summaryrefslogtreecommitdiff
path: root/drivers/iio/adc/ad7949.c
AgeCommit message (Collapse)AuthorFilesLines
2020-07-13Replace HTTP links with HTTPS ones: drivers/iioAlexander A. Klimov1-1/+1
Rationale: Reduces attack surface on kernel devs opening the links for MITM as HTTPS traffic is much harder to manipulate. Deterministic algorithm: For each file: If not .svg: For each line: If doesn't contain `\bxmlns\b`: For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`: If both the HTTP and HTTPS versions return 200 OK and serve the same content: Replace HTTP with HTTPS. Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-06-14iio: Remove superfluous of_node assignmentsLars-Peter Clausen1-1/+0
If a driver does not assign an of_node to a IIO device to IIO core will automatically assign the of_node of the parent device. This automatic assignment is done in the iio_device_register() function. There is a fair amount of drivers that currently manually assign the of_node of the IIO device. All but 4 of them can make use of the automatic assignment though. The exceptions are: * mxs-lradc-adc: Which uses the of_node of the parent of the parent. * stm32-dfsdm-adc, stm32-adc and stm32-dac: Which reference the of_node assigned to the IIO device before iio_device_register() is called. All other drivers are updated to use automatic assignment. This reduces the amount of boilerplate code involved in setting up the IIO device. The patch has mostly been auto-generated with the following semantic patch // <smpl> @exists@ expression indio_dev; expression parent; @@ indio_dev = \(devm_iio_device_alloc\|iio_device_alloc\)(&parent, ...) ... -indio_dev->dev.of_node = parent.of_node; @exists@ expression indio_dev; expression parent; @@ indio_dev = \(devm_iio_device_alloc\|iio_device_alloc\)(parent, ...) ... -indio_dev->dev.of_node = parent->of_node; // </smpl> Signed-off-by: Lars-Peter Clausen <lars@metafoo.de> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-06-14iio: remove explicit IIO device parent assignmentAlexandru Ardelean1-1/+0
This patch applies the semantic patch: @@ expression I, P, SP; @@ I = devm_iio_device_alloc(P, SP); ... - I->dev.parent = P; It updates 302 files and does 307 deletions. This semantic patch also removes some comments like '/* Establish that the iio_dev is a child of the i2c device */' But this is is only done in case where the block is left empty. The patch does not seem to cover all cases. It looks like in some cases a different variable is used in some cases to assign the parent, but it points to the same reference. In other cases, the block covered by ... may be just too big to be covered by the semantic patch. However, this looks pretty good as well, as it does cover a big bulk of the drivers that should remove the parent assignment. Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-12-08iio: ad7949: fix channels mixupsAndrea Merello1-5/+17
Each time we need to read a sample (from the sysfs interface, since the driver supports only it) the driver writes the configuration register with the proper settings needed to perform the said read, then it runs another xfer to actually read the resulting value. Most notably the configuration register is updated to set the ADC internal MUX depending by which channel the read targets. Unfortunately this seems not enough to ensure correct operation because the ADC works in a pipelined-like fashion and the new configuration isn't applied in time. The ADC alternates two phases: acquisition and conversion. During the acquisition phase the ADC samples the analog signal in an internal capacitor; in the conversion phase the ADC performs the actual analog to digital conversion of the stored voltage. Note that of course the MUX needs to be set to the proper channel when the acquisition phase is performed. Once the conversion phase has been completed, the device automatically switches back to a new acquisition; on the other hand the device switches from acquisition to conversion on the rising edge of SPI cs signal (that is when the xfer finishes). Only after both two phases have been completed (with the proper settings already written in the configuration register since the beginning) it is possible to read the outcome from SPI bus. With the current driver implementation, we end up in the following situation: _______ 1st xfer ____________ 2nd xfer ___________________ SPI cs.. \_________/ \_________/ SPI rd.. idle |(val N-2)+ idle | val N-1 + idle ... SPI wr.. idle | cfg N + idle | (X) + idle ... ------------------------ + -------------------- + ------------------ AD .. acq N-1 + cnv N-1 | acq N + cnv N | acq N+1 As shown in the diagram above, the value we read in the Nth read belongs to configuration setting N-1. In case the configuration is not changed (config[N] == config[N-1]), then we still get correct data, but in case the configuration changes (i.e. switching the MUX on another channel), we get wrong data (data from the previously selected channel). This patch fixes this by performing one more "dummy" transfer in order to ending up in reading the data when it's really ready, as per the following timing diagram. _______ 1st xfer ____________ 2nd xfer ___________ 3rd xfer ___ SPI cs.. \_________/ \_________/ \_________/ SPI rd.. idle |(val N-2)+ idle |(val N-1)+ idle | val N + .. SPI wr.. idle | cfg N + idle | (X) + idle | (X) + .. ------------------------ + -------------------- + ------------------- + -- AD .. acq N-1 + cnv N-1 | acq N + cnv N | acq N+1 | .. NOTE: in the latter case (cfg changes), the acquisition phase for the value to be read begins after the 1st xfer, that is after the read request has been issued on sysfs. On the other hand, if the cfg doesn't change, then we can refer to the fist diagram assuming N == (N - 1); the acquisition phase _begins_ before the 1st xfer (potentially a lot of time before the read has been issued via sysfs, but it _ends_ after the 1st xfer, that is _after_ the read has started. This should guarantee a reasonably fresh data, which value represents the voltage that the sampled signal has after the read start or maybe just around it. Signed-off-by: Andrea Merello <andrea.merello@gmail.com> Reviewed-by: Charles-Antoine Couret <charles-antoine.couret@essensium.com> Cc: <Stable@vger.kernel.org> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-09-21iio: ad7949: fix incorrect SPI xfer lenAndrea Merello1-3/+3
This driver supports 14-bits and 16-bits devices. All of them have a 14-bit configuration registers. All SPI trasfers, for reading AD conversion results and for writing the configuration register, fit in two bytes. The driver always uses 4-bytes xfers which seems at least pointless (maybe even harmful). This patch trims the SPI xfer len and the buffer size to two bytes. Signed-off-by: Andrea Merello <andrea.merello@gmail.com> Reviewed-by: Alexandru Ardelean <alexandru.ardelean@analog.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-09-15iio: ad7949: kill pointless "readback"-handling codeAndrea Merello1-24/+3
The device could be configured to spit out also the configuration word while reading the AD result value (in the same SPI xfer) - this is called "readback" in the device datasheet. The driver checks if readback is enabled and it eventually adjusts the SPI xfer length and it applies proper shifts to still get the data, discarding the configuration word. The readback option is actually never enabled (the driver disables it), so the said checks do not serve for any purpose. Since enabling the readback option seems not to provide any advantage (the driver entirely sets the configuration word without relying on any default value), just kill the said, unused, code. Signed-off-by: Andrea Merello <andrea.merello@gmail.com> Reviewed-by: Alexandru Ardelean <alexandru.ardelean@analog.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2018-11-03iio:adc:ad7949: Add AD7949 ADC driver familyCharles-Antoine Couret1-0/+347
Compatible with AD7682 and AD7689 chips. It is a Analog Devices ADC driver 14/16 bits 4/8 channels with SPI protocol Datasheet of the device: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7949.pdf Signed-off-by: Charles-Antoine Couret <charles-antoine.couret@essensium.com> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>