summaryrefslogtreecommitdiff
path: root/drivers/dax/bus.c
AgeCommit message (Collapse)AuthorFilesLines
2019-02-28device-dax: Add a 'modalias' attribute to DAX 'bus' devicesVishal Verma1-0/+12
Add a 'modalias' attribute to devices under the DAX bus so that userspace is able to dynamically load modules as needed. Normally, udev can get the modalias from 'uevent', and that is correctly set up by the DAX bus. However other tooling such as 'libndctl' for interacting with drivers/nvdimm/, and 'libdaxctl' for drivers/dax/ can also use the modalias to dynamically load modules via libkmod lookups. The 'nd' bus set up by the libnvdimm subsystem exports a modalias attribute. Imitate this to export the same for the 'dax' bus. Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-20device-dax: Add a 'target_node' attributeDan Williams1-0/+28
The target-node attribute is the Linux numa-node that a device-dax instance may create when it is online. Prior to being online the device's 'numa_node' property reflects the closest online cpu node which is the typical expectation of a device 'numa_node'. Once it is online it becomes its own distinct numa node, i.e. 'target_node'. Export the 'target_node' property to give userspace tooling the ability to predict the effective numa-node from a device-dax instance configured to provide 'System RAM' capacity. Cc: Vishal Verma <vishal.l.verma@intel.com> Reported-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-25device-dax: Auto-bind device after successful new_idDan Williams1-6/+18
The typical 'new_id' attribute behavior is to immediately attach a device to its driver after a new device-id is added. Implement this behavior for the dax bus. Reported-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reported-by: Brice Goglin <Brice.Goglin@inria.fr> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07acpi/nfit, device-dax: Identify differentiated memory with a unique numa-nodeDan Williams1-1/+3
Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07device-dax: Add /sys/class/dax backwards compatibilityDan Williams1-5/+24
On the expectation that some environments may not upgrade libdaxctl (userspace component that depends on the /sys/class/dax hierarchy), provide a default / legacy dax_pmem_compat driver. The dax_pmem_compat driver implements the original /sys/class/dax sysfs layout rather than /sys/bus/dax. When userspace is upgraded it can blacklist this module and switch to the dax_pmem driver going forward. CONFIG_DEV_DAX_PMEM_COMPAT and supporting code will be deleted according to the dax_pmem entry in Documentation/ABI/obsolete/. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07device-dax: Add support for a dax override driverDan Williams1-5/+140
Introduce the 'new_id' concept for enabling a custom device-driver attach policy for dax-bus drivers. The intended use is to have a mechanism for hot-plugging device-dax ranges into the page allocator on-demand. With this in place the default policy of using device-dax for performance differentiated memory can be overridden by user-space policy that can arrange for the memory range to be managed as 'System RAM' with user-defined NUMA and other performance attributes. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07device-dax: Move resource pinning+mapping into the common driverDan Williams1-1/+5
Move the responsibility of calling devm_request_resource() and devm_memremap_pages() into the common device-dax driver. This is another preparatory step to allowing an alternate personality driver for a device-dax range. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07device-dax: Introduce bus + driver modelDan Williams1-8/+125
In support of multiple device-dax instances per device-dax-region and allowing the 'kmem' driver to attach to dax-instances instead of the current device-node access, convert the dax sub-system from a class to a bus. Recall that the kmem driver takes reserved / special purpose memories and assigns them to be managed by the core-mm. Aside from the fact the device-dax instances are registered and probed on a bus, two other lifetime-management changes are made: 1/ Delay attaching a cdev until driver probe time 2/ A new run_dax() helper is introduced to allow restoring dax-operation after a kill_dax() event. So, at driver ->probe() time we run_dax() and at ->remove() time we kill_dax() and invalidate all mappings. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-01-07device-dax: Start defining a dax bus modelDan Williams1-0/+174
Towards eliminating the dax_class, move the dax-device-attribute enabling to a new bus.c file in the core. The amount of code thrash of sub-sequent patches is reduced as no logic changes are made, just pure code movement. A temporary export of unregister_dex_dax() and dax_attribute_groups is needed to preserve compilation, but those symbols become static again in a follow-on patch. Signed-off-by: Dan Williams <dan.j.williams@intel.com>