Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit baf8fb7e0e5ec54ea0839f0c534f2cdcd79bea9c ]
Arraies bcache->stripe_sectors_dirty and bcache->full_dirty_stripes are
used for dirty data writeback, their sizes are decided by backing device
capacity and stripe size. Larger backing device capacity or smaller
stripe size make these two arraies occupies more dynamic memory space.
Currently bcache->stripe_size is directly inherited from
queue->limits.io_opt of underlying storage device. For normal hard
drives, its limits.io_opt is 0, and bcache sets the corresponding
stripe_size to 1TB (1<<31 sectors), it works fine 10+ years. But for
devices do declare value for queue->limits.io_opt, small stripe_size
(comparing to 1TB) becomes an issue for oversize memory allocations of
bcache->stripe_sectors_dirty and bcache->full_dirty_stripes, while the
capacity of hard drives gets much larger in recent decade.
For example a raid5 array assembled by three 20TB hardrives, the raid
device capacity is 40TB with typical 512KB limits.io_opt. After the math
calculation in bcache code, these two arraies will occupy 400MB dynamic
memory. Even worse Andrea Tomassetti reports that a 4KB limits.io_opt is
declared on a new 2TB hard drive, then these two arraies request 2GB and
512MB dynamic memory from kzalloc(). The result is that bcache device
always fails to initialize on his system.
To avoid the oversize memory allocation, bcache->stripe_size should not
directly inherited by queue->limits.io_opt from the underlying device.
This patch defines BCH_MIN_STRIPE_SZ (4MB) as minimal bcache stripe size
and set bcache device's stripe size against the declared limits.io_opt
value from the underlying storage device,
- If the declared limits.io_opt > BCH_MIN_STRIPE_SZ, bcache device will
set its stripe size directly by this limits.io_opt value.
- If the declared limits.io_opt < BCH_MIN_STRIPE_SZ, bcache device will
set its stripe size by a value multiplying limits.io_opt and euqal or
large than BCH_MIN_STRIPE_SZ.
Then the minimal stripe size of a bcache device will always be >= 4MB.
For a 40TB raid5 device with 512KB limits.io_opt, memory occupied by
bcache->stripe_sectors_dirty and bcache->full_dirty_stripes will be 50MB
in total. For a 2TB hard drive with 4KB limits.io_opt, memory occupied
by these two arraies will be 2.5MB in total.
Such mount of memory allocated for bcache->stripe_sectors_dirty and
bcache->full_dirty_stripes is reasonable for most of storage devices.
Reported-by: Andrea Tomassetti <andrea.tomassetti-opensource@devo.com>
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Eric Wheeler <bcache@lists.ewheeler.net>
Link: https://lore.kernel.org/r/20231120052503.6122-2-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit afe78ab46f638ecdf80a35b122ffc92c20d9ae5d upstream.
This is potentially long running and not latency sensitive, let's get
it out of the way of other latency sensitive events.
As observed in the previous commit, the `system_wq` comes easily
congested by bcache, and this fixes a few more stalls I was observing
every once in a while.
Let's not make this `WQ_MEM_RECLAIM` as it showed to reduce performance
of boot and file system operations in my tests. Also, without
`WQ_MEM_RECLAIM`, I no longer see desktop stalls. This matches the
previous behavior as `system_wq` also does no memory reclaim:
> // workqueue.c:
> system_wq = alloc_workqueue("events", 0, 0);
Cc: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org # 5.4+
Signed-off-by: Kai Krakow <kai@kaishome.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9f233ffe02e5cef611100cd8c5bcf4de26ca7bef upstream.
This reverts commit 56b30770b27d54d68ad51eccc6d888282b568cee.
With the btree using the `system_wq`, I seem to see a lot more desktop
latency than I should.
After some more investigation, it looks like the original assumption
of 56b3077 no longer is true, and bcache has a very high potential of
congesting the `system_wq`. In turn, this introduces laggy desktop
performance, IO stalls (at least with btrfs), and input events may be
delayed.
So let's revert this. It's important to note that the semantics of
using `system_wq` previously mean that `btree_io_wq` should be created
before and destroyed after other bcache wqs to keep the same
assumptions.
Cc: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org # 5.4+
Signed-off-by: Kai Krakow <kai@kaishome.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Since bcache code was merged into mainline kerrnel, each cache set only
as one single cache in it. The multiple caches framework is here but the
code is far from completed. Considering the multiple copies of cached
data can also be stored on e.g. md raid1 devices, it is unnecessary to
support multiple caches in one cache set indeed.
The previous preparation patches fix the dependencies of explicitly
making a cache set only have single cache. Now we don't have to maintain
an embedded partial super block in struct cache_set, the in-memory super
block can be directly referenced from struct cache.
This patch removes the embedded struct cache_sb from struct cache_set,
and fixes all locations where the superb lock was referenced from this
removed super block by referencing the in-memory super block of struct
cache.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Because struct cache_set and struct cache both have struct cache_sb,
macro bucket_bytes() currently are used on both of them. When removing
the embedded struct cache_sb from struct cache_set, this macro won't be
used on struct cache_set anymore.
This patch unifies all bucket_bytes() usage only on struct cache, this is
one of the preparation to remove the embedded struct cache_sb from
struct cache_set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
It seems alloc_bucket_pages() is the only user of bucket_pages().
Considering alloc_bucket_pages() is removed from bcache code, it is safe
to remove the useless macro bucket_pages() now.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Because struct cache_set and struct cache both have struct cache_sb,
therefore macro block_bytes() can be used on both of them. When removing
the embedded struct cache_sb from struct cache_set, this macro won't be
used on struct cache_set anymore.
This patch unifies all block_bytes() usage only on struct cache, this is
one of the preparation to remove the embedded struct cache_sb from
struct cache_set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch adds a separated set_uuid[16] in struct cache_set, to store
the uuid of the cache set. This is the preparation to remove the
embedded struct cache_sb from struct cache_set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Since now each cache_set explicitly has single cache, for_each_cache()
is unnecessary. This patch removes this macro, and update all locations
where it is used, and makes sure all code logic still being consistent.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently although the bcache code has a framework for multiple caches
in a cache set, but indeed the multiple caches never completed and users
use md raid1 for multiple copies of the cached data.
This patch does the following change in struct cache_set, to explicitly
make a cache_set only have single cache,
- Change pointer array "*cache[MAX_CACHES_PER_SET]" to a single pointer
"*cache".
- Remove pointer array "*cache_by_alloc[MAX_CACHES_PER_SET]".
- Remove "caches_loaded".
Now the code looks as exactly what it does in practic: only one cache is
used in the cache set.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The parameter 'int n' from bch_bucket_alloc_set() is not cleared
defined. From the code comments n is the number of buckets to alloc, but
from the code itself 'n' is the maximum cache to iterate. Indeed all the
locations where bch_bucket_alloc_set() is called, 'n' is alwasy 1.
This patch removes the confused and unnecessary 'int n' from parameter
list of bch_bucket_alloc_set(), and explicitly allocates only 1 bucket
for its caller.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
> 8MB
Similar to c->uuids, struct cache's prio_buckets and disk_buckets also
have the potential memory allocation failure during cache registration
if the bucket size > 8MB.
ca->prio_buckets can be stored on cache device in multiple buckets, its
in-memory space is allocated by kzalloc() interface but normally
allocated by alloc_pages() because the size > KMALLOC_MAX_CACHE_SIZE.
So allocation of ca->prio_buckets has the MAX_ORDER restriction too. If
the bucket size > 8MB, by default the page allocator will fail because
the page order > 11 (default MAX_ORDER value). ca->prio_buckets should
also use meta_bucket_bytes(), meta_bucket_pages() to decide its memory
size and use alloc_meta_bucket_pages() to allocate pages, to avoid the
allocation failure during cache set registration when bucket size > 8MB.
ca->disk_buckets is a single bucket size memory buffer, it is used to
iterate each bucket of ca->prio_buckets, and compose the bio based on
memory of ca->disk_buckets, then write ca->disk_buckets memory to cache
disk one-by-one for each bucket of ca->prio_buckets. ca->disk_buckets
should have in-memory size exact to the meta_bucket_pages(), this is the
size that ca->prio_buckets will be stored into each on-disk bucket.
This patch fixes the above issues and handle cache's prio_buckets and
disk_buckets properly for bucket size larger than 8MB.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently the in-memory meta data like c->uuids or c->disk_buckets
are allocated by alloc_bucket_pages(). The macro alloc_bucket_pages()
calls __get_free_pages() to allocated continuous pages with order
indicated by ilog2(bucket_pages(c)),
#define alloc_bucket_pages(gfp, c) \
((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
The maximum order is defined as MAX_ORDER, the default value is 11 (and
can be overwritten by CONFIG_FORCE_MAX_ZONEORDER). In bcache code the
maximum bucket size width is 16bits, this is restricted both by KEY_SIZE
size and bucket_size size from struct cache_sb_disk. The maximum 16bits
width and power-of-2 value is (1<<15) in unit of sector (512byte). It
means the maximum value of bucket size in bytes is (1<<24) bytes a.k.a
4096 pages.
When the bucket size is set to maximum permitted value, ilog2(4096) is
12, which exceeds the default maximum order __get_free_pages() can
accepted, the failed pages allocation will fail cache set registration
procedure and print a kernel oops message for the exceeded pages order.
This patch introduces meta_bucket_pages(), meta_bucket_bytes(), and
alloc_bucket_pages() helper routines. meta_bucket_pages() indicates the
maximum pages can be allocated to meta data bucket, meta_bucket_bytes()
indicates the according maximum bytes, and alloc_bucket_pages() does
the pages allocation for meta bucket. Because meta_bucket_pages()
chooses the smaller value among the bucket size and MAX_ORDER_NR_PAGES,
it still works when MAX_ORDER overwritten by CONFIG_FORCE_MAX_ZONEORDER.
Following patches will use these helper routines to decide maximum pages
can be allocated for different meta data buckets. If the bucket size is
larger than meta_bucket_bytes(), the bcache registration can continue to
success, just the space more than meta_bucket_bytes() inside the bucket
is wasted. Comparing bcache failed for large bucket size, wasting some
space for meta data buckets is acceptable at this moment.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
offset_to_stripe() returns the stripe number (in type unsigned int) from
an offset (in type uint64_t) by the following calculation,
do_div(offset, d->stripe_size);
For large capacity backing device (e.g. 18TB) with small stripe size
(e.g. 4KB), the result is 4831838208 and exceeds UINT_MAX. The actual
returned value which caller receives is 536870912, due to the overflow.
Indeed in bcache_device_init(), bcache_device->nr_stripes is limited in
range [1, INT_MAX]. Therefore all valid stripe numbers in bcache are
in range [0, bcache_dev->nr_stripes - 1].
This patch adds a upper limition check in offset_to_stripe(): the max
valid stripe number should be less than bcache_device->nr_stripes. If
the calculated stripe number from do_div() is equal to or larger than
bcache_device->nr_stripe, -EINVAL will be returned. (Normally nr_stripes
is less than INT_MAX, exceeding upper limitation doesn't mean overflow,
therefore -EOVERFLOW is not used as error code.)
This patch also changes nr_stripes' type of struct bcache_device from
'unsigned int' to 'int', and return value type of offset_to_stripe()
from 'unsigned int' to 'int', to match their exact data ranges.
All locations where bcache_device->nr_stripes and offset_to_stripe() are
referenced also get updated for the above type change.
Reported-and-tested-by: Ken Raeburn <raeburn@redhat.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1783075
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
generic_make_request has always been very confusingly misnamed, so rename
it to submit_bio_noacct to make it clear that it is submit_bio minus
accounting and a few checks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Remove the trailing newline from the define of pr_fmt and add newlines
to the uses.
Miscellanea:
o Convert bch_bkey_dump from multiple uses of pr_err to pr_cont
as the earlier conversion was inappropriate done causing multiple
lines to be emitted where only a single output line was desired
o Use vsprintf extension %pV in bch_cache_set_error to avoid multiple
line output where only a single line output was desired
o Coalesce formats
Fixes: 6ae63e3501c4 ("bcache: replace printk() by pr_*() routines")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In year 2007 high performance SSD was still expensive, in order to
save more space for real workload or meta data, the readahead I/Os
for non-meta data was bypassed and not cached on SSD.
In now days, SSD price drops a lot and people can find larger size
SSD with more comfortable price. It is unncessary to alway bypass
normal readahead I/Os to save SSD space for now.
This patch adds options for readahead data cache policies via sysfs
file /sys/block/bcache<N>/readahead_cache_policy, the options are,
- "all": cache all readahead data I/Os.
- "meta-only": only cache meta data, and bypass other regular I/Os.
If users want to make bcache continue to only cache readahead request
for metadata and bypass regular data readahead, please set "meta-only"
to this sysfs file. By default, bcache will back to cache all read-
ahead requests now.
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Acked-by: Eric Wheeler <bcache@linux.ewheeler.net>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This allows to properly build the superblock bio including the offset in
the page using the normal bio helpers. This fixes writing the superblock
for page sizes larger than 4k where the sb write bio would need an offset
in the bio_vec.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
For writeback mode, if there is no regular I/O request for a while,
the writeback rate will be set to the maximum value (1TB/s for now).
This is good for most of the storage workload, but there are still
people don't what the maximum writeback rate in I/O idle time.
This patch adds a sysfs interface file idle_max_writeback_rate to
permit people to disable maximum writeback rate. Then the minimum
writeback rate can be advised by writeback_rate_minimum in the
bcache device's sysfs interface.
Reported-by: Christian Balzer <chibi@gol.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
bcache_allocator can call the following:
bch_allocator_thread()
-> bch_prio_write()
-> bch_bucket_alloc()
-> wait on &ca->set->bucket_wait
But the wake up event on bucket_wait is supposed to come from
bch_allocator_thread() itself => deadlock:
[ 1158.490744] INFO: task bcache_allocato:15861 blocked for more than 10 seconds.
[ 1158.495929] Not tainted 5.3.0-050300rc3-generic #201908042232
[ 1158.500653] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 1158.504413] bcache_allocato D 0 15861 2 0x80004000
[ 1158.504419] Call Trace:
[ 1158.504429] __schedule+0x2a8/0x670
[ 1158.504432] schedule+0x2d/0x90
[ 1158.504448] bch_bucket_alloc+0xe5/0x370 [bcache]
[ 1158.504453] ? wait_woken+0x80/0x80
[ 1158.504466] bch_prio_write+0x1dc/0x390 [bcache]
[ 1158.504476] bch_allocator_thread+0x233/0x490 [bcache]
[ 1158.504491] kthread+0x121/0x140
[ 1158.504503] ? invalidate_buckets+0x890/0x890 [bcache]
[ 1158.504506] ? kthread_park+0xb0/0xb0
[ 1158.504510] ret_from_fork+0x35/0x40
Fix by making the call to bch_prio_write() non-blocking, so that
bch_allocator_thread() never waits on itself.
Moreover, make sure to wake up the garbage collector thread when
bch_prio_write() is failing to allocate buckets.
BugLink: https://bugs.launchpad.net/bugs/1784665
BugLink: https://bugs.launchpad.net/bugs/1796292
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch fix a lost wake-up problem caused by the race between
mca_cannibalize_lock and bch_cannibalize_unlock.
Consider two processes, A and B. Process A is executing
mca_cannibalize_lock, while process B takes c->btree_cache_alloc_lock
and is executing bch_cannibalize_unlock. The problem happens that after
process A executes cmpxchg and will execute prepare_to_wait. In this
timeslice process B executes wake_up, but after that process A executes
prepare_to_wait and set the state to TASK_INTERRUPTIBLE. Then process A
goes to sleep but no one will wake up it. This problem may cause bcache
device to dead.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Now we have counters for how many times jouranl is reclaimed, how many
times cached dirty btree nodes are flushed, but we don't know how many
jouranl buckets are really reclaimed.
This patch adds reclaimed_journal_buckets into struct cache_set, this
is an increasing only counter, to tell how many journal buckets are
reclaimed since cache set runs. From all these three counters (reclaim,
reclaimed_journal_buckets, flush_write), we can have idea how well
current journal space reclaim code works.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In struct cache_set, retry_flush_write is added for commit c4dc2497d50d
("bcache: fix high CPU occupancy during journal") which is reverted in
previous patch.
Now it is useless anymore, and this patch removes it from bcache code.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This reverts commit c4dc2497d50d9c6fb16aa0d07b6a14f3b2adb1e0.
This patch enlarges a race between normal btree flush code path and
flush_btree_write(), which causes deadlock when journal space is
exhausted. Reverts this patch makes the race window from 128 btree
nodes to only 1 btree nodes.
Fixes: c4dc2497d50d ("bcache: fix high CPU occupancy during journal")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch adds return value check to bch_cached_dev_run(), now if there
is error happens inside bch_cached_dev_run(), it can be catched.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The option gc_after_writeback is disabled by default, because garbage
collection will discard SSD data which drops cached data.
Echo 1 into /sys/fs/bcache/<UUID>/internal/gc_after_writeback will
enable this option, which wakes up gc thread when writeback accomplished
and all cached data is clean.
This option is helpful for people who cares writing performance more. In
heavy writing workload, all cached data can be clean only happens when
writeback thread cleans all cached data in I/O idle time. In such
situation a following gc running may help to shrink bcache B+ tree and
discard more clean data, which may be helpful for future writing
requests.
If you are not sure whether this is helpful for your own workload,
please leave it as disabled by default.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
We have the following define for btree iterator:
struct btree_iter {
size_t size, used;
#ifdef CONFIG_BCACHE_DEBUG
struct btree_keys *b;
#endif
struct btree_iter_set {
struct bkey *k, *end;
} data[MAX_BSETS];
};
We can see that the length of data[] field is static MAX_BSETS, which is
defined as 4 currently.
But a btree node on disk could have too many bsets for an iterator to fit
on the stack - maybe far more that MAX_BSETS. Have to dynamically allocate
space to host more btree_iter_sets.
bch_cache_set_alloc() will make sure the pool cache_set->fill_iter can
allocate an iterator equipped with enough room that can host
(sb.bucket_size / sb.block_size)
btree_iter_sets, which is more than static MAX_BSETS.
bch_btree_node_read_done() will use that pool to allocate one iterator, to
host many bsets in one btree node.
Add more comment around cache_set->fill_iter to make code less confusing.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Parameter "struct kobject *kobj" in bch_debug_init() is useless,
remove it in this patch.
Signed-off-by: Dongbo Cao <cdbdyx@163.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
After write SSD completed, bcache schedules journal_write work to
system_wq, which is a public workqueue in system, without WQ_MEM_RECLAIM
flag. system_wq is also a bound wq, and there may be no idle kworker on
current processor. Creating a new kworker may unfortunately need to
reclaim memory first, by shrinking cache and slab used by vfs, which
depends on bcache device. That's a deadlock.
This patch create a new workqueue for journal_write with WQ_MEM_RECLAIM
flag. It's rescuer thread will work to avoid the deadlock.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This is warned by checkpatch.pl, this patch removes the extra space.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Symbolic permission names are used in bcache, for now octal permission
numbers are encouraged to use for readability. This patch replaces
all symbolic permissions by octal permission numbers.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There are many function definitions do not have identifier argument names,
scripts/checkpatch.pl complains warnings like this,
WARNING: function definition argument 'struct bcache_device *' should
also have an identifier name
#16735: FILE: writeback.h:120:
+void bch_sectors_dirty_init(struct bcache_device *);
This patch adds identifier argument names to all bcache function
definitions to fix such warnings.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Commit b1092c9af9ed ("bcache: allow quick writeback when backing idle")
allows the writeback rate to be faster if there is no I/O request on a
bcache device. It works well if there is only one bcache device attached
to the cache set. If there are many bcache devices attached to a cache
set, it may introduce performance regression because multiple faster
writeback threads of the idle bcache devices will compete the btree level
locks with the bcache device who have I/O requests coming.
This patch fixes the above issue by only permitting fast writebac when
all bcache devices attached on the cache set are idle. And if one of the
bcache devices has new I/O request coming, minimized all writeback
throughput immediately and let PI controller __update_writeback_rate()
to decide the upcoming writeback rate for each bcache device.
Also when all bcache devices are idle, limited wrieback rate to a small
number is wast of thoughput, especially when backing devices are slower
non-rotation devices (e.g. SATA SSD). This patch sets a max writeback
rate for each backing device if the whole cache set is idle. A faster
writeback rate in idle time means new I/Os may have more available space
for dirty data, and people may observe a better write performance then.
Please note bcache may change its cache mode in run time, and this patch
still works if the cache mode is switched from writeback mode and there
is still dirty data on cache.
Fixes: Commit b1092c9af9ed ("bcache: allow quick writeback when backing idle")
Cc: stable@vger.kernel.org #4.16+
Signed-off-by: Coly Li <colyli@suse.de>
Tested-by: Kai Krakow <kai@kaishome.de>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Cc: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch updates the code comment in struct cache with correct array
names, to make the code to be more comprehensible.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Greg KH suggests that normal code should not care about debugfs. Therefore
no matter successful or failed of debugfs_create_dir() execution, it is
unncessary to check its return value.
There are two functions called debugfs_create_dir() and check the return
value, which are bch_debug_init() and closure_debug_init(). This patch
changes these two functions from int to void type, and ignore return values
of debugfs_create_dir().
This patch does not fix exact bug, just makes things work as they should.
Signed-off-by: Coly Li <colyli@suse.de>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Cc: Kai Krakow <kai@kaishome.de>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In GC thread, we record the latest GC key in gc_done, which is expected
to be used for incremental GC, but in currently code, we didn't realize
it. When GC runs, front side IO would be blocked until the GC over, it
would be a long time if there is a lot of btree nodes.
This patch realizes incremental GC, the main ideal is that, when there
are front side I/Os, after GC some nodes (100), we stop GC, release locker
of the btree node, and go to process the front side I/Os for some times
(100 ms), then go back to GC again.
By this patch, when we doing GC, I/Os are not blocked all the time, and
there is no obvious I/Os zero jump problem any more.
Patch v2: Rename some variables and macros name as Coly suggested.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently we calculate the total amount of flash only devices dirty data
by adding the dirty data of each flash only device under registering
locker. It is very inefficient.
In this patch, we add a member flash_dev_dirty_sectors in struct cache_set
to record the total amount of flash only devices dirty data in real time,
so we didn't need to calculate the total amount of dirty data any more.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Convert bcache to embedded bio sets.
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There is couple of string arrays that are used exclusively in sysfs.c.
Move it to there and make them static.
Besides above, it will allow further clean up.
No functional change intended.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently bcache does not handle backing device failure, if backing
device is offline and disconnected from system, its bcache device can still
be accessible. If the bcache device is in writeback mode, I/O requests even
can success if the requests hit on cache device. That is to say, when and
how bcache handles offline backing device is undefined.
This patch tries to handle backing device offline in a rather simple way,
- Add cached_dev->status_update_thread kernel thread to update backing
device status in every 1 second.
- Add cached_dev->offline_seconds to record how many seconds the backing
device is observed to be offline. If the backing device is offline for
BACKING_DEV_OFFLINE_TIMEOUT (30) seconds, set dc->io_disable to 1 and
call bcache_device_stop() to stop the bache device which linked to the
offline backing device.
Now if a backing device is offline for BACKING_DEV_OFFLINE_TIMEOUT seconds,
its bcache device will be removed, then user space application writing on
it will get error immediately, and handler the device failure in time.
This patch is quite simple, does not handle more complicated situations.
Once the bcache device is stopped, users need to recovery the backing
device, register and attach it manually.
Changelog:
v3: call wait_for_kthread_stop() before exits kernel thread.
v2: remove "bcache: " prefix when calling pr_warn().
v1: initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Current code uses bdevname() or bio_devname() to reference gendisk
disk name when bcache needs to display the disk names in kernel message.
It was safe before bcache device failure handling patch set merged in,
because when devices are failed, there was deadlock to prevent bcache
printing error messages with gendisk disk name. But after the failure
handling patch set merged, the deadlock is fixed, so it is possible
that the gendisk structure bdev->hd_disk is released when bdevname() is
called to reference bdev->bd_disk->disk_name[]. This is why I receive
bug report of NULL pointers deference panic.
This patch stores gendisk disk name in a buffer inside struct cache and
struct cached_dev, then print out the offline device name won't reference
bdev->hd_disk anymore. And this patch also avoids extra function calls
of bdevname() and bio_devnmae().
Changelog:
v3, add Reviewed-by from Hannes.
v2, call bdevname() earlier in register_bdev()
v1, first version with segguestion from Junhui Tang.
Fixes: c7b7bd07404c5 ("bcache: add io_disable to struct cached_dev")
Fixes: 5138ac6748e38 ("bcache: fix misleading error message in bch_count_io_errors()")
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If a bcache device is configured to writeback mode, current code does not
handle write I/O errors on backing devices properly.
In writeback mode, write request is written to cache device, and
latter being flushed to backing device. If I/O failed when writing from
cache device to the backing device, bcache code just ignores the error and
upper layer code is NOT noticed that the backing device is broken.
This patch tries to handle backing device failure like how the cache device
failure is handled,
- Add a error counter 'io_errors' and error limit 'error_limit' in struct
cached_dev. Add another io_disable to struct cached_dev to disable I/Os
on the problematic backing device.
- When I/O error happens on backing device, increase io_errors counter. And
if io_errors reaches error_limit, set cache_dev->io_disable to true, and
stop the bcache device.
The result is, if backing device is broken of disconnected, and I/O errors
reach its error limit, backing device will be disabled and the associated
bcache device will be removed from system.
Changelog:
v2: remove "bcache: " prefix in pr_error(), and use correct name string to
print out bcache device gendisk name.
v1: indeed this is new added in v2 patch set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
When there are too many I/O errors on cache device, current bcache code
will retire the whole cache set, and detach all bcache devices. But the
detached bcache devices are not stopped, which is problematic when bcache
is in writeback mode.
If the retired cache set has dirty data of backing devices, continue
writing to bcache device will write to backing device directly. If the
LBA of write request has a dirty version cached on cache device, next time
when the cache device is re-registered and backing device re-attached to
it again, the stale dirty data on cache device will be written to backing
device, and overwrite latest directly written data. This situation causes
a quite data corruption.
But we cannot simply stop all attached bcache devices when the cache set is
broken or disconnected. For example, use bcache to accelerate performance
of an email service. In such workload, if cache device is broken but no
dirty data lost, keep the bcache device alive and permit email service
continue to access user data might be a better solution for the cache
device failure.
Nix <nix@esperi.org.uk> points out the issue and provides the above example
to explain why it might be necessary to not stop bcache device for broken
cache device. Pavel Goran <via-bcache@pvgoran.name> provides a brilliant
suggestion to provide "always" and "auto" options to per-cached device
sysfs file stop_when_cache_set_failed. If cache set is retiring and the
backing device has no dirty data on cache, it should be safe to keep the
bcache device alive. In this case, if stop_when_cache_set_failed is set to
"auto", the device failure handling code will not stop this bcache device
and permit application to access the backing device with a unattached
bcache device.
Changelog:
[mlyle: edited to not break string constants across lines]
v3: fix typos pointed out by Nix.
v2: change option values of stop_when_cache_set_failed from 1/0 to
"auto"/"always".
v1: initial version, stop_when_cache_set_failed can be 0 (not stop) or 1
(always stop).
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Cc: Nix <nix@esperi.org.uk>
Cc: Pavel Goran <via-bcache@pvgoran.name>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.
Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.
The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.
Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.
A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.
Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
struct delayed_work writeback_rate_update in struct cache_dev is a delayed
worker to call function update_writeback_rate() in period (the interval is
defined by dc->writeback_rate_update_seconds).
When a metadate I/O error happens on cache device, bcache error handling
routine bch_cache_set_error() will call bch_cache_set_unregister() to
retire whole cache set. On the unregister code path, this delayed work is
stopped by calling cancel_delayed_work_sync(&dc->writeback_rate_update).
dc->writeback_rate_update is a special delayed work from others in bcache.
In its routine update_writeback_rate(), this delayed work is re-armed
itself. That means when cancel_delayed_work_sync() returns, this delayed
work can still be executed after several seconds defined by
dc->writeback_rate_update_seconds.
The problem is, after cancel_delayed_work_sync() returns, the cache set
unregister code path will continue and release memory of struct cache set.
Then the delayed work is scheduled to run, __update_writeback_rate()
will reference the already released cache_set memory, and trigger a NULL
pointer deference fault.
This patch introduces two more bcache device flags,
- BCACHE_DEV_WB_RUNNING
bit set: bcache device is in writeback mode and running, it is OK for
dc->writeback_rate_update to re-arm itself.
bit clear:bcache device is trying to stop dc->writeback_rate_update,
this delayed work should not re-arm itself and quit.
- BCACHE_DEV_RATE_DW_RUNNING
bit set: routine update_writeback_rate() is executing.
bit clear: routine update_writeback_rate() quits.
This patch also adds a function cancel_writeback_rate_update_dwork() to
wait for dc->writeback_rate_update quits before cancel it by calling
cancel_delayed_work_sync(). In order to avoid a deadlock by unexpected
quit dc->writeback_rate_update, after time_out seconds this function will
give up and continue to call cancel_delayed_work_sync().
And here I explain how this patch stops self re-armed delayed work properly
with the above stuffs.
update_writeback_rate() sets BCACHE_DEV_RATE_DW_RUNNING at its beginning
and clears BCACHE_DEV_RATE_DW_RUNNING at its end. Before calling
cancel_writeback_rate_update_dwork() clear flag BCACHE_DEV_WB_RUNNING.
Before calling cancel_delayed_work_sync() wait utill flag
BCACHE_DEV_RATE_DW_RUNNING is clear. So when calling
cancel_delayed_work_sync(), dc->writeback_rate_update must be already re-
armed, or quite by seeing BCACHE_DEV_WB_RUNNING cleared. In both cases
delayed work routine update_writeback_rate() won't be executed after
cancel_delayed_work_sync() returns.
Inside update_writeback_rate() before calling schedule_delayed_work(), flag
BCACHE_DEV_WB_RUNNING is checked before. If this flag is cleared, it means
someone is about to stop the delayed work. Because flag
BCACHE_DEV_RATE_DW_RUNNING is set already and cancel_delayed_work_sync()
has to wait for this flag to be cleared, we don't need to worry about race
condition here.
If update_writeback_rate() is scheduled to run after checking
BCACHE_DEV_RATE_DW_RUNNING and before calling cancel_delayed_work_sync()
in cancel_writeback_rate_update_dwork(), it is also safe. Because at this
moment BCACHE_DEV_WB_RUNNING is cleared with memory barrier. As I mentioned
previously, update_writeback_rate() will see BCACHE_DEV_WB_RUNNING is clear
and quit immediately.
Because there are more dependences inside update_writeback_rate() to struct
cache_set memory, dc->writeback_rate_update is not a simple self re-arm
delayed work. After trying many different methods (e.g. hold dc->count, or
use locks), this is the only way I can find which works to properly stop
dc->writeback_rate_update delayed work.
Changelog:
v3: change values of BCACHE_DEV_WB_RUNNING and BCACHE_DEV_RATE_DW_RUNNING
to bit index, for test_bit().
v2: Try to fix the race issue which is pointed out by Junhui.
v1: The initial version for review
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Junhui Tang <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
back-end device sdm has already attached a cache_set with ID
f67ebe1f-f8bc-4d73-bfe5-9dc88607f119, then try to attach with
another cache set, and it returns with an error:
[root]# cd /sys/block/sdm/bcache
[root]# echo 5ccd0a63-148e-48b8-afa2-aca9cbd6279f > attach
-bash: echo: write error: Invalid argument
After that, execute a command to modify the label of bcache
device:
[root]# echo data_disk1 > label
Then we reboot the system, when the system power on, the back-end
device can not attach to cache_set, a messages show in the log:
Feb 5 12:05:52 ceph152 kernel: [922385.508498] bcache:
bch_cached_dev_attach() couldn't find uuid for sdm in set
In sysfs_attach(), dc->sb.set_uuid was assigned to the value
which input through sysfs, no matter whether it is success
or not in bch_cached_dev_attach(). For example, If the back-end
device has already attached to an cache set, bch_cached_dev_attach()
would fail, but dc->sb.set_uuid was changed. Then modify the
label of bcache device, it will call bch_write_bdev_super(),
which would write the dc->sb.set_uuid to the super block, so we
record a wrong cache set ID in the super block, after the system
reboot, the cache set couldn't find the uuid of the back-end
device, so the bcache device couldn't exist and use any more.
In this patch, we don't assigned cache set ID to dc->sb.set_uuid
in sysfs_attach() directly, but input it into bch_cached_dev_attach(),
and assigned dc->sb.set_uuid to the cache set ID after the back-end
device attached to the cache set successful.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Struct cache uses io_errors for two purposes,
- Error decay: when cache set error_decay is set, io_errors is used to
generate a small piece of delay when I/O error happens.
- I/O errors counter: in order to generate big enough value for error
decay, I/O errors counter value is stored by left shifting 20 bits (a.k.a
IO_ERROR_SHIFT).
In function bch_count_io_errors(), if I/O errors counter reaches cache set
error limit, bch_cache_set_error() will be called to retire the whold cache
set. But current code is problematic when checking the error limit, see the
following code piece from bch_count_io_errors(),
90 if (error) {
91 char buf[BDEVNAME_SIZE];
92 unsigned errors = atomic_add_return(1 << IO_ERROR_SHIFT,
93 &ca->io_errors);
94 errors >>= IO_ERROR_SHIFT;
95
96 if (errors < ca->set->error_limit)
97 pr_err("%s: IO error on %s, recovering",
98 bdevname(ca->bdev, buf), m);
99 else
100 bch_cache_set_error(ca->set,
101 "%s: too many IO errors %s",
102 bdevname(ca->bdev, buf), m);
103 }
At line 94, errors is right shifting IO_ERROR_SHIFT bits, now it is real
errors counter to compare at line 96. But ca->set->error_limit is initia-
lized with an amplified value in bch_cache_set_alloc(),
1545 c->error_limit = 8 << IO_ERROR_SHIFT;
It means by default, in bch_count_io_errors(), before 8<<20 errors happened
bch_cache_set_error() won't be called to retire the problematic cache
device. If the average request size is 64KB, it means bcache won't handle
failed device until 512GB data is requested. This is too large to be an I/O
threashold. So I believe the correct error limit should be much less.
This patch sets default cache set error limit to 8, then in
bch_count_io_errors() when errors counter reaches 8 (if it is default
value), function bch_cache_set_error() will be called to retire the whole
cache set. This patch also removes bits shifting when store or show
io_error_limit value via sysfs interface.
Nowadays most of SSDs handle internal flash failure automatically by LBA
address re-indirect mapping. If an I/O error can be observed by upper layer
code, it will be a notable error because that SSD can not re-indirect
map the problematic LBA address to an available flash block. This situation
indicates the whole SSD will be failed very soon. Therefore setting 8 as
the default io error limit value makes sense, it is enough for most of
cache devices.
Changelog:
v2: add reviewed-by from Hannes.
v1: initial version for review.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|