Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 4e46c2a956215482418d7b315749fb1b6c6bc224 ]
The UEFI spec revision 2.7 errata A section 8.4 has the following to
say about the virtual memory runtime services:
"This section contains function definitions for the virtual memory
support that may be optionally used by an operating system at runtime.
If an operating system chooses to make EFI runtime service calls in a
virtual addressing mode instead of the flat physical mode, then the
operating system must use the services in this section to switch the
EFI runtime services from flat physical addressing to virtual
addressing."
So it is pretty clear that calling SetVirtualAddressMap() is entirely
optional, and so there is no point in doing so unless it achieves
anything useful for us.
This is not the case for 64-bit ARM. The identity mapping used by the
firmware is arbitrarily converted into another permutation of userland
addresses (i.e., bits [63:48] cleared), and the runtime code could easily
deal with the original layout in exactly the same way as it deals with
the converted layout. However, due to constraints related to page size
differences if the OS is not running with 4k pages, and related to
systems that may expose the individual sections of PE/COFF runtime
modules as different memory regions, creating the virtual layout is a
bit fiddly, and requires us to sort the memory map and reason about
adjacent regions with identical memory types etc etc.
So the obvious fix is to stop calling SetVirtualAddressMap() altogether
on arm64 systems. However, to avoid surprises, which are notoriously
hard to diagnose when it comes to OS<->firmware interactions, let's
start by making it an opt-out feature, and implement support for the
'efi=novamap' kernel command line parameter on ARM and arm64 systems.
( Note that 32-bit ARM generally does require SetVirtualAddressMap() to be
used, given that the physical memory map and the kernel virtual address
map are not guaranteed to be non-overlapping like on arm64. However,
having support for efi=novamap,noruntime on 32-bit ARM, combined with
the recently proposed support for earlycon=efifb, is likely to be useful
to diagnose boot issues on such systems if they have no accessible serial
port. )
Tested-by: Jeffrey Hugo <jhugo@codeaurora.org>
Tested-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Tested-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Alexander Graf <agraf@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190202094119.13230-8-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
The existing map iteration helper for_each_efi_memory_desc_in_map can
only be used after the kernel initializes the EFI subsystem to set up
struct efi_memory_map.
Before that we also need iterate map descriptors which are stored in several
intermediate structures, like struct efi_boot_memmap for arch independent
usage and struct efi_info for x86 arch only.
Introduce efi_early_memdesc_ptr() to get pointer to a map descriptor, and
replace several places where that primitive is open coded.
Signed-off-by: Baoquan He <bhe@redhat.com>
[ Various improvements to the text. ]
Acked-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: ard.biesheuvel@linaro.org
Cc: fanc.fnst@cn.fujitsu.com
Cc: izumi.taku@jp.fujitsu.com
Cc: keescook@chromium.org
Cc: linux-efi@vger.kernel.org
Cc: n-horiguchi@ah.jp.nec.com
Cc: thgarnie@google.com
Link: http://lkml.kernel.org/r/20170816134651.GF21273@x1
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The EFI stub currently prints a number of diagnostic messages that do
not carry a lot of information. Since these prints are not controlled
by 'loglevel' or other command line parameters, and since they appear on
the EFI framebuffer as well (if enabled), it would be nice if we could
turn them off.
So let's add support for the 'quiet' command line parameter in the stub,
and disable the non-error prints if it is passed.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bhe@redhat.com
Cc: bhsharma@redhat.com
Cc: bp@alien8.de
Cc: eugene@hp.com
Cc: evgeny.kalugin@intel.com
Cc: jhugo@codeaurora.org
Cc: leif.lindholm@linaro.org
Cc: linux-efi@vger.kernel.org
Cc: roy.franz@cavium.com
Cc: rruigrok@codeaurora.org
Link: http://lkml.kernel.org/r/20170404160910.28115-2-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Merge the parsing of the command line carried out in arm-stub.c with
the handling in efi_parse_options(). Note that this also fixes the
missing handling of CONFIG_CMDLINE_FORCE=y, in which case the builtin
command line should supersede the one passed by the firmware.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bhe@redhat.com
Cc: bhsharma@redhat.com
Cc: bp@alien8.de
Cc: eugene@hp.com
Cc: evgeny.kalugin@intel.com
Cc: jhugo@codeaurora.org
Cc: leif.lindholm@linaro.org
Cc: linux-efi@vger.kernel.org
Cc: mark.rutland@arm.com
Cc: roy.franz@cavium.com
Cc: rruigrok@codeaurora.org
Link: http://lkml.kernel.org/r/20170404160910.28115-1-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When we parse the 'efi=' command line parameter in the stub, we
fail to take spaces into account. Currently, the only way this
could result in unexpected behavior is when the string 'nochunk'
appears as a separate command line argument after 'efi=xxx,yyy,zzz ',
so this is harmless in practice. But let's fix it nonetheless.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20170404160245.27812-12-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The ARM decompressor is finicky when it comes to uninitialized variables
with local linkage, the reason being that it may relocate .text and .bss
independently when executing from ROM. This is only possible if all
references into .bss from .text are absolute, and this happens to be the
case for references emitted under -fpic to symbols with external linkage,
and so all .bss references must involve symbols with external linkage.
When building the ARM stub using clang, the initialized local variable
__chunk_size is optimized into a zero-initialized flag that indicates
whether chunking is in effect or not. This flag is therefore emitted into
.bss, which triggers the ARM decompressor's diagnostics, resulting in a
failed build.
Under UEFI, we never execute the decompressor from ROM, so the diagnostic
makes little sense here. But we can easily work around the issue by making
__chunk_size global instead.
However, given that the file I/O chunking that is controlled by the
__chunk_size variable is intended to work around known bugs on various
x86 implementations of UEFI, we can simply make the chunking an x86
specific feature. This is an improvement by itself, and also removes the
need to parse the efi= options in the stub entirely.
Tested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1486380166-31868-8-git-send-email-ard.biesheuvel@linaro.org
[ Small readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There's one ARM, one x86_32 and one x86_64 version which can be folded
into a single shared version by masking their differences with the shiny
new efi_call_proto() macro.
No functional change intended.
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1485868902-20401-2-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Make random.c build for ARM by moving the fallback definition of
EFI_ALLOC_ALIGN to efistub.h, and replacing a division by a value
we know to be a power of 2 with a right shift (this is required since
ARM does not have any integer division helper routines in its decompressor)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20161112213237.8804-5-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Adjust the size used in calculations to match the actual size of allocation
that will be performed based on EFI size/alignment constraints.
efi_high_alloc() and efi_low_alloc() use the passed size in bytes directly
to find space in the memory map for the allocation, rather than the actual
allocation size that has been adjusted for size and alignment constraints.
This results in failed allocations and retries in efi_high_alloc(). The
same error is present in efi_low_alloc(), although failure will only happen
if the lowest memory block is small.
Also use EFI_PAGE_SIZE consistently and remove use of EFI_PAGE_SHIFT to
calculate page size.
Signed-off-by: Roy Franz <roy.franz@hpe.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20161112213237.8804-2-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The spec allows ExitBootServices to fail with EFI_INVALID_PARAMETER if a
race condition has occurred where the EFI has updated the memory map after
the stub grabbed a reference to the map. The spec defines a retry
proceedure with specific requirements to handle this scenario.
This scenario was previously observed on x86 - commit d3768d885c6c ("x86,
efi: retry ExitBootServices() on failure") but the current fix is not spec
compliant and the scenario is now observed on the Qualcomm Technologies
QDF2432 via the FDT stub which does not handle the error and thus causes
boot failures. The user will notice the boot failure as the kernel is not
executed and the system may drop back to a UEFI shell, but will be
unresponsive to input and the system will require a power cycle to recover.
Add a helper to the stub library that correctly adheres to the spec in the
case of EFI_INVALID_PARAMETER from ExitBootServices and can be universally
used across all stub implementations.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
efi_get_memory_map() allocates a buffer to store the memory map that it
retrieves. This buffer may need to be reused by the client after
ExitBootServices() is called, at which point allocations are not longer
permitted. To support this usecase, provide the allocated buffer size back
to the client, and allocate some additional headroom to account for any
reasonable growth in the map that is likely to happen between the call to
efi_get_memory_map() and the client reusing the buffer.
Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
|
|
Most of the users of for_each_efi_memory_desc() are equally happy
iterating over the EFI memory map in efi.memmap instead of 'memmap',
since the former is usually a pointer to the latter.
For those users that want to specify an EFI memory map other than
efi.memmap, that can be done using for_each_efi_memory_desc_in_map().
One such example is in the libstub code where the firmware is queried
directly for the memory map, it gets iterated over, and then freed.
This change goes part of the way toward deleting the global 'memmap'
variable, which is not universally available on all architectures
(notably IA64) and is rather poorly named.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-7-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Before we can move the command line processing before the allocation
of the kernel, which is required for detecting the 'nokaslr' option
which controls that allocation, move the converted command line higher
up in memory, to prevent it from interfering with the kernel itself.
Since x86 needs the address to fit in 32 bits, use UINT_MAX as the upper
bound there. Otherwise, use ULONG_MAX (i.e., no limit)
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent
Pull EFI fixes from Matt Fleming:
" - Fix regression in DMI sysfs code for handling "End of Table" entry
and a type bug that could lead to integer overflow. (Ivan Khoronzhuk)
- Fix boundary checking in efi_high_alloc() which can lead to memory
corruption in the EFI boot stubs. (Yinghai Lu)"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
While adding support loading kernel and initrd above 4G to grub2 in legacy
mode, I was referring to efi_high_alloc().
That will allocate buffer for kernel and then initrd, and initrd will
use kernel buffer start as limit.
During testing found two buffers will be overlapped when initrd size is
very big like 400M.
It turns out efi_high_alloc() boundary checking is not right.
end - size will be the new start, and should not compare new
start with max, we need to make sure end is smaller than max.
[ Basically, with the current efi_high_alloc() code it's possible to
allocate memory above 'max', because efi_high_alloc() doesn't check
that the tail of the allocation is below 'max'.
If you have an EFI memory map with a single entry that looks like so,
[0xc0000000-0xc0004000]
And want to allocate 0x3000 bytes below 0xc0003000 the current code
will allocate [0xc0001000-0xc0004000], not [0xc0000000-0xc0003000]
like you would expect. - Matt ]
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
|
|
This reverts commit d1a8d66b9177105e898e73716f97eb61842c457a.
Ard reported a boot failure when running UEFI under Qemu and Xen and
experimenting with various Tianocore build options,
"As it turns out, when allocating room for the UEFI memory map using
UEFI's AllocatePool (), it may result in two new memory map entries
being created, for instance, when using Tianocore's preallocated region
feature. For example, the following region
0x00005ead5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
may be split like this
0x00005ead5000-0x00005eae2fff [Conventional Memory| | | | | |WB|WT|WC|UC]
0x00005eae3000-0x00005eae4fff [Loader Data | | | | | |WB|WT|WC|UC]
0x00005eae5000-0x00005ebfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
if the preallocated Loader Data region was chosen to be right in the
middle of the original free space.
After patch d1a8d66b9177 ("efi/libstub: Call get_memory_map() to
obtain map and desc sizes"), this is not being dealt with correctly
anymore, as the existing logic to allocate room for a single additional
entry has become insufficient."
Mark requested to reinstate the old loop we had before commit
d1a8d66b9177, which grows the memory map buffer until it's big enough to
hold the EFI memory map.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"arm64 updates for 3.20:
- reimplementation of the virtual remapping of UEFI Runtime Services
in a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
The EFI changes going via the arm64 tree have been acked by Matt
Fleming. There is also a patch adding sys_*stat64 prototypes to
include/linux/syscalls.h, acked by Andrew Morton"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (47 commits)
arm64: compat: Remove incorrect comment in compat_siginfo
arm64: Fix section mismatch on alloc_init_p[mu]d()
arm64: Avoid breakage caused by .altmacro in fpsimd save/restore macros
arm64: mm: use *_sect to check for section maps
arm64: drop unnecessary cache+tlb maintenance
arm64:mm: free the useless initial page table
arm64: Enable CPU_IDLE in defconfig
arm64: kernel: remove ARM64_CPU_SUSPEND config option
arm64: make sys_call_table const
arm64: Remove asm/syscalls.h
arm64: Implement the compat_sys_call_table in C
syscalls: Declare sys_*stat64 prototypes if __ARCH_WANT_(COMPAT_)STAT64
compat: Declare compat_sys_sigpending and compat_sys_sigprocmask prototypes
arm64: uapi: expose our struct ucontext to the uapi headers
smp, ARM64: Kill SMP single function call interrupt
arm64: Emulate SETEND for AArch32 tasks
arm64: Consolidate hotplug notifier for instruction emulation
arm64: Track system support for mixed endian EL0
arm64: implement generic IOMMU configuration
arm64: Combine coherent and non-coherent swiotlb dma_ops
...
|
|
This fixes two minor issues in the implementation of get_memory_map():
- Currently, it assumes that sizeof(efi_memory_desc_t) == desc_size,
which is usually true, but not mandated by the spec. (This was added
intentionally to allow future additions to the definition of
efi_memory_desc_t). The way the loop is implemented currently, the
added slack space may be insufficient if desc_size is larger, which in
some corner cases could result in the loop never terminating.
- It allocates 32 efi_memory_desc_t entries first (again, using the size
of the struct instead of desc_size), and frees and reallocates if it
turns out to be insufficient. Few implementations of UEFI have such small
memory maps, which results in a unnecessary allocate/free pair on each
invocation.
Fix this by calling the get_memory_map() boot service first with a '0'
input value for map size to retrieve the map size and desc size from the
firmware and only then perform the allocation, using desc_size rather
than sizeof(efi_memory_desc_t).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This ensures all stub component are freed when the kernel proper is
done booting, by prefixing the names of all ELF sections that have
the SHF_ALLOC attribute with ".init". This approach ensures that even
implicitly emitted allocated data (like initializer values and string
literals) are covered.
At the same time, remove some __init annotations in the stub that have
now become redundant, and add the __init annotation to handle_kernel_image
which will now trigger a section mismatch warning without it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
On systems with 64 KB pages, it is preferable for UEFI memory map
entries to be 64 KB aligned multiples of 64 KB, because it relieves
us of having to deal with the residues.
So, if EFI_ALLOC_ALIGN is #define'd by the platform, use it to round
up all memory allocations made.
Acked-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
|
|
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f5016 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This patch changes both x86 and arm64 efistub implementations
from #including shared .c files under drivers/firmware/efi to
building shared code as a static library.
The x86 code uses a stub built into the boot executable which
uncompresses the kernel at boot time. In this case, the library is
linked into the decompressor.
In the arm64 case, the stub is part of the kernel proper so the library
is linked into the kernel proper as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|