here. We just focus on the should-run-but-sleep condition, which means the writeback thread goes to sleep in mistake while it should continue to run. 1, First of all, no matter the writeback thread is hung or not, kthread_stop() from cached_dev_detach_finish() will wake up it and terminate by making kthread_should_stop() return true. And in normal run time, bit on index BCACHE_DEV_DETACHING is always cleared, the condition !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) is always true and can be ignored as constant value. 2, If one of the following conditions is true, the writeback thread should go to sleep, "!atomic_read(&dc->has_dirty)" or "!dc->writeback_running)" each of them independently controls the writeback thread should sleep or not, let's analyse them one by one. 2.1 condition "!atomic_read(&dc->has_dirty)" If dc->has_dirty is set from 0 to 1 on another CPU core, bcache will call bch_writeback_queue() immediately or call bch_writeback_add() which indirectly calls bch_writeback_queue() too. In bch_writeback_queue(), wake_up_process(dc->writeback_thread) is called. It sets writeback thread's task state to TASK_RUNNING and following an implicit memory barrier, then tries to wake up the writeback thread. In writeback thread, its task state is set to TASK_INTERRUPTIBLE before doing the condition check. If other CPU core sets the TASK_RUNNING state after writeback thread setting TASK_INTERRUPTIBLE, the writeback thread will be scheduled to run very soon because its state is not TASK_INTERRUPTIBLE. If other CPU core sets the TASK_RUNNING state before writeback thread setting TASK_INTERRUPTIBLE, the implict memory barrier of wake_up_process() will make sure modification of dc->has_dirty on other CPU core is updated and observed on the CPU core of writeback thread. Therefore the condition check will correctly be false, and continue writeback code without sleeping. 2.2 condition "!dc->writeback_running)" dc->writeback_running can be changed via sysfs file, every time it is modified, a following bch_writeback_queue() is alwasy called. So the change is always observed on the CPU core of writeback thread. If dc->writeback_running is changed from 0 to 1 on other CPU core, this condition check will observe the modification and allow writeback thread to continue to run without sleeping. Now we can see, even without a locking protection, multiple conditions check is safe here, no deadlock or process hang up will happen. I compose a separte patch because that patch "bcache: fix cached_dev->count usage for bch_cache_set_error()" already gets a "Reviewed-by:" from Hannes Reinecke. Also this fix is not trivial and good for a separate patch. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Huijun Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-30bcache: properly set task state in bch_writeback_thread()Coly Li1-2/+5
[ Upstream commit 99361bbf26337186f02561109c17a4c4b1a7536a ] Kernel thread routine bch_writeback_thread() has the following code block, 447 down_write(&dc->writeback_lock); 448~450 if (check conditions) { 451 up_write(&dc->writeback_lock); 452 set_current_state(TASK_INTERRUPTIBLE); 453 454 if (kthread_should_stop()) 455 return 0; 456 457 schedule(); 458 continue; 459 } If condition check is true, its task state is set to TASK_INTERRUPTIBLE and call schedule() to wait for others to wake up it. There are 2 issues in current code, 1, Task state is set to TASK_INTERRUPTIBLE after the condition checks, if another process changes the condition and call wake_up_process(dc-> writeback_thread), then at line 452 task state is set back to TASK_INTERRUPTIBLE, the writeback kernel thread will lose a chance to be waken up. 2, At line 454 if kthread_should_stop() is true, writeback kernel thread will return to kernel/kthread.c:kthread() with TASK_INTERRUPTIBLE and call do_exit(). It is not good to enter do_exit() with task state TASK_INTERRUPTIBLE, in following code path might_sleep() is called and a warning message is reported by __might_sleep(): "WARNING: do not call blocking ops when !TASK_RUNNING; state=1 set at [xxxx]". For the first issue, task state should be set before condition checks. Ineed because dc->writeback_lock is required when modifying all the conditions, calling set_current_state() inside code block where dc-> writeback_lock is hold is safe. But this is quite implicit, so I still move set_current_state() before all the condition checks. For the second issue, frankley speaking it does not hurt when kernel thread exits with TASK_INTERRUPTIBLE state, but this warning message scares users, makes them feel there might be something risky with bcache and hurt their data. Setting task state to TASK_RUNNING before returning fixes this problem. In alloc.c:allocator_wait(), there is also a similar issue, and is also fixed in this patch. Changelog: v3: merge two similar fixes into one patch v2: fix the race issue in v1 patch. v1: initial buggy fix. Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Michael Lyle <mlyle@lyle.org> Cc: Michael Lyle <mlyle@lyle.org> Cc: Junhui Tang <tang.junhui@zte.com.cn> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-27bcache: fix for gc and write-back raceTang Junhui1-2/+7
commit 9baf30972b5568d8b5bc8b3c46a6ec5b58100463 upstream. gc and write-back get raced (see the email "bcache get stucked" I sended before): gc thread write-back thread | |bch_writeback_thread() |bch_gc_thread() | | |==>read_dirty() |==>bch_btree_gc() | |==>btree_root() //get btree root | | //node write locker | |==>bch_btree_gc_root() | | |==>read_dirty_submit() | |==>write_dirty() | |==>continue_at(cl, | | write_dirty_finish, | | system_wq); | |==>write_dirty_finish()//excute | | //in system_wq | |==>bch_btree_insert() | |==>bch_btree_map_leaf_nodes() | |==>__bch_btree_map_nodes() | |==>btree_root //try to get btree | | //root node read | | //lock | |-----stuck here |==>bch_btree_set_root() |==>bch_journal_meta() |==>bch_journal() |==>journal_try_write() |==>journal_write_unlocked() //journal_full(&c->journal) | //condition satisfied |==>continue_at(cl, journal_write, system_wq); //try to excute | //journal_write in system_wq | //but work queue is excuting | //write_dirty_finish() |==>closure_sync(); //wait journal_write execute | //over and wake up gc, |-------------stuck here |==>release root node write locker This patch alloc a separate work-queue for write-back thread to avoid such race. (Commit log re-organized by Coly Li to pass checkpatch.pl checking) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Acked-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-27bcache: correct cache_dirty_target in __update_writeback_rate()Tang Junhui1-1/+2
commit a8394090a9129b40f9d90dcb7f4a49d60c727ca6 upstream. __update_write_rate() uses a Proportion-Differentiation Controller algorithm to control writeback rate. A dirty target number is used in this PD controller to control writeback rate. A larger target number will make the writeback rate smaller, on the versus, a smaller target number will make the writeback rate larger. bcache uses the following steps to calculate the target number, 1) cache_sectors = all-buckets-of-cache-set * buckets-size 2) cache_dirty_target = cache_sectors * cached-device-writeback_percent 3) target = cache_dirty_target * (sectors-of-cached-device/sectors-of-all-cached-devices-of-this-cache-set) The calculation at step 1) for cache_sectors is incorrect, which does not consider dirty blocks occupied by flash only volume. A flash only volume can be took as a bcache device without cached device. All data sectors allocated for it are persistent on cache device and marked dirty, they are not touched by bcache writeback and garbage collection code. So data blocks of flash only volume should be ignore when calculating cache_sectors of cache set. Current code does not subtract dirty sectors of flash only volume, which results a larger target number from the above 3 steps. And in sequence the cache device's writeback rate is smaller then a correct value, writeback speed is slower on all cached devices. This patch fixes the incorrect slower writeback rate by subtracting dirty sectors of flash only volumes in __update_writeback_rate(). (Commit log composed by Coly Li to pass checkpatch.pl checking) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-27bcache: initialize dirty stripes in flash_dev_run()Tang Junhui1-4/+4
commit 175206cf9ab63161dec74d9cd7f9992e062491f5 upstream. bcache uses a Proportion-Differentiation Controller algorithm to control writeback rate to cached devices. In the PD controller algorithm, dirty stripes of thin flash device should not be counted in, because flash only volumes never write back dirty data. Currently dirty stripe counter for thin flash device is not initialized when the thin flash device starts. Which means the following calculation in PD controller will reference an undefined dirty stripes number, and all cached devices attached to the same cache set where the thin flash device lies on may have an inaccurate writeback rate. This patch calles bch_sectors_dirty_init() in flash_dev_run(), to correctly initialize dirty stripe counter when the thin flash device starts to run. This patch also does following parameter data type change, -void bch_sectors_dirty_init(struct cached_dev *dc); +void bch_sectors_dirty_init(struct bcache_device *); to call this function conveniently in flash_dev_run(). (Commit log is composed by Coly Li) Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-09-22block: export bio_free_pages to other modulesGuoqing Jiang1-4/+1
bio_free_pages is introduced in commit 1dfa0f68c040 ("block: add a helper to free bio bounce buffer pages"), we can reuse the func in other modules after it was imported. Cc: Christoph Hellwig <hch@infradead.org> Cc: Jens Axboe <axboe@fb.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Shaohua Li <shli@fb.com> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Acked-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-07bcache: use bio op accessorsMike Christie1-2/+2
Separate the op from the rq_flag_bits and have bcache set/get the bio using bio_set_op_attrs/bio_op. Signed-off-by: Mike Christie <mchristi@redhat.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-05-24bcache: bch_writeback_thread() is not freezableJiri Kosina1-3/+0
bch_writeback_thread() is calling try_to_freeze(), but that's just an expensive no-op given the fact that the thread is not marked freezable. I/O helper kthreads, exactly such as the bcache writeback thread, actually shouldn't be freezable, because they are potentially necessary for finalizing the image write-out. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-12-31bcache: Change refill_dirty() to always scan entire disk if necessaryKent Overstreet1-7/+30
Previously, it would only scan the entire disk if it was starting from the very start of the disk - i.e. if the previous scan got to the end. This was broken by refill_full_stripes(), which updates last_scanned so that refill_dirty was never triggering the searched_from_start path. But if we change refill_dirty() to always scan the entire disk if necessary, regardless of what last_scanned was, the code gets cleaner and we fix that bug too. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13bcache: remove driver private bio splitting codeKent Overstreet1-2/+2
The bcache driver has always accepted arbitrarily large bios and split them internally. Now that every driver must accept arbitrarily large bios this code isn't nessecary anymore. Cc: linux-bcache@vger.kernel.org Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> [dpark: add more description in commit message] Signed-off-by: Dongsu Park <dpark@posteo.net> Signed-off-by: Ming Lin <ming.l@ssi.samsung.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-07-29block: add a bi_error field to struct bioChristoph Hellwig1-5/+5
Currently we have two different ways to signal an I/O error on a BIO: (1) by clearing the BIO_UPTODATE flag (2) by returning a Linux errno value to the bi_end_io callback The first one has the drawback of only communicating a single possible error (-EIO), and the second one has the drawback of not beeing persistent when bios are queued up, and are not passed along from child to parent bio in the ever more popular chaining scenario. Having both mechanisms available has the additional drawback of utterly confusing driver authors and introducing bugs where various I/O submitters only deal with one of them, and the others have to add boilerplate code to deal with both kinds of error returns. So add a new bi_error field to store an errno value directly in struct bio and remove the existing mechanisms to clean all this up. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-08-05bcache: fix uninterruptible sleep in writeback threadSlava Pestov1-4/+10
There were two issues here: - writeback thread did not start until the device first became dirty - writeback thread used uninterruptible sleep once running Without this patch I see kernel warnings printed and a load average of 1.52 after booting my test VM. With this patch the warnings are gone and the load average is near 0.00 as expected. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-31Merge tag 'v3.13-rc6' into for-3.14/coreJens Axboe1-28/+25
Needed to bring blk-mq uptodate, since changes have been going in since for-3.14/core was established. Fixup merge issues related to the immutable biovec changes. Signed-off-by: Jens Axboe <axboe@kernel.dk> Conflicts: block/blk-flush.c fs/btrfs/check-integrity.c fs/btrfs/extent_io.c fs/btrfs/scrub.c fs/logfs/dev_bdev.c
2013-12-17bcache: New writeback PD controllerKent Overstreet1-24/+23
The old writeback PD controller could get into states where it had throttled all the way down and take way too long to recover - it was too complicated to really understand what it was doing. This rewrites a good chunk of it to hopefully be simpler and make more sense, and it also pays more attention to units which should make the behaviour a bit easier to understand. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-17bcache: Use uninterruptible sleep in writebackKent Overstreet1-2/+2
We're just waiting on kthread_should_stop(), nothing else, so interruptible sleep was wrong here. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-12-17bcache: kthread don't set writeback task to INTERUPTIBLEStefan Priebe1-2/+0
at the beginning (schedule_timout_interuptible) and others do his on their own This prevents wrong load average calculation (load of 1 per thread) Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-24block: Abstract out bvec iteratorKent Overstreet1-3/+3
Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-11-11bcache: Fix sysfs splat on shutdown with flash only devsKent Overstreet1-3/+3
Whoops. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Better full stripe scanningKent Overstreet1-38/+56
The old scanning-by-stripe code burned too much CPU, this should be better. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Convert bch_btree_insert() to bch_btree_map_leaf_nodes()Kent Overstreet1-4/+2
Last of the btree_map() conversions. Main visible effect is bch_btree_insert() is no longer taking a struct btree_op as an argument anymore - there's no fancy state machine stuff going on, it's just a normal function. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Don't use op->insert_collisionKent Overstreet1-3/+4
When we convert bch_btree_insert() to bch_btree_map_leaf_nodes(), we won't be passing struct btree_op to bch_btree_insert() anymore - so we need a different way of returning whether there was a collision (really, a replace collision). Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Kill op->replaceKent Overstreet1-6/+4
This is prep work for converting bch_btree_insert to bch_btree_map_leaf_nodes() - we have to convert all its arguments to actual arguments. Bunch of churn, but should be straightforward. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Kill op->clKent Overstreet1-3/+2
This isn't used for waiting asynchronously anymore - so this is a fairly trivial refactoring. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Prune struct btree_opKent Overstreet1-5/+12
Eventual goal is for struct btree_op to contain only what is necessary for traversing the btree. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Add btree_map() functionsKent Overstreet1-24/+13
Lots of stuff has been open coding its own btree traversal - which is generally pretty simple code, but there are a few subtleties. This adds new new functions, bch_btree_map_nodes() and bch_btree_map_keys(), which do the traversal for you. Everything that's open coding btree traversal now (with the exception of garbage collection) is slowly going to be converted to these two functions; being able to write other code at a higher level of abstraction is a big improvement w.r.t. overall code quality. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Convert writeback to a kthreadKent Overstreet1-197/+174
This simplifies the writeback flow control quite a bit - previously, it was conceptually two coroutines, refill_dirty() and read_dirty(). This makes the code quite a bit more straightforward. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Move keylist out of btree_opKent Overstreet1-2/+5
Slowly working on pruning struct btree_op - the aim is for it to only contain things that are actually necessary for traversing the btree. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Add explicit keylist arg to btree_insert()Kent Overstreet1-1/+1
Some refactoring - better to explicitly pass stuff around instead of having it all in the "big bag of state", struct btree_op. Going to prune struct btree_op quite a bit over time. Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-11-11bcache: Stripe size isn't necessarily a power of twoKent Overstreet1-16/+17
Originally I got this right... except that the divides didn't use do_div(), which broke 32 bit kernels. When I went to fix that, I forgot that the raid stripe size usually isn't a power of two... doh Signed-off-by: Kent Overstreet <kmo@daterainc.com>
2013-09-25bcache: Fix a dumb CPU spinning bug in writebackKent Overstreet1-2/+1
schedule_timeout() != schedule_timeout_uninterruptible() Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-25bcache: Fix a writeback performance regressionKent Overstreet1-22/+21
Background writeback works by scanning the btree for dirty data and adding those keys into a fixed size buffer, then for each dirty key in the keybuf writing it to the backing device. When read_dirty() finishes and it's time to scan for more dirty data, we need to wait for the outstanding writeback IO to finish - they still take up slots in the keybuf (so that foreground writes can check for them to avoid races) - without that wait, we'll continually rescan when we'll be able to add at most a key or two to the keybuf, and that takes locks that starves foreground IO. Doh. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-02bcache: Use standard utility codeKent Overstreet1-3/+4
Some of bcache's utility code has made it into the rest of the kernel, so drop the bcache versions. Bcache used to have a workaround for allocating from a bio set under generic_make_request() (if you allocated more than once, the bios you already allocated would get stuck on current->bio_list when you submitted, and you'd risk deadlock) - bcache would mask out __GFP_WAIT when allocating bios under generic_make_request() so that allocation could fail and it could retry from workqueue. But bio_alloc_bioset() has a workaround now, so we can drop this hack and the associated error handling. Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-06-27bcache: Write out full stripesKent Overstreet1-2/+42
Now that we're tracking dirty data per stripe, we can add two optimizations for raid5/6: * If a stripe is already dirty, force writes to that stripe to writeback mode - to help build up full stripes of dirty data * When flushing dirty data, preferentially write out full stripes first if there are any. Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-06-27bcache: Track dirty data by stripeKent Overstreet1-6/+34
To make background writeback aware of raid5/6 stripes, we first need to track the amount of dirty data within each stripe - we do this by breaking up the existing sectors_dirty into per stripe atomic_ts Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-06-27bcache: Initialize sectors_dirty when attachingKent Overstreet1-0/+36
Previously, dirty_data wouldn't get initialized until the first garbage collection... which was a bit of a problem for background writeback (as the PD controller keys off of it) and also confusing for users. This is also prep work for making background writeback aware of raid5/6 stripes. Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-06-27bcache: Fix/revamp tracepointsKent Overstreet1-4/+6
The tracepoints were reworked to be more sensible, and fixed a null pointer deref in one of the tracepoints. Converted some of the pr_debug()s to tracepoints - this is partly a performance optimization; it used to be that with DEBUG or CONFIG_DYNAMIC_DEBUG pr_debug() was an empty macro; but at some point it was changed to an empty inline function. Some of the pr_debug() statements had rather expensive function calls as part of the arguments, so this code was getting run unnecessarily even on non debug kernels - in some fast paths, too. Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-05-15bcache: Fix error handling in init codeKent Overstreet1-1/+1
This code appears to have rotted... fix various bugs and do some refactoring. Signed-off-by: Kent Overstreet <koverstreet@google.com>
2013-03-28bcache: Don't export utility code, prefix with bch_Kent Overstreet1-3/+3
Signed-off-by: Kent Overstreet <koverstreet@google.com> Cc: linux-bcache@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-03-24bcache: A block layer cacheKent Overstreet1-0/+414
Does writethrough and writeback caching, handles unclean shutdown, and has a bunch of other nifty features motivated by real world usage. See the wiki at http://bcache.evilpiepirate.org for more. Signed-off-by: Kent Overstreet <koverstreet@google.com>