summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi
AgeCommit message (Collapse)AuthorFilesLines
2015-05-06Merge tag 'efi-urgent' of ↵Ingo Molnar1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent Pull EFI fixes from Matt Fleming: * Avoid garbage names in efivarfs due to buggy firmware by zeroing EFI variable name. (Ross Lagerwall) * Stop erroneously dropping upper 32 bits of boot command line pointer in EFI boot stub and stash them in ext_cmd_line_ptr. (Roy Franz) * Fix double-free bug in error handling code path of EFI runtime map code. (Dan Carpenter) Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-05efi: Fix error handling in add_sysfs_runtime_map_entry()Dan Carpenter1-3/+3
I spotted two (difficult to hit) bugs while reviewing this. 1) There is a double free bug because we unregister "map_kset" in add_sysfs_runtime_map_entry() and also efi_runtime_map_init(). 2) If we fail to allocate "entry" then we should return ERR_PTR(-ENOMEM) instead of NULL. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Dave Young <dyoung@redhat.com> Cc: Guangyu Sun <guangyu.sun@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-04-01efi/libstub: Retrieve FDT size when loaded from UEFI config tableArd Biesheuvel3-6/+10
When allocating memory for the copy of the FDT that the stub modifies and passes to the kernel, it uses the current size as an estimate of how much memory to allocate, and increases it page by page if it turns out to be too small. However, when loading the FDT from a UEFI configuration table, the estimated size is left at its default value of zero, and the allocation loop runs starting from zero all the way up to the allocation size that finally fits the updated FDT. Instead, retrieve the size of the FDT from the FDT header when loading it from the UEFI config table. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Roy Franz <roy.franz@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-03-02Merge tag 'efi-urgent' of ↵Ingo Molnar1-4/+4
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent Pull EFI fixes from Matt Fleming: " - Fix regression in DMI sysfs code for handling "End of Table" entry and a type bug that could lead to integer overflow. (Ivan Khoronzhuk) - Fix boundary checking in efi_high_alloc() which can lead to memory corruption in the EFI boot stubs. (Yinghai Lu)" Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-24efi/libstub: Fix boundary checking in efi_high_alloc()Yinghai Lu1-4/+4
While adding support loading kernel and initrd above 4G to grub2 in legacy mode, I was referring to efi_high_alloc(). That will allocate buffer for kernel and then initrd, and initrd will use kernel buffer start as limit. During testing found two buffers will be overlapped when initrd size is very big like 400M. It turns out efi_high_alloc() boundary checking is not right. end - size will be the new start, and should not compare new start with max, we need to make sure end is smaller than max. [ Basically, with the current efi_high_alloc() code it's possible to allocate memory above 'max', because efi_high_alloc() doesn't check that the tail of the allocation is below 'max'. If you have an EFI memory map with a single entry that looks like so, [0xc0000000-0xc0004000] And want to allocate 0x3000 bytes below 0xc0003000 the current code will allocate [0xc0001000-0xc0004000], not [0xc0000000-0xc0003000] like you would expect. - Matt ] Signed-off-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-02-21Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-10/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull misc x86 fixes from Ingo Molnar: "This contains: - EFI fixes - a boot printout fix - ASLR/kASLR fixes - intel microcode driver fixes - other misc fixes Most of the linecount comes from an EFI revert" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch x86/microcode/intel: Handle truncated microcode images more robustly x86/microcode/intel: Guard against stack overflow in the loader x86, mm/ASLR: Fix stack randomization on 64-bit systems x86/mm/init: Fix incorrect page size in init_memory_mapping() printks x86/mm/ASLR: Propagate base load address calculation Documentation/x86: Fix path in zero-page.txt x86/apic: Fix the devicetree build in certain configs Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes" x86/efi: Avoid triple faults during EFI mixed mode calls
2015-02-18Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"Matt Fleming1-10/+6
This reverts commit d1a8d66b9177105e898e73716f97eb61842c457a. Ard reported a boot failure when running UEFI under Qemu and Xen and experimenting with various Tianocore build options, "As it turns out, when allocating room for the UEFI memory map using UEFI's AllocatePool (), it may result in two new memory map entries being created, for instance, when using Tianocore's preallocated region feature. For example, the following region 0x00005ead5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC] may be split like this 0x00005ead5000-0x00005eae2fff [Conventional Memory| | | | | |WB|WT|WC|UC] 0x00005eae3000-0x00005eae4fff [Loader Data | | | | | |WB|WT|WC|UC] 0x00005eae5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC] if the preallocated Loader Data region was chosen to be right in the middle of the original free space. After patch d1a8d66b9177 ("efi/libstub: Call get_memory_map() to obtain map and desc sizes"), this is not being dealt with correctly anymore, as the existing logic to allocate room for a single additional entry has become insufficient." Mark requested to reinstate the old loop we had before commit d1a8d66b9177, which grows the memory map buffer until it's big enough to hold the EFI memory map. Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-02-14x86_64: kasan: add interceptors for memset/memmove/memcpy functionsAndrey Ryabinin1-0/+4
Recently instrumentation of builtin functions calls was removed from GCC 5.0. To check the memory accessed by such functions, userspace asan always uses interceptors for them. So now we should do this as well. This patch declares memset/memmove/memcpy as weak symbols. In mm/kasan/kasan.c we have our own implementation of those functions which checks memory before accessing it. Default memset/memmove/memcpy now now always have aliases with '__' prefix. For files that built without kasan instrumentation (e.g. mm/slub.c) original mem* replaced (via #define) with prefixed variants, cause we don't want to check memory accesses there. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14kasan: add kernel address sanitizer infrastructureAndrey Ryabinin1-0/+1
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It provides fast and comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-time instrumentation for checking every memory access, therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with putting symbol aliases into the wrong section, which breaks kasan instrumentation of globals. This patch only adds infrastructure for kernel address sanitizer. It's not available for use yet. The idea and some code was borrowed from [1]. Basic idea: The main idea of KASAN is to use shadow memory to record whether each byte of memory is safe to access or not, and use compiler's instrumentation to check the shadow memory on each memory access. Address sanitizer uses 1/8 of the memory addressable in kernel for shadow memory and uses direct mapping with a scale and offset to translate a memory address to its corresponding shadow address. Here is function to translate address to corresponding shadow address: unsigned long kasan_mem_to_shadow(unsigned long addr) { return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET; } where KASAN_SHADOW_SCALE_SHIFT = 3. So for every 8 bytes there is one corresponding byte of shadow memory. The following encoding used for each shadow byte: 0 means that all 8 bytes of the corresponding memory region are valid for access; k (1 <= k <= 7) means that the first k bytes are valid for access, and other (8 - k) bytes are not; Any negative value indicates that the entire 8-bytes are inaccessible. Different negative values used to distinguish between different kinds of inaccessible memory (redzones, freed memory) (see mm/kasan/kasan.h). To be able to detect accesses to bad memory we need a special compiler. Such compiler inserts a specific function calls (__asan_load*(addr), __asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16. These functions check whether memory region is valid to access or not by checking corresponding shadow memory. If access is not valid an error printed. Historical background of the address sanitizer from Dmitry Vyukov: "We've developed the set of tools, AddressSanitizer (Asan), ThreadSanitizer and MemorySanitizer, for user space. We actively use them for testing inside of Google (continuous testing, fuzzing, running prod services). To date the tools have found more than 10'000 scary bugs in Chromium, Google internal codebase and various open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and lots of others): [2] [3] [4]. The tools are part of both gcc and clang compilers. We have not yet done massive testing under the Kernel AddressSanitizer (it's kind of chicken and egg problem, you need it to be upstream to start applying it extensively). To date it has found about 50 bugs. Bugs that we've found in upstream kernel are listed in [5]. We've also found ~20 bugs in out internal version of the kernel. Also people from Samsung and Oracle have found some. [...] As others noted, the main feature of AddressSanitizer is its performance due to inline compiler instrumentation and simple linear shadow memory. User-space Asan has ~2x slowdown on computational programs and ~2x memory consumption increase. Taking into account that kernel usually consumes only small fraction of CPU and memory when running real user-space programs, I would expect that kernel Asan will have ~10-30% slowdown and similar memory consumption increase (when we finish all tuning). I agree that Asan can well replace kmemcheck. We have plans to start working on Kernel MemorySanitizer that finds uses of unitialized memory. Asan+Msan will provide feature-parity with kmemcheck. As others noted, Asan will unlikely replace debug slab and pagealloc that can be enabled at runtime. Asan uses compiler instrumentation, so even if it is disabled, it still incurs visible overheads. Asan technology is easily portable to other architectures. Compiler instrumentation is fully portable. Runtime has some arch-dependent parts like shadow mapping and atomic operation interception. They are relatively easy to port." Comparison with other debugging features: ======================================== KMEMCHECK: - KASan can do almost everything that kmemcheck can. KASan uses compile-time instrumentation, which makes it significantly faster than kmemcheck. The only advantage of kmemcheck over KASan is detection of uninitialized memory reads. Some brief performance testing showed that kasan could be x500-x600 times faster than kmemcheck: $ netperf -l 30 MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET Recv Send Send Socket Socket Message Elapsed Size Size Size Time Throughput bytes bytes bytes secs. 10^6bits/sec no debug: 87380 16384 16384 30.00 41624.72 kasan inline: 87380 16384 16384 30.00 12870.54 kasan outline: 87380 16384 16384 30.00 10586.39 kmemcheck: 87380 16384 16384 30.03 20.23 - Also kmemcheck couldn't work on several CPUs. It always sets number of CPUs to 1. KASan doesn't have such limitation. DEBUG_PAGEALLOC: - KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page granularity level, so it able to find more bugs. SLUB_DEBUG (poisoning, redzones): - SLUB_DEBUG has lower overhead than KASan. - SLUB_DEBUG in most cases are not able to detect bad reads, KASan able to detect both reads and writes. - In some cases (e.g. redzone overwritten) SLUB_DEBUG detect bugs only on allocation/freeing of object. KASan catch bugs right before it will happen, so we always know exact place of first bad read/write. [1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel [2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs [3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs [4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs [5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies Based on work by Andrey Konovalov. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Michal Marek <mmarek@suse.cz> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12Merge tag 'arm64-upstream' of ↵Linus Torvalds5-35/+171
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "arm64 updates for 3.20: - reimplementation of the virtual remapping of UEFI Runtime Services in a way that is stable across kexec - emulation of the "setend" instruction for 32-bit tasks (user endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set accordingly) - compat_sys_call_table implemented in C (from asm) and made it a constant array together with sys_call_table - export CPU cache information via /sys (like other architectures) - DMA API implementation clean-up in preparation for IOMMU support - macros clean-up for KVM - dropped some unnecessary cache+tlb maintenance - CONFIG_ARM64_CPU_SUSPEND clean-up - defconfig update (CPU_IDLE) The EFI changes going via the arm64 tree have been acked by Matt Fleming. There is also a patch adding sys_*stat64 prototypes to include/linux/syscalls.h, acked by Andrew Morton" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (47 commits) arm64: compat: Remove incorrect comment in compat_siginfo arm64: Fix section mismatch on alloc_init_p[mu]d() arm64: Avoid breakage caused by .altmacro in fpsimd save/restore macros arm64: mm: use *_sect to check for section maps arm64: drop unnecessary cache+tlb maintenance arm64:mm: free the useless initial page table arm64: Enable CPU_IDLE in defconfig arm64: kernel: remove ARM64_CPU_SUSPEND config option arm64: make sys_call_table const arm64: Remove asm/syscalls.h arm64: Implement the compat_sys_call_table in C syscalls: Declare sys_*stat64 prototypes if __ARCH_WANT_(COMPAT_)STAT64 compat: Declare compat_sys_sigpending and compat_sys_sigprocmask prototypes arm64: uapi: expose our struct ucontext to the uapi headers smp, ARM64: Kill SMP single function call interrupt arm64: Emulate SETEND for AArch32 tasks arm64: Consolidate hotplug notifier for instruction emulation arm64: Track system support for mixed endian EL0 arm64: implement generic IOMMU configuration arm64: Combine coherent and non-coherent swiotlb dma_ops ...
2015-01-29Merge tag 'efi-next' of ↵Ingo Molnar7-24/+45
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/efi Pull EFI updates from Matt Fleming: " - Move efivarfs from the misc filesystem section to pseudo filesystem, since that's a more logical and accurate place - Leif Lindholm - Update efibootmgr URL in Kconfig help - Peter Jones - Improve accuracy of EFI guid function names - Borislav Petkov - Expose firmware platform size in sysfs for the benefit of EFI boot loader installers and other utilities - Steve McIntyre - Cleanup __init annotations for arm64/efi code - Ard Biesheuvel - Mark the UIE as unsupported for rtc-efi - Ard Biesheuvel - Fix memory leak in error code path of runtime map code - Dan Carpenter - Improve robustness of get_memory_map() by removing assumptions on the size of efi_memory_desc_t (which could change in future spec versions) and querying the firmware instead of guessing about the memmap size - Ard Biesheuvel - Remove superfluous guid unparse calls - Ivan Khoronzhuk - Delete unnecessary chosen@0 DT node FDT code since was duplicated from code in drivers/of and is entirely unnecessary - Leif Lindholm There's nothing super scary, mainly cleanups, and a merge from Ricardo who kindly picked up some patches from the linux-efi mailing list while I was out on annual leave in December. Perhaps the biggest risk is the get_memory_map() change from Ard, which changes the way that both the arm64 and x86 EFI boot stub build the early memory map. It would be good to have it bake in linux-next for a while. " Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-21efi: Don't look for chosen@0 node on DT platformsLeif Lindholm1-2/+1
Due to some scary special case handling noticed in drivers/of, various bits of the ARM* EFI support patches did duplicate looking for @0 variants of various nodes. Unless on an ancient PPC system, these are not in fact required. Most instances have become refactored out along the way, this removes the last one. Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-21firmware: efi: Remove unneeded guid unparseIvan Khoronzhuk1-5/+0
There is no reason to translate guid number to string here. So remove it in order to not do unneeded work. Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-21efi/libstub: Call get_memory_map() to obtain map and desc sizesArd Biesheuvel1-6/+10
This fixes two minor issues in the implementation of get_memory_map(): - Currently, it assumes that sizeof(efi_memory_desc_t) == desc_size, which is usually true, but not mandated by the spec. (This was added intentionally to allow future additions to the definition of efi_memory_desc_t). The way the loop is implemented currently, the added slack space may be insufficient if desc_size is larger, which in some corner cases could result in the loop never terminating. - It allocates 32 efi_memory_desc_t entries first (again, using the size of the struct instead of desc_size), and frees and reallocates if it turns out to be insufficient. Few implementations of UEFI have such small memory maps, which results in a unnecessary allocate/free pair on each invocation. Fix this by calling the get_memory_map() boot service first with a '0' input value for map size to retrieve the map size and desc size from the firmware and only then perform the allocation, using desc_size rather than sizeof(efi_memory_desc_t). Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-20efi: Small leak on error in runtime map codeDan Carpenter1-1/+1
The "> 0" here should ">= 0" so we free map_entries[0]. Fixes: 926172d46038 ('efi: Export EFI runtime memory mapping to sysfs') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Dave Young <dyoung@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-16arm64/efi: efistub: Apply __init annotationArd Biesheuvel3-5/+19
This ensures all stub component are freed when the kernel proper is done booting, by prefixing the names of all ELF sections that have the SHF_ALLOC attribute with ".init". This approach ensures that even implicitly emitted allocated data (like initializer values and string literals) are covered. At the same time, remove some __init annotations in the stub that have now become redundant, and add the __init annotation to handle_kernel_image which will now trigger a section mismatch warning without it. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-12arm64/efi: move SetVirtualAddressMap() to UEFI stubArd Biesheuvel3-3/+122
In order to support kexec, the kernel needs to be able to deal with the state of the UEFI firmware after SetVirtualAddressMap() has been called. To avoid having separate code paths for non-kexec and kexec, let's move the call to SetVirtualAddressMap() to the stub: this will guarantee us that it will only be called once (since the stub is not executed during kexec), and ensures that the UEFI state is identical between kexec and normal boot. This implies that the layout of the virtual mapping needs to be created by the stub as well. All regions are rounded up to a naturally aligned multiple of 64 KB (for compatibility with 64k pages kernels) and recorded in the UEFI memory map. The kernel proper reads those values and installs the mappings in a dedicated set of page tables that are swapped in during UEFI Runtime Services calls. Acked-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Matt Fleming <matt.fleming@intel.com> Tested-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2015-01-12efi: Expose underlying UEFI firmware platform size to userlandSteve McIntyre1-0/+9
In some cases (e.g. Intel Bay Trail machines), the kernel will happily run in 64-bit even if the underlying UEFI firmware platform is 32-bit. That's great, but it's difficult for userland utilities like grub-install to do the right thing in such a situation. The kernel already knows about the size of the firmware via efi_enabled(EFI_64BIT). Add an extra sysfs interface /sys/firmware/efi/fw_platform_size to expose that information to userland for low-level utilities to use. Signed-off-by: Steve McIntyre <steve@einval.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2015-01-12efi: efistub: allow allocation alignment larger than EFI_PAGE_SIZEArd Biesheuvel1-8/+17
On systems with 64 KB pages, it is preferable for UEFI memory map entries to be 64 KB aligned multiples of 64 KB, because it relieves us of having to deal with the residues. So, if EFI_ALLOC_ALIGN is #define'd by the platform, use it to round up all memory allocations made. Acked-by: Matt Fleming <matt.fleming@intel.com> Acked-by: Borislav Petkov <bp@suse.de> Tested-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2015-01-12efi: split off remapping code from efi_config_init()Ard Biesheuvel1-24/+32
Split of the remapping code from efi_config_init() so that the caller can perform its own remapping. This is necessary to correctly handle virtually remapped UEFI memory regions under kexec, as efi.systab will have been updated to a virtual address. Acked-by: Matt Fleming <matt.fleming@intel.com> Tested-by: Leif Lindholm <leif.lindholm@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2015-01-08efi: Rename efi_guid_unparse to efi_guid_to_strBorislav Petkov2-5/+5
Call it what it does - "unparse" is plain-misleading. Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
2015-01-08efi: Update the URLs for efibootmgrPeter Jones1-2/+2
Matt Domsch changed the dell page to point to the new upstream quite some time ago; kernel should reflect that here as well. Cc: Matt Domsch <Matt_Domsch@dell.com> Signed-off-by: Peter Jones <pjones@redhat.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
2014-12-11Merge tag 'trace-3.19' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "There was a lot of clean ups and minor fixes. One of those clean ups was to the trace_seq code. It also removed the return values to the trace_seq_*() functions and use trace_seq_has_overflowed() to see if the buffer filled up or not. This is similar to work being done to the seq_file code as well in another tree. Some of the other goodies include: - Added some "!" (NOT) logic to the tracing filter. - Fixed the frame pointer logic to the x86_64 mcount trampolines - Added the logic for dynamic trampolines on !CONFIG_PREEMPT systems. That is, the ftrace trampoline can be dynamically allocated and be called directly by functions that only have a single hook to them" * tag 'trace-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (55 commits) tracing: Truncated output is better than nothing tracing: Add additional marks to signal very large time deltas Documentation: describe trace_buf_size parameter more accurately tracing: Allow NOT to filter AND and OR clauses tracing: Add NOT to filtering logic ftrace/fgraph/x86: Have prepare_ftrace_return() take ip as first parameter ftrace/x86: Get rid of ftrace_caller_setup ftrace/x86: Have save_mcount_regs macro also save stack frames if needed ftrace/x86: Add macro MCOUNT_REG_SIZE for amount of stack used to save mcount regs ftrace/x86: Simplify save_mcount_regs on getting RIP ftrace/x86: Have save_mcount_regs store RIP in %rdi for first parameter ftrace/x86: Rename MCOUNT_SAVE_FRAME and add more detailed comments ftrace/x86: Move MCOUNT_SAVE_FRAME out of header file ftrace/x86: Have static tracing also use ftrace_caller_setup ftrace/x86: Have static function tracing always test for function graph kprobes: Add IPMODIFY flag to kprobe_ftrace_ops ftrace, kprobes: Support IPMODIFY flag to find IP modify conflict kprobes/ftrace: Recover original IP if pre_handler doesn't change it tracing/trivial: Fix typos and make an int into a bool tracing: Deletion of an unnecessary check before iput() ...
2014-12-10Merge branch 'x86-efi-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull EFI updates from Ingo Molnar: "Changes in this cycle are: - support module unload for efivarfs (Mathias Krause) - another attempt at moving x86 to libstub taking advantage of the __pure attribute (Ard Biesheuvel) - add EFI runtime services section to ptdump (Mathias Krause)" * 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, ptdump: Add section for EFI runtime services efi/x86: Move x86 back to libstub efivarfs: Allow unloading when build as module
2014-11-19RAS/tracing: Use trace_seq_buffer_ptr() helper instead of open codedSteven Rostedt (Red Hat)1-1/+1
Use the helper function trace_seq_buffer_ptr() to get the current location of the next buffer write of a trace_seq object, instead of open coding it. This facilitates the conversion of trace_seq to use seq_buf. Tested-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Borislav Petkov <bp@suse.de> Reviewed-by: Petr Mladek <pmladek@suse.cz> Cc: Chen Gong <gong.chen@linux.intel.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-11-12efi/x86: Move x86 back to libstubArd Biesheuvel1-1/+1
This reverts commit 84be880560fb, which itself reverted my original attempt to move x86 from #include'ing .c files from across the tree to using the EFI stub built as a static library. The issue that affected the original approach was that splitting the implementation into several .o files resulted in the variable 'efi_early' becoming a global with external linkage, which under -fPIC implies that references to it must go through the GOT. However, dealing with this additional GOT entry turned out to be troublesome on some EFI implementations. (GCC's visibility=hidden attribute is supposed to lift this requirement, but it turned out not to work on the 32-bit build.) Instead, use a pure getter function to get a reference to efi_early. This approach results in no additional GOT entries being generated, so there is no need for any changes in the early GOT handling. Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-11-05efi: efi-stub: notify on DTB absenceMark Rutland1-1/+10
In the absence of a DTB configuration table, the EFI stub will happily continue attempting to boot a kernel, despite the fact that this kernel may not function without a description of the hardware. In this case, as with a typo'd "dtb=" option (e.g. "dbt=") or many other possible failures, the only output seen by the user will be the rather terse output from the EFI stub: EFI stub: Booting Linux Kernel... To aid those attempting to debug such failures, this patch adds a notice when no DTB is found, making the output more helpful: EFI stub: Booting Linux Kernel... EFI stub: Generating empty DTB Additionally, a positive acknowledgement is added when a user-specified DTB is in use: EFI stub: Booting Linux Kernel... EFI stub: Using DTB from command line Similarly, a positive acknowledgement is added when a DTB from a configuration table is in use: EFI stub: Booting Linux Kernel... EFI stub: Using DTB from configuration table Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Roy Franz <roy.franz@linaro.org> Acked-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2014-11-05efi: dmi: add support for SMBIOS 3.0 UEFI configuration tableArd Biesheuvel1-0/+4
This adds support to the UEFI side for detecting the presence of a SMBIOS 3.0 64-bit entry point. This allows the actual SMBIOS structure table to reside at a physical offset over 4 GB, which cannot be supported by the legacy SMBIOS 32-bit entry point. Since the firmware can legally provide both entry points, store the SMBIOS 3.0 entry point in a separate variable, and let the DMI decoding layer decide which one will be used. Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Acked-by: Leif Lindholm <leif.lindholm@linaro.org> Acked-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2014-10-04Merge branch 'next' into efi-next-mergeMatt Fleming5-19/+351
Conflicts: arch/x86/boot/compressed/eboot.c
2014-10-03efi: Delete the in_nmi() conditional runtime lockingMatt Fleming1-13/+4
commit 5dc3826d9f08 ("efi: Implement mandatory locking for UEFI Runtime Services") implemented some conditional locking when accessing variable runtime services that Ingo described as "pretty disgusting". The intention with the !efi_in_nmi() checks was to avoid live-locks when trying to write pstore crash data into an EFI variable. Such lockless accesses are allowed according to the UEFI specification when we're in a "non-recoverable" state, but whether or not things are implemented correctly in actual firmware implementations remains an unanswered question, and so it would seem sensible to avoid doing any kind of unsynchronized variable accesses. Furthermore, the efi_in_nmi() tests are inadequate because they don't account for the case where we call EFI variable services from panic or oops callbacks and aren't executing in NMI context. In other words, live-locking is still possible. Let's just remove the conditional locking altogether. Now we've got the ->set_variable_nonblocking() EFI variable operation we can abort if the runtime lock is already held. Aborting is by far the safest option. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Provide a non-blocking SetVariable() operationMatt Fleming2-0/+66
There are some circumstances that call for trying to write an EFI variable in a non-blocking way. One such scenario is when writing pstore data in efi_pstore_write() via the pstore_dump() kdump callback. Now that we have an EFI runtime spinlock we need a way of aborting if there is contention instead of spinning, since when writing pstore data from the kdump callback, the runtime lock may already be held by the CPU that's running the callback if we crashed in the middle of an EFI variable operation. The situation is sufficiently special that a new EFI variable operation is warranted. Introduce ->set_variable_nonblocking() for this use case. It is an optional EFI backend operation, and need only be implemented by those backends that usually acquire locks to serialize access to EFI variables, as is the case for virt_efi_set_variable() where we now grab the EFI runtime spinlock. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Resolve some shadow warningsMark Rustad1-7/+7
It is a really bad idea to declare variables or parameters that have the same name as common types. It is valid C, but it gets surprising if a macro expansion attempts to declare an inner local with that type. Change the local names to eliminate the hazard. Change s16 => str16, s8 => str8. This resolves warnings seen when using W=2 during make, for instance: drivers/firmware/efi/vars.c: In function ‘dup_variable_bug’: drivers/firmware/efi/vars.c:324:44: warning: declaration of ‘s16’ shadows a global declaration [-Wshadow] static void dup_variable_bug(efi_char16_t *s16, efi_guid_t *vendor_guid, drivers/firmware/efi/vars.c:328:8: warning: declaration of ‘s8’ shadows a global declaration [-Wshadow] char *s8; Signed-off-by: Mark Rustad <mark.d.rustad@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Introduce efi_md_typeattr_format()Laszlo Ersek1-0/+57
At the moment, there are three architectures debug-printing the EFI memory map at initialization: x86, ia64, and arm64. They all use different format strings, plus the EFI memory type and the EFI memory attributes are similarly hard to decode for a human reader. Introduce a helper __init function that formats the memory type and the memory attributes in a unified way, to a user-provided character buffer. The array "memory_type_name" is copied from the arm64 code, temporarily duplicating it. The (otherwise optional) braces around each string literal in the initializer list are dropped in order to match the kernel coding style more closely. The element size is tightened from 32 to 20 bytes (maximum actual string length + 1) so that we can derive the field width from the element size. Signed-off-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [ Dropped useless 'register' keyword, which compiler will ignore ] Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Add kernel param efi=noruntimeDave Young1-0/+9
noefi kernel param means actually disabling efi runtime, Per suggestion from Leif Lindholm efi=noruntime should be better. But since noefi is already used in X86 thus just adding another param efi=noruntime for same purpose. Signed-off-by: Dave Young <dyoung@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Move noefi early param code out of x86 arch codeDave Young1-0/+13
noefi param can be used for arches other than X86 later, thus move it out of x86 platform code. Signed-off-by: Dave Young <dyoung@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Add efi= parameter parsing to the EFI boot stubMatt Fleming2-2/+64
We need a way to customize the behaviour of the EFI boot stub, in particular, we need a way to disable the "chunking" workaround, used when reading files from the EFI System Partition. One of my machines doesn't cope well when reading files in 1MB chunks to a buffer above the 4GB mark - it appears that the "chunking" bug workaround triggers another firmware bug. This was only discovered with commit 4bf7111f5016 ("x86/efi: Support initrd loaded above 4G"), and that commit is perfectly valid. The symptom I observed was a corrupt initrd rather than any kind of crash. efi= is now used to specify EFI parameters in two very different execution environments, the EFI boot stub and during kernel boot. There is also a slight performance optimization by enabling efi=nochunk, but that's offset by the fact that you're more likely to run into firmware issues, at least on x86. This is the rationale behind leaving the workaround enabled by default. Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're using the current value of 1MB. Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Roy Franz <roy.franz@linaro.org> Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Borislav Petkov <bp@suse.de> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-10-03efi: Implement mandatory locking for UEFI Runtime ServicesArd Biesheuvel1-10/+144
According to section 7.1 of the UEFI spec, Runtime Services are not fully reentrant, and there are particular combinations of calls that need to be serialized. Use a spinlock to serialize all Runtime Services with respect to all others, even if this is more than strictly needed. We've managed to get away without requiring a runtime services lock until now because most of the interactions with EFI involve EFI variables, and those operations are already serialised with __efivars->lock. Some of the assumptions underlying the decision whether locks are needed or not (e.g., SetVariable() against ResetSystem()) may not apply universally to all [new] architectures that implement UEFI. Rather than try to reason our way out of this, let's just implement at least what the spec requires in terms of locking. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-09-24Revert "efi/x86: efistub: Move shared dependencies to <asm/efi.h>"Matt Fleming1-1/+1
This reverts commit f23cf8bd5c1f ("efi/x86: efistub: Move shared dependencies to <asm/efi.h>") as well as the x86 parts of commit f4f75ad5741f ("efi: efistub: Convert into static library"). The road leading to these two reverts is long and winding. The above two commits were merged during the v3.17 merge window and turned the common EFI boot stub code into a static library. This necessitated making some symbols global in the x86 boot stub which introduced new entries into the early boot GOT. The problem was that we weren't fixing up the newly created GOT entries before invoking the EFI boot stub, which sometimes resulted in hangs or resets. This failure was reported by Maarten on his Macbook pro. The proposed fix was commit 9cb0e394234d ("x86/efi: Fixup GOT in all boot code paths"). However, that caused issues for Linus when booting his Sony Vaio Pro 11. It was subsequently reverted in commit f3670394c29f. So that leaves us back with Maarten's Macbook pro not booting. At this stage in the release cycle the least risky option is to revert the x86 EFI boot stub to the pre-merge window code structure where we explicitly #include efi-stub-helper.c instead of linking with the static library. The arm64 code remains unaffected. We can take another swing at the x86 parts for v3.18. Conflicts: arch/x86/include/asm/efi.h Tested-by: Josh Boyer <jwboyer@fedoraproject.org> Tested-by: Maarten Lankhorst <maarten.lankhorst@canonical.com> Tested-by: Leif Lindholm <leif.lindholm@linaro.org> [arm64] Tested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>, Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-09-09efi/arm64: Fix fdt-related memory reservationMark Salter1-1/+9
Commit 86c8b27a01cf: "arm64: ignore DT memreserve entries when booting in UEFI mode prevents early_init_fdt_scan_reserved_mem() from being called for arm64 kernels booting via UEFI. This was done because the kernel will use the UEFI memory map to determine reserved memory regions. That approach has problems in that early_init_fdt_scan_reserved_mem() also reserves the FDT itself and any node-specific reserved memory. By chance of some kernel configs, the FDT may be overwritten before it can be unflattened and the kernel will fail to boot. More subtle problems will result if the FDT has node specific reserved memory which is not really reserved. This patch has the UEFI stub remove the memory reserve map entries from the FDT as it does with the memory nodes. This allows early_init_fdt_scan_reserved_mem() to be called unconditionally so that the other needed reservations are made. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-08-22firmware: Do not use WARN_ON(!spin_is_locked())Guenter Roeck1-4/+4
spin_is_locked() always returns false for uniprocessor configurations in several architectures, so do not use WARN_ON with it. Use lockdep_assert_held() instead to also reduce overhead in non-debug kernels. Signed-off-by: Guenter Roeck <linux@roeck-us.net> Cc: <stable@vger.kernel.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-08-09kexec: support kexec/kdump on EFI systemsVivek Goyal1-0/+21
This patch does two things. It passes EFI run time mappings to second kernel in bootparams efi_info. Second kernel parse this info and create new mappings in second kernel. That means mappings in first and second kernel will be same. This paves the way to enable EFI in kexec kernel. This patch also prepares and passes EFI setup data through bootparams. This contains bunch of information about various tables and their addresses. These information gathering and passing has been written along the lines of what current kexec-tools is doing to make kexec work with UEFI. [akpm@linux-foundation.org: s/get_efi/efi_get/g, per Matt] Signed-off-by: Vivek Goyal <vgoyal@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Matthew Garrett <mjg59@srcf.ucam.org> Cc: Greg Kroah-Hartman <greg@kroah.com> Cc: Dave Young <dyoung@redhat.com> Cc: WANG Chao <chaowang@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Matt Fleming <matt@console-pimps.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07Merge tag 'pm+acpi-3.17-rc1' of ↵Linus Torvalds1-10/+10
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI and power management updates from Rafael Wysocki: "Again, ACPICA leads the pack (47 commits), followed by cpufreq (18 commits) and system suspend/hibernation (9 commits). From the new code perspective, the ACPICA update brings ACPI 5.1 to the table, including a new device configuration object called _DSD (Device Specific Data) that will hopefully help us to operate device properties like Device Trees do (at least to some extent) and changes related to supporting ACPI on ARM. Apart from that we have hibernation changes making it use radix trees to store memory bitmaps which should speed up some operations carried out by it quite significantly. We also have some power management changes related to suspend-to-idle (the "freeze" sleep state) support and more preliminary changes needed to support ACPI on ARM (outside of ACPICA). The rest is fixes and cleanups pretty much everywhere. Specifics: - ACPICA update to upstream version 20140724. That includes ACPI 5.1 material (support for the _CCA and _DSD predefined names, changes related to the DMAR and PCCT tables and ARM support among other things) and cleanups related to using ACPICA's header files. A major part of it is related to acpidump and the core code used by that utility. Changes from Bob Moore, David E Box, Lv Zheng, Sascha Wildner, Tomasz Nowicki, Hanjun Guo. - Radix trees for memory bitmaps used by the hibernation core from Joerg Roedel. - Support for waking up the system from suspend-to-idle (also known as the "freeze" sleep state) using ACPI-based PCI wakeup signaling (Rafael J Wysocki). - Fixes for issues related to ACPI button events (Rafael J Wysocki). - New device ID for an ACPI-enumerated device included into the Wildcat Point PCH from Jie Yang. - ACPI video updates related to backlight handling from Hans de Goede and Linus Torvalds. - Preliminary changes needed to support ACPI on ARM from Hanjun Guo and Graeme Gregory. - ACPI PNP core cleanups from Arjun Sreedharan and Zhang Rui. - Cleanups related to ACPI_COMPANION() and ACPI_HANDLE() macros (Rafael J Wysocki). - ACPI-based device hotplug cleanups from Wei Yongjun and Rafael J Wysocki. - Cleanups and improvements related to system suspend from Lan Tianyu, Randy Dunlap and Rafael J Wysocki. - ACPI battery cleanup from Wei Yongjun. - cpufreq core fixes from Viresh Kumar. - Elimination of a deadband effect from the cpufreq ondemand governor and intel_pstate driver cleanups from Stratos Karafotis. - 350MHz CPU support for the powernow-k6 cpufreq driver from Mikulas Patocka. - Fix for the imx6 cpufreq driver from Anson Huang. - cpuidle core and governor cleanups from Daniel Lezcano, Sandeep Tripathy and Mohammad Merajul Islam Molla. - Build fix for the big_little cpuidle driver from Sachin Kamat. - Configuration fix for the Operation Performance Points (OPP) framework from Mark Brown. - APM cleanup from Jean Delvare. - cpupower utility fixes and cleanups from Peter Senna Tschudin, Andrey Utkin, Himangi Saraogi, Rickard Strandqvist, Thomas Renninger" * tag 'pm+acpi-3.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (118 commits) ACPI / LPSS: add LPSS device for Wildcat Point PCH ACPI / PNP: Replace faulty is_hex_digit() by isxdigit() ACPICA: Update version to 20140724. ACPICA: ACPI 5.1: Update for PCCT table changes. ACPICA/ARM: ACPI 5.1: Update for GTDT table changes. ACPICA/ARM: ACPI 5.1: Update for MADT changes. ACPICA/ARM: ACPI 5.1: Update for FADT changes. ACPICA: ACPI 5.1: Support for the _CCA predifined name. ACPICA: ACPI 5.1: New notify value for System Affinity Update. ACPICA: ACPI 5.1: Support for the _DSD predefined name. ACPICA: Debug object: Add current value of Timer() to debug line prefix. ACPICA: acpihelp: Add UUID support, restructure some existing files. ACPICA: Utilities: Fix local printf issue. ACPICA: Tables: Update for DMAR table changes. ACPICA: Remove some extraneous printf arguments. ACPICA: Update for comments/formatting. No functional changes. ACPICA: Disassembler: Add support for the ToUUID opererator (macro). ACPICA: Remove a redundant cast to acpi_size for ACPI_OFFSET() macro. ACPICA: Work around an ancient GCC bug. ACPI / processor: Make it possible to get local x2apic id via _MAT ...
2014-08-05Merge branch 'x86-ras-for-linus' of ↵Linus Torvalds1-55/+137
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS updates from Ingo Molnar: "The main changes in this cycle are: - RAS tracing/events infrastructure, by Gong Chen. - Various generalizations of the APEI code to make it available to non-x86 architectures, by Tomasz Nowicki" * 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/ras: Fix build warnings in <linux/aer.h> acpi, apei, ghes: Factor out ioremap virtual memory for IRQ and NMI context. acpi, apei, ghes: Make NMI error notification to be GHES architecture extension. apei, mce: Factor out APEI architecture specific MCE calls. RAS, extlog: Adjust init flow trace, eMCA: Add a knob to adjust where to save event log trace, RAS: Add eMCA trace event interface RAS, debugfs: Add debugfs interface for RAS subsystem CPER: Adjust code flow of some functions x86, MCE: Robustify mcheck_init_device trace, AER: Move trace into unified interface trace, RAS: Add basic RAS trace event x86, MCE: Kill CPU_POST_DEAD
2014-08-05Merge branch 'x86-efi-for-linus' of ↵Linus Torvalds11-71/+391
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull EFI changes from Ingo Molnar: "Main changes in this cycle are: - arm64 efi stub fixes, preservation of FP/SIMD registers across firmware calls, and conversion of the EFI stub code into a static library - Ard Biesheuvel - Xen EFI support - Daniel Kiper - Support for autoloading the efivars driver - Lee, Chun-Yi - Use the PE/COFF headers in the x86 EFI boot stub to request that the stub be loaded with CONFIG_PHYSICAL_ALIGN alignment - Michael Brown - Consolidate all the x86 EFI quirks into one file - Saurabh Tangri - Additional error logging in x86 EFI boot stub - Ulf Winkelvos - Support loading initrd above 4G in EFI boot stub - Yinghai Lu - EFI reboot patches for ACPI hardware reduced platforms" * 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) efi/arm64: Handle missing virtual mapping for UEFI System Table arch/x86/xen: Silence compiler warnings xen: Silence compiler warnings x86/efi: Request desired alignment via the PE/COFF headers x86/efi: Add better error logging to EFI boot stub efi: Autoload efivars efi: Update stale locking comment for struct efivars arch/x86: Remove efi_set_rtc_mmss() arch/x86: Replace plain strings with constants xen: Put EFI machinery in place xen: Define EFI related stuff arch/x86: Remove redundant set_bit(EFI_MEMMAP) call arch/x86: Remove redundant set_bit(EFI_SYSTEM_TABLES) call efi: Introduce EFI_PARAVIRT flag arch/x86: Do not access EFI memory map if it is not available efi: Use early_mem*() instead of early_io*() arch/ia64: Define early_memunmap() x86/reboot: Add EFI reboot quirk for ACPI Hardware Reduced flag efi/reboot: Allow powering off machines using EFI efi/reboot: Add generic wrapper around EfiResetSystem() ...
2014-07-30Merge tag 'please-pull-apei' into x86/rasH. Peter Anvin3-22/+20
APEI is currently implemented so that it depends on x86 hardware. The primary dependency is that GHES uses the x86 NMI for hardware error notification and MCE for memory error handling. These patches remove that dependency. Other APEI features such as error reporting via external IRQ, error serialization, or error injection, do not require changes to use them on non-x86 architectures. The following patch set eliminates the APEI Kconfig x86 dependency by making these changes: - treat NMI notification as GHES architecture - HAVE_ACPI_APEI_NMI - group and wrap around #ifdef CONFIG_HAVE_ACPI_APEI_NMI code which is used only for NMI path - identify architectural boxes and abstract it accordingly (tlb flush and MCE) - rework ioremap for both IRQ and NMI context NMI code is kept in ghes.c file since NMI and IRQ context are tightly coupled. Note, these patches introduce no functional changes for x86. The NMI notification feature is hard selected for x86. Architectures that want to use this feature should also provide NMI code infrastructure.
2014-07-28Merge branch 'acpica'Rafael J. Wysocki1-10/+10
* acpica: (30 commits) ACPICA: Add new GPE public interface - acpi_mark_gpe_for_wake. ACPICA: GPEs: Do not allow enable for GPEs that have no handler(s). ACPICA: Fix a regression for deletion of Alias() objects. ACPICA: Update version to 20140627 ACPICA: Tables: Merge DMAR table structure updates ACPICA: Hardware: back port of a recursive locking fix ACPICA: utprint/oslibcfs: cleanup - no functional change ACPICA: Executer: Fix trivial issues in acpi_get_serial_access_bytes() ACPICA: OSL: Update acpidump to reduce source code differences ACPICA: acpidump: Reduce freopen() invocations to improve portability ACPICA: acpidump: Replace file IOs with new APIs to improve portability ACPICA: acpidump: Remove exit() from generic layer to improve portability ACPICA: acpidump: Add memory/string OSL usage to improve portability ACPICA: Common: Enhance acpi_getopt() to improve portability ACPICA: Common: Enhance cm_get_file_size() to improve portability ACPICA: Application: Enhance ACPI_USAGE_xxx/ACPI_OPTION with acpi_os_printf() to improve portability ACPICA: Utilities: Introduce acpi_log_error() to improve portability ACPICA: Utilities: Add formatted printing APIs ACPICA: OSL: Add portable file IO to improve portability ACPICA: OSL: Clean up acpi_os_printf()/acpi_os_vprintf() stubs ...
2014-07-19efi: Autoload efivarsLee, Chun-Yi2-0/+16
The original patch is from Ben Hutchings's contribution to debian kernel. Got Ben's permission to remove the code of efi-pstore.c and send to linux-efi: https://github.com/BlankOn/linux-debian/blob/master/debian/patches/features/all/efi-autoload-efivars.patch efivars is generally useful to have on EFI systems, and in some cases it may be impossible to load it after a kernel upgrade in order to complete a boot loader update. At the same time we don't want to waste memory on non-EFI systems by making them built-in. Instead, give them module aliases as if they are platform drivers, and register a corresponding platform device whenever EFI runtime services are available. This should trigger udev to load them. Signed-off-by: Lee, Chun-Yi <jlee@suse.com> Cc: Ben Hutchings <ben@decadent.org.uk> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-07-19efi: Introduce EFI_PARAVIRT flagDaniel Kiper1-9/+12
Introduce EFI_PARAVIRT flag. If it is set then kernel runs on EFI platform but it has not direct control on EFI stuff like EFI runtime, tables, structures, etc. If not this means that Linux Kernel has direct access to EFI infrastructure and everything runs as usual. This functionality is used in Xen dom0 because hypervisor has full control on EFI stuff and all calls from dom0 to EFI must be requested via special hypercall which in turn executes relevant EFI code in behalf of dom0. Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-07-19efi: Use early_mem*() instead of early_io*()Daniel Kiper1-2/+2
Use early_mem*() instead of early_io*() because all mapped EFI regions are memory (usually RAM but they could also be ROM, EPROM, EEPROM, flash, etc.) not I/O regions. Additionally, I/O family calls do not work correctly under Xen in our case. early_ioremap() skips the PFN to MFN conversion when building the PTE. Using it for memory will attempt to map the wrong machine frame. However, all artificial EFI structures created under Xen live in dom0 memory and should be mapped/unmapped using early_mem*() family calls which map domain memory. Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com> Cc: Leif Lindholm <leif.lindholm@linaro.org> Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-07-19x86/reboot: Add EFI reboot quirk for ACPI Hardware Reduced flagMatt Fleming1-0/+8
It appears that the BayTrail-T class of hardware requires EFI in order to powerdown and reboot and no other reliable method exists. This quirk is generally applicable to all hardware that has the ACPI Hardware Reduced bit set, since usually ACPI would be the preferred method. Cc: Len Brown <len.brown@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>