Age | Commit message (Collapse) | Author | Files | Lines |
|
Avoid doing the same assignment in both branches of a conditional,
do it after the whole conditional instead.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Make intel_pstate take the new CPUFREQ_GOV_STRICT_TARGET governor
flag into account when it operates in the passive mode with HWP
enabled, so as to fix the "powersave" governor behavior in that
case (currently, HWP is allowed to scale the performance all the
way up to the policy max limit when the "powersave" governor is
used, but it should be constrained to the policy min limit then).
Fixes: f6ebbcf08f37 ("cpufreq: intel_pstate: Implement passive mode with HWP enabled")
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: 9a2a9ebc0a75 cpufreq: Introduce governor flags
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: 218f66870181 cpufreq: Introduce CPUFREQ_GOV_STRICT_TARGET
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: ea9364bbadf1 cpufreq: Add strict_target to struct cpufreq_policy
|
|
If the cpufreq policy max limit is changed when intel_pstate operates
in the passive mode with HWP enabled and the "powersave" governor is
used on top of it, the HWP max limit is not updated as appropriate.
Namely, in the "powersave" governor case, the target P-state
is always equal to the policy min limit, so if the latter does
not change, intel_cpufreq_adjust_hwp() is not invoked to update
the HWP Request MSR due to the "target_pstate != old_pstate" check
in intel_cpufreq_update_pstate(), so the HWP max limit is not
updated as a result.
Also, if the CPUFREQ_NEED_UPDATE_LIMITS flag is not set for the
driver and the target frequency does not change along with the
policy max limit, the "target_freq == policy->cur" check in
__cpufreq_driver_target() prevents the driver's ->target() callback
from being invoked at all, so the HWP max limit is not updated.
To prevent that occurring, set the CPUFREQ_NEED_UPDATE_LIMITS flag
in the intel_cpufreq driver structure if HWP is enabled and modify
intel_cpufreq_update_pstate() to do the "target_pstate != old_pstate"
check only in the non-HWP case and let intel_cpufreq_adjust_hwp()
always run in the HWP case (it will update HWP Request only if the
cached value of the register is different from the new one including
the limits, so if neither the target P-state value nor the max limit
changes, the register write will still be avoided).
Fixes: f6ebbcf08f37 ("cpufreq: intel_pstate: Implement passive mode with HWP enabled")
Reported-by: Zhang Rui <rui.zhang@intel.com>
Cc: 5.9+ <stable@vger.kernel.org> # 5.9+: 1c534352f47f cpufreq: Introduce CPUFREQ_NEED_UPDATE_LIMITS ...
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
|
|
driver
There is a corner case that if the intel_pstate driver fails to be
registered (might be due to invalid MSR access) and acpi_cpufreq
takse over, the intel_pstate sysfs interface is still populated
which may confuse user space (turbostat for example):
grep . /sys/devices/system/cpu/cpu0/cpufreq/scaling_driver
acpi-cpufreq
grep . /sys/devices/system/cpu/intel_pstate/*
/sys/devices/system/cpu/intel_pstate/max_perf_pct:0
/sys/devices/system/cpu/intel_pstate/min_perf_pct:0
grep: /sys/devices/system/cpu/intel_pstate/no_turbo: Resource temporarily unavailable
grep: /sys/devices/system/cpu/intel_pstate/num_pstates: Resource temporarily unavailable
/sys/devices/system/cpu/intel_pstate/status:off
grep: /sys/devices/system/cpu/intel_pstate/turbo_pct: Resource temporarily unavailable
The mere presence of the intel_pstate sysfs interface does not mean
that intel_pstate is in use (for example, echo "off" to "status"),
but it should not be created in the failing case.
Fix this issue by deleting the intel_pstate sysfs if the driver
registration fails.
Reported-by: Wendy Wang <wendy.wang@intel.com>
Suggested-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com
[ rjw: Refactor code to avoid jumps, change function name, changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Fix missing return statement when writing "off" to intel_pstate status
sysfs I/F.
Fixes: 55671ea3257a ("cpufreq: intel_pstate: Free memory only when turning off")
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This fixes the behavior of the scaling_max_freq and scaling_min_freq
sysfs files in systems which had turbo disabled by the BIOS.
Caleb noticed that the HWP is programmed to operate in the wrong
P-state range on his system when the CPUFREQ policy min/max frequency
is set via sysfs. This seems to be because in his system
intel_pstate_get_hwp_max() is returning the maximum turbo P-state even
though turbo was disabled by the BIOS, which causes intel_pstate to
scale kHz frequencies incorrectly e.g. setting the maximum turbo
frequency whenever the maximum guaranteed frequency is requested via
sysfs.
Tested-by: Caleb Callaway <caleb.callaway@intel.com>
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Minor subject edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
When intel_pstate switches the operation mode from "active" to
"passive" or the other way around, freeing its data structures
representing CPUs and allocating them again from scratch is not
necessary and wasteful. Moreover, if these data structures are
preserved, the cached HWP Request MSR value from there may be
written to the MSR to start with to reinitialize it and help to
restore the EPP value set previously (it is set to 0xFF when CPUs
go offline to allow their SMT siblings to use the full range of
EPP values and that also happens when the driver gets unregistered).
Accordingly, modify the driver to only do a full cleanup on driver
object registration errors and when its status is changed to "off"
via sysfs and to write the cached HWP Request MSR value back to
the MSR on CPU init if the data structure representing the given
CPU is still there.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Add ->offline and ->online driver callbacks to prepare for taking a
CPU offline and to restore its working configuration when it goes
back online, respectively, to avoid invoking the ->init callback on
every CPU online which is quite a bit of unnecessary overhead.
Define ->offline and ->online so that they can be used in the
passive mode as well as in the active mode and because ->offline
will do the majority of ->stop_cpu work, the passive mode does
not need that callback any more, so drop it from there.
Also modify the active mode ->suspend and ->resume callbacks to
prevent them from interfering with the new ->offline and ->online
ones in case the latter are invoked withing the system-wide suspend
and resume code flow and make the passive mode use them too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Modify the EPP sysfs interface to reject attempts to change the EPP
to values different from 0 ("performance") in the active mode with
the "performance" policy (ie. scaling_governor set to "performance"),
to avoid situations in which the kernel appears to discard data
passed to it via the EPP sysfs attribute.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Make intel_pstate update the cached EPP value when setting the EPP
via sysfs in the active mode just like it is the case in the passive
mode, for consistency, but also for the benefit of subsequent
changes.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
After commit f6ebbcf08f37 ("cpufreq: intel_pstate: Implement passive
mode with HWP enabled") it is possible to change the driver status
to "off" via sysfs with HWP enabled, which effectively causes the
driver to unregister itself, but HWP remains active and it forces the
minimum performance, so even if another cpufreq driver is loaded,
it will not be able to control the CPU frequency.
For this reason, make the driver refuse to change the status to
"off" with HWP enabled.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
|
|
Allow intel_pstate to work in the passive mode with HWP enabled and
make it set the HWP minimum performance limit (HWP floor) to the
P-state value given by the target frequency supplied by the cpufreq
governor, so as to prevent the HWP algorithm and the CPU scheduler
from working against each other, at least when the schedutil governor
is in use, and update the intel_pstate documentation accordingly.
Among other things, this allows utilization clamps to be taken
into account, at least to a certain extent, when intel_pstate is
in use and makes it more likely that sufficient capacity for
deadline tasks will be provided.
After this change, the resulting behavior of an HWP system with
intel_pstate in the passive mode should be close to the behavior
of the analogous non-HWP system with intel_pstate in the passive
mode, except that the HWP algorithm is generally allowed to make the
CPU run at a frequency above the floor P-state set by intel_pstate in
the entire available range of P-states, while without HWP a CPU can
run in a P-state above the requested one if the latter falls into the
range of turbo P-states (referred to as the turbo range) or if the
P-states of all CPUs in one package are coordinated with each other
at the hardware level.
[Note that in principle the HWP floor may not be taken into account
by the processor if it falls into the turbo range, in which case the
processor has a license to choose any P-state, either below or above
the HWP floor, just like a non-HWP processor in the case when the
target P-state falls into the turbo range.]
With this change applied, intel_pstate in the passive mode assumes
complete control over the HWP request MSR and concurrent changes of
that MSR (eg. via the direct MSR access interface) are overridden by
it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Reviewed-by: Francisco Jerez <currojerez@riseup.net>
|
|
The MSR_TURBO_RATIO_LIMIT can be 0. This is not an error. User can update
this MSR via BIOS settings on some systems or can use msr tools to update.
Also some systems boot with value = 0.
This results in display of cpufreq/cpuinfo_max_freq wrong. This value
will be equal to cpufreq/base_frequency, even though turbo is enabled.
But platform will still function normally in HWP mode as we get max
1-core frequency from the MSR_HWP_CAPABILITIES. This MSR is already used
to calculate cpu->pstate.turbo_freq, which is used for to set
policy->cpuinfo.max_freq. But some other places cpu->pstate.turbo_pstate
is used. For example to set policy->max.
To fix this, also update cpu->pstate.turbo_pstate when updating
cpu->pstate.turbo_freq.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Because intel_pstate_set_energy_pref_index() reads and writes the
MSR_HWP_REQUEST register without using the cached value of it used by
intel_pstate_hwp_boost_up() and intel_pstate_hwp_boost_down(), those
functions may overwrite the value written by it and so the EPP value
set via sysfs may be lost.
To avoid that, make intel_pstate_set_energy_pref_index() take the
cached value of MSR_HWP_REQUEST just like the other two routines
mentioned above and update it with the new EPP value coming from
user space in addition to updating the MSR.
Note that the MSR itself still needs to be updated too in case
hwp_boost is unset or the boosting mechanism is not active at the
EPP change time.
Fixes: e0efd5be63e8 ("cpufreq: intel_pstate: Add HWP boost utility and sched util hooks")
Reported-by: Francisco Jerez <currojerez@riseup.net>
Cc: 4.18+ <stable@vger.kernel.org> # 4.18+: 3da97d4db8ee cpufreq: intel_pstate: Rearrange ...
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Francisco Jerez <currojerez@riseup.net>
|
|
Move the locking away from intel_pstate_set_energy_pref_index()
into its only caller and drop the (now redundant) return_pref label
from it.
Also move the "raw" EPP value check into the caller of that function,
so as to do it before acquiring the mutex, and reduce code duplication
related to the "raw" EPP values processing somewhat.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Francisco Jerez <currojerez@riseup.net>
|
|
|
|
Although there are processors supporting hardware-managed P-states
(HWP) without the energy-performance preference (EPP) feature, they
are not expected to be run with HWP enabled (the BIOS should disable
HWP on those systems). Missing EPP support generally indicates an
incomplete HWP implementation and so it is better to avoid using
HWP on those systems in production.
However, intel_pstate currently enables HWP on such systems, which
is questionable, so prevent it from doing that by making it check
EPP support before enabling HWP and avoid enabling it if EPP is not
supported by the processor at hand.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The kerneldoc description of the aperf_mperf_shift field in
struct global_params is unclear and there is a typo in it, so
simplify it and clean it up.
Reported-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Lee Jones <lee.jones@linaro.org>
|
|
get_aperf_mperf_shift()
Fixes the following W=1 kernel build warning(s):
drivers/cpufreq/intel_pstate.c:293: warning: Function parameter or member 'get_aperf_mperf_shift' not described in 'pstate_funcs'
Suggested-by: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
[ rjw: Remove line break ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
If intel_pstate starts in the passive mode by default (that happens
when the processor in the system doesn't support HWP), passing
intel_pstate=active in the kernel command line doesn't work, so
fix that.
Fixes: 33aa46f252c7 ("cpufreq: intel_pstate: Use passive mode by default without HWP")
Reported-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Doug Smythies <dsmythies@telus.net>
|
|
Fix warning for:
drivers/cpufreq/intel_pstate.c:731 store_energy_performance_preference()
error: uninitialized symbol 'epp'.
This warning is for a case, when energy_performance_preference attribute
matches pre defined strings. In this case the value of raw epp will not
be used to set EPP bits in MSR_HWP_REQUEST. So initializing with any
value is fine.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Currently using attribute "energy_performance_preference", user space can
write one of the four per-defined preference string. These preference
strings gets mapped to a hard-coded Energy-Performance Preference (EPP) or
Energy-Performance Bias (EPB) knob.
These four values are supposed to cover broad spectrum of use cases, but
are not uniformly distributed in the range. There are number of cases,
where this is not enough. For example:
Suppose user wants more performance when connected to AC. Instead of using
default "balance performance", the "performance" setting can be used. This
changes EPP value from 0x80 to 0x00. But setting EPP to 0, results in
electrical and thermal issues on some platforms. This results in
aggressive throttling, which causes a drop in performance. But some value
between 0x80 and 0x00 results in better performance. But that value can't
be fixed as the power curve is not linear. In some cases just changing EPP
from 0x80 to 0x75 is enough to get significant performance gain.
Similarly on battery the default "balance_performance" mode can be
aggressive in power consumption. But picking up the next choice
"balance power" results in too much loss of performance, which results in
bad user experience in use cases like "Google Hangout". It was observed
that some value between these two EPP is optimal.
This change allows fine grain EPP tuning for platform like Chromebook or
for users who wants to fine tune power and performance.
Here based on the product and use cases, different EPP values can be set.
This change is similar to the change done for:
/sys/devices/system/cpu/cpu*/power/energy_perf_bias
where user has choice to write a predefined string or raw value.
The change itself is trivial. When user preference doesn't match
predefined string preferences and value is an unsigned integer and in
range, use that value for EPP. When the EPP feature is not present
writing raw value is not supported.
Suggested-by: Len Brown <lenb@kernel.org>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
By default intel_pstate the driver disables energy efficiency by setting
MSR_IA32_POWER_CTL bit 19 for Kaby Lake desktop CPU model in HWP mode.
This CPU model is also shared by Coffee Lake desktop CPUs. This allows
these systems to reach maximum possible frequency. But this adds power
penalty, which some customers don't want. They want some way to enable/
disable dynamically.
So, add an additional attribute "energy_efficiency" under
/sys/devices/system/cpu/intel_pstate/ for these CPU models. This allows
to read and write bit 19 ("Disable Energy Efficiency Optimization") in
the MSR IA32_POWER_CTL.
This attribute is present in both HWP and non-HWP mode as this has an
effect in both modes. Refer to Intel Software Developer's manual for
details.
The scope of this bit is package wide. Also these systems are single
package systems. So read/write MSR on the current CPU is enough.
The energy efficiency (EE) bit setting needs to be preserved during
suspend/resume and CPU offline/online operation. To do this:
- Restoring the EE setting from the cpufreq resume() callback, if there
is change from the system default.
- By default, don't disable EE from cpufreq init() callback for matching
CPU models. Since the scope is package wide and is a single package
system, move the disable EE calls from init() callback to
intel_pstate_init() function, which is called only once.
Suggested-by: Len Brown <lenb@kernel.org>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Add one more bit for OOB (Out Of Band) enabling of P-states.
If OOB handling of P-states is enabled, intel_pstate shouldn't load.
Currently, only "BIT(8) == 1" of the MSR MSR_MISC_PWR_MGMT is
considered as OOB, but "BIT(18) == 1" needs to be taken into
consideration as OOB condition too.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Add an empty code line, edit subject and changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
Make a note of the first time we discover the turbo mode has been
disabled by the BIOS, as otherwise we complain every time we try to
update the mode.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
After recent changes allowing scale-invariant utilization to be
used on x86, the schedutil governor on top of intel_pstate in the
passive mode should be on par with (or better than) the active mode
"powersave" algorithm of intel_pstate on systems in which
hardware-managed P-states (HWP) are not used, so it should not be
necessary to use the internal scaling algorithm in those cases.
Accordingly, modify intel_pstate to start in the passive mode by
default if the processor at hand does not support HWP of if the driver
is requested to avoid using HWP through the kernel command line.
Among other things, that will allow utilization clamps and the
support for RT/DL tasks in the schedutil governor to be utilized on
systems in which intel_pstate is used.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle are:
- Various NUMA scheduling updates: harmonize the load-balancer and
NUMA placement logic to not work against each other. The intended
result is better locality, better utilization and fewer migrations.
- Introduce Thermal Pressure tracking and optimizations, to improve
task placement on thermally overloaded systems.
- Implement frequency invariant scheduler accounting on (some) x86
CPUs. This is done by observing and sampling the 'recent' CPU
frequency average at ~tick boundaries. The CPU provides this data
via the APERF/MPERF MSRs. This hopefully makes our capacity
estimates more precise and keeps tasks on the same CPU better even
if it might seem overloaded at a lower momentary frequency. (As
usual, turbo mode is a complication that we resolve by observing
the maximum frequency and renormalizing to it.)
- Add asymmetric CPU capacity wakeup scan to improve capacity
utilization on asymmetric topologies. (big.LITTLE systems)
- PSI fixes and optimizations.
- RT scheduling capacity awareness fixes & improvements.
- Optimize the CONFIG_RT_GROUP_SCHED constraints code.
- Misc fixes, cleanups and optimizations - see the changelog for
details"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
threads: Update PID limit comment according to futex UAPI change
sched/fair: Fix condition of avg_load calculation
sched/rt: cpupri_find: Trigger a full search as fallback
kthread: Do not preempt current task if it is going to call schedule()
sched/fair: Improve spreading of utilization
sched: Avoid scale real weight down to zero
psi: Move PF_MEMSTALL out of task->flags
MAINTAINERS: Add maintenance information for psi
psi: Optimize switching tasks inside shared cgroups
psi: Fix cpu.pressure for cpu.max and competing cgroups
sched/core: Distribute tasks within affinity masks
sched/fair: Fix enqueue_task_fair warning
thermal/cpu-cooling, sched/core: Move the arch_set_thermal_pressure() API to generic scheduler code
sched/rt: Remove unnecessary push for unfit tasks
sched/rt: Allow pulling unfitting task
sched/rt: Optimize cpupri_find() on non-heterogenous systems
sched/rt: Re-instate old behavior in select_task_rq_rt()
sched/rt: cpupri_find: Implement fallback mechanism for !fit case
sched/fair: Fix reordering of enqueue/dequeue_task_fair()
sched/fair: Fix runnable_avg for throttled cfs
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- A couple of x86/cpu cleanups and changes were grandfathered in due
to patch dependencies. These clean up the set of CPU model/family
matching macros with a consistent namespace and C99 initializer
style.
- A bunch of updates to various low level PMU drivers:
* AMD Family 19h L3 uncore PMU
* Intel Tiger Lake uncore support
* misc fixes to LBR TOS sampling
- optprobe fixes
- perf/cgroup: optimize cgroup event sched-in processing
- misc cleanups and fixes
Tooling side changes are to:
- perf {annotate,expr,record,report,stat,test}
- perl scripting
- libapi, libperf and libtraceevent
- vendor events on Intel and S390, ARM cs-etm
- Intel PT updates
- Documentation changes and updates to core facilities
- misc cleanups, fixes and other enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
cpufreq/intel_pstate: Fix wrong macro conversion
x86/cpu: Cleanup the now unused CPU match macros
hwrng: via_rng: Convert to new X86 CPU match macros
crypto: Convert to new CPU match macros
ASoC: Intel: Convert to new X86 CPU match macros
powercap/intel_rapl: Convert to new X86 CPU match macros
PCI: intel-mid: Convert to new X86 CPU match macros
mmc: sdhci-acpi: Convert to new X86 CPU match macros
intel_idle: Convert to new X86 CPU match macros
extcon: axp288: Convert to new X86 CPU match macros
thermal: Convert to new X86 CPU match macros
hwmon: Convert to new X86 CPU match macros
platform/x86: Convert to new CPU match macros
EDAC: Convert to new X86 CPU match macros
cpufreq: Convert to new X86 CPU match macros
ACPI: Convert to new X86 CPU match macros
x86/platform: Convert to new CPU match macros
x86/kernel: Convert to new CPU match macros
x86/kvm: Convert to new CPU match macros
x86/perf/events: Convert to new CPU match macros
...
|
|
The initial policy value set by intel_pstate_cpu_init() depends on
whether or not CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE is set, but
that is not necessary, because the core will set the policy to
"performance" in cpufreq_init_policy() if the default governor is
"performance" anyway.
Accordingly, change intel_pstate_cpu_init() to always set policy
to CPUFREQ_POLICY_POWERSAVE initially to provide a valid fallback
value to cpufreq_init_policy() in case the default cpufreq governor
is neither "powersave" nor "performance".
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The feature flag hwp_support_ids are supposed to match on is
X86_FEATURE_HWP, not X86_FEATURE_APERFMPERF. Fix it.
[ bp: Write commit message. ]
Fixes: b11d77fa300d ("cpufreq: Convert to new X86 CPU match macros")
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200324060124.GC11705@shao2-debian
|
|
The new macro set has a consistent namespace and uses C99 initializers
instead of the grufty C89 ones.
Get rid the of most local macro wrappers for consistency. The ones which
make sense for readability are renamed to X86_MATCH*.
In the centrino driver this also removes the two extra duplicates of family
6 model 13 which have no value at all.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/87eetheu88.fsf@nanos.tec.linutronix.de
|
|
There is still some code duplication between intel_pstate_verify_policy()
and intel_cpufreq_verify_policy(), so avoid it by moving the common
code into a separate function and calling it from both these places.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
invariance
On some platforms such as the Dell XPS 13 laptop the firmware disables turbo
when the machine is disconnected from AC, and viceversa it enables it again
when it's reconnected. In these cases a _PPC ACPI notification is issued.
The scheduler needs to know freq_max for frequency-invariant calculations.
To account for turbo availability to come and go, record freq_max at boot as
if turbo was available and store it in a helper variable. Use a setter
function to swap between freq_base and freq_max every time turbo goes off or on.
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-7-ggherdovich@suse.cz
|
|
In the process of modifying a cpufreq policy, the cpufreq core makes
a copy of it including all of the internals which is stored on the
CPU stack. Because struct cpufreq_policy is relatively large, this
may cause the size of the stack frame to exceed the 2 KB limit and
so the GCC complains when -Wframe-larger-than= is used.
In fact, it is not necessary to copy the entire policy structure
in order to modify it, however.
First, because cpufreq_set_policy() obtains the min and max policy
limits from frequency QoS now, it is not necessary to pass the limits
to it from the callers. The only things that need to be passed to it
from there are the new governor pointer or (if there is a built-in
governor in the driver) the "policy" value representing the governor
choice. They both can be passed as individual arguments, though, so
make cpufreq_set_policy() take them this way and rework its callers
accordingly. This avoids making copies of cpufreq policies in the
callers of cpufreq_set_policy().
Second, cpufreq_set_policy() still needs to pass the new policy
data to the ->verify() callback of the cpufreq driver whose task
is to sanitize the min and max policy limits. It still does not
need to make a full copy of struct cpufreq_policy for this purpose,
but it needs to pass a few items from it to the driver in case they
are needed (different drivers have different needs in that respect
and all of them have to be covered). For this reason, introduce
struct cpufreq_policy_data to hold copies of the members of
struct cpufreq_policy used by the existing ->verify() driver
callbacks and pass a pointer to a temporary structure of that
type to ->verify() (instead of passing a pointer to full struct
cpufreq_policy to it).
While at it, notice that intel_pstate and longrun don't really need
to verify the "policy" value in struct cpufreq_policy, so drop those
check from them to avoid copying "policy" into struct
cpufreq_policy_data (which allows it to be slightly smaller).
Also while at it fix up white space in a couple of places and make
cpufreq_set_policy() static (as it can be so).
Fixes: 3000ce3c52f8 ("cpufreq: Use per-policy frequency QoS")
Link: https://lore.kernel.org/linux-pm/CAMuHMdX6-jb1W8uC2_237m8ctCpsnGp=JCxqt8pCWVqNXHmkVg@mail.gmail.com
Reported-by: kbuild test robot <lkp@intel.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
Fix a spelling typo in the comment, no function change.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
The max value of EPB can only be 0x0F. Attempting to set more than that
triggers an "unchecked MSR access error" warning which happens in
intel_pstate_hwp_force_min_perf() called via cpufreq stop_cpu().
However, it is not even necessary to touch the EPB from intel_pstate,
because it is restored on every CPU online by the intel_epb.c code,
so let that code do the right thing and drop the redundant (and
incorrect) EPB update from intel_pstate.
Fixes: af3b7379e2d70 ("cpufreq: intel_pstate: Force HWP min perf before offline")
Reported-by: Qian Cai <cai@lca.pw>
Cc: 5.2+ <stable@vger.kernel.org> # 5.2+
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Fix sparse warning: Using plain integer as NULL pointer.
Replace assignment of 0 to pointers with NULL assignment.
Signed-off-by: Jamal Shareef <jamal.k.shareef@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Replace the CPU device PM QoS used for the management of min and max
frequency constraints in cpufreq (and its users) with per-policy
frequency QoS to avoid problems with cpufreq policies covering
more then one CPU.
Namely, a cpufreq driver is registered with the subsys interface
which calls cpufreq_add_dev() for each CPU, starting from CPU0, so
currently the PM QoS notifiers are added to the first CPU in the
policy (i.e. CPU0 in the majority of cases).
In turn, when the cpufreq driver is unregistered, the subsys interface
doing that calls cpufreq_remove_dev() for each CPU, starting from CPU0,
and the PM QoS notifiers are only removed when cpufreq_remove_dev() is
called for the last CPU in the policy, say CPUx, which as a rule is
not CPU0 if the policy covers more than one CPU. Then, the PM QoS
notifiers cannot be removed, because CPUx does not have them, and
they are still there in the device PM QoS notifiers list of CPU0,
which prevents new PM QoS notifiers from being registered for CPU0
on the next attempt to register the cpufreq driver.
The same issue occurs when the first CPU in the policy goes offline
before unregistering the driver.
After this change it does not matter which CPU is the policy CPU at
the driver registration time and whether or not it is online all the
time, because the frequency QoS is per policy and not per CPU.
Fixes: 67d874c3b2c6 ("cpufreq: Register notifiers with the PM QoS framework")
Reported-by: Dmitry Osipenko <digetx@gmail.com>
Tested-by: Dmitry Osipenko <digetx@gmail.com>
Reported-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Diagnosed-by: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lore.kernel.org/linux-pm/5ad2624194baa2f53acc1f1e627eb7684c577a19.1562210705.git.viresh.kumar@linaro.org/T/#md2d89e95906b8c91c15f582146173dce2e86e99f
Link: https://lore.kernel.org/linux-pm/20191017094612.6tbkwoq4harsjcqv@vireshk-i7/T/#m30d48cc23b9a80467fbaa16e30f90b3828a5a29b
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These include a rework of the main suspend-to-idle code flow (related
to the handling of spurious wakeups), a switch over of several users
of cpufreq notifiers to QoS-based limits, a new devfreq driver for
Tegra20, a new cpuidle driver and governor for virtualized guests, an
extension of the wakeup sources framework to expose wakeup sources as
device objects in sysfs, and more.
Specifics:
- Rework the main suspend-to-idle control flow to avoid repeating
"noirq" device resume and suspend operations in case of spurious
wakeups from the ACPI EC and decouple the ACPI EC wakeups support
from the LPS0 _DSM support (Rafael Wysocki).
- Extend the wakeup sources framework to expose wakeup sources as
device objects in sysfs (Tri Vo, Stephen Boyd).
- Expose system suspend statistics in sysfs (Kalesh Singh).
- Introduce a new haltpoll cpuidle driver and a new matching governor
for virtualized guests wanting to do guest-side polling in the idle
loop (Marcelo Tosatti, Joao Martins, Wanpeng Li, Stephen Rothwell).
- Fix the menu and teo cpuidle governors to allow the scheduler tick
to be stopped if PM QoS is used to limit the CPU idle state exit
latency in some cases (Rafael Wysocki).
- Increase the resolution of the play_idle() argument to microseconds
for more fine-grained injection of CPU idle cycles (Daniel
Lezcano).
- Switch over some users of cpuidle notifiers to the new QoS-based
frequency limits and drop the CPUFREQ_ADJUST and CPUFREQ_NOTIFY
policy notifier events (Viresh Kumar).
- Add new cpufreq driver based on nvmem for sun50i (Yangtao Li).
- Add support for MT8183 and MT8516 to the mediatek cpufreq driver
(Andrew-sh.Cheng, Fabien Parent).
- Add i.MX8MN support to the imx-cpufreq-dt cpufreq driver (Anson
Huang).
- Add qcs404 to cpufreq-dt-platdev blacklist (Jorge Ramirez-Ortiz).
- Update the qcom cpufreq driver (among other things, to make it
easier to extend and to use kryo cpufreq for other nvmem-based
SoCs) and add qcs404 support to it (Niklas Cassel, Douglas
RAILLARD, Sibi Sankar, Sricharan R).
- Fix assorted issues and make assorted minor improvements in the
cpufreq code (Colin Ian King, Douglas RAILLARD, Florian Fainelli,
Gustavo Silva, Hariprasad Kelam).
- Add new devfreq driver for NVidia Tegra20 (Dmitry Osipenko, Arnd
Bergmann).
- Add new Exynos PPMU events to devfreq events and extend that
mechanism (Lukasz Luba).
- Fix and clean up the exynos-bus devfreq driver (Kamil Konieczny).
- Improve devfreq documentation and governor code, fix spelling typos
in devfreq (Ezequiel Garcia, Krzysztof Kozlowski, Leonard Crestez,
MyungJoo Ham, Gaël PORTAY).
- Add regulators enable and disable to the OPP (operating performance
points) framework (Kamil Konieczny).
- Update the OPP framework to support multiple opp-suspend properties
(Anson Huang).
- Fix assorted issues and make assorted minor improvements in the OPP
code (Niklas Cassel, Viresh Kumar, Yue Hu).
- Clean up the generic power domains (genpd) framework (Ulf Hansson).
- Clean up assorted pieces of power management code and documentation
(Akinobu Mita, Amit Kucheria, Chuhong Yuan).
- Update the pm-graph tool to version 5.5 including multiple fixes
and improvements (Todd Brandt).
- Update the cpupower utility (Benjamin Weis, Geert Uytterhoeven,
Sébastien Szymanski)"
* tag 'pm-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (126 commits)
cpuidle-haltpoll: Enable kvm guest polling when dedicated physical CPUs are available
cpuidle-haltpoll: do not set an owner to allow modunload
cpuidle-haltpoll: return -ENODEV on modinit failure
cpuidle-haltpoll: set haltpoll as preferred governor
cpuidle: allow governor switch on cpuidle_register_driver()
PM: runtime: Documentation: add runtime_status ABI document
pm-graph: make setVal unbuffered again for python2 and python3
powercap: idle_inject: Use higher resolution for idle injection
cpuidle: play_idle: Increase the resolution to usec
cpuidle-haltpoll: vcpu hotplug support
cpufreq: Add qcs404 to cpufreq-dt-platdev blacklist
cpufreq: qcom: Add support for qcs404 on nvmem driver
cpufreq: qcom: Refactor the driver to make it easier to extend
cpufreq: qcom: Re-organise kryo cpufreq to use it for other nvmem based qcom socs
dt-bindings: opp: Add qcom-opp bindings with properties needed for CPR
dt-bindings: opp: qcom-nvmem: Support pstates provided by a power domain
Documentation: cpufreq: Update policy notifier documentation
cpufreq: Remove CPUFREQ_ADJUST and CPUFREQ_NOTIFY policy notifier events
PM / Domains: Verify PM domain type in dev_pm_genpd_set_performance_state()
PM / Domains: Simplify genpd_lookup_dev()
...
|
|
Currently big microservers have _XEON_D while small microservers have
_X, Make it uniformly: _D.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(X\|XEON_D\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*ATOM.*\)_X/\1_D/g' \
-e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_XEON_D/\1_D/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.677152989@infradead.org
|
|
Currently big core clients with extra graphics on have:
- _G
- _GT3E
Make it uniformly: _G
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_GT3E"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_GT3E/\1_G/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20190827195122.622802314@infradead.org
|
|
Currently big core mobile chips have either:
- _L
- _ULT
- _MOBILE
Make it uniformly: _L.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(MOBILE\|ULT\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(MOBILE\|ULT\)/\1_L/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.568978530@infradead.org
|
|
Currently the big core client models either have:
- no OPTDIFF
- _CORE
- _DESKTOP
Make it uniformly: 'no OPTDIFF'.
for i in `git grep -l "\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*_\(CORE\|DESKTOP\)"`
do
sed -i -e 's/\(\(INTEL_FAM6_\|VULNWL_INTEL\|INTEL_CPU_FAM6\).*\)_\(CORE\|DESKTOP\)/\1/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190827195122.513945586@infradead.org
|
|
Intel pstate driver exposes min_perf_pct and max_perf_pct sysfs files,
which can be used to force a limit on the min/max P state of the driver.
Though these files eventually control the min/max frequencies that the
CPUs will run at, they don't make a change to policy->min/max values.
When the values of these files are changed (in passive mode of the
driver), it leads to calling ->limits() callback of the cpufreq
governors, like schedutil. On a call to it the governors shall
forcefully update the frequency to come within the limits. Since the
limits, i.e. policy->min/max, aren't updated by the driver, the
governors fails to get the target freq within limit and sometimes aborts
the update believing that the frequency is already set to the target
value.
This patch implements the QoS supported frequency constraints to update
policy->min/max values whenever min_perf_pct or max_perf_pct files are
updated. This is only done for the passive mode as of now, as the driver
is already working fine in active mode.
Fixes: ecd288429126 ("cpufreq: schedutil: Don't set next_freq to UINT_MAX")
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The implementation of intel_pstate_update_max_freq() is quite similar to
refresh_frequency_limits(), lets reuse it.
Finding minimum of policy->user_policy.max and policy->cpuinfo.max_freq
in intel_pstate_update_max_freq() is redundant as cpufreq_set_policy()
will call the ->verify() callback of intel-pstate driver, which will do
this comparison anyway and so dropping it from
intel_pstate_update_max_freq() doesn't harm.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation version 2 of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 315 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531190115.503150771@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|