Age | Commit message (Collapse) | Author | Files | Lines |
|
Let's make it clearer at which places we actually add and remove memory
blocks -- streamlining the terminology -- and highlight which memory block
start out online and which start out as offline.
* rename add_memory_block -> add_boot_memory_block
* rename init_memory_block -> add_memory_block
* rename unregister_memory -> remove_memory_block
* rename register_memory -> __add_memory_block
* add add_hotplug_memory_block
* mark add_boot_memory_block with __init (suggested by Oscar)
__add_memory_block() is a pure helper for add_memory_block(), remove
the somewhat obvious comment.
Link: https://lkml.kernel.org/r/20220221154531.11382-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
test_pages_in_a_zone() is just another nasty PFN walker that can easily
stumble over ZONE_DEVICE memory ranges falling into the same memory block
as ordinary system RAM: the memmap of parts of these ranges might possibly
be uninitialized. In fact, we observed (on an older kernel) with UBSAN:
UBSAN: Undefined behaviour in ./include/linux/mm.h:1133:50
index 7 is out of range for type 'zone [5]'
CPU: 121 PID: 35603 Comm: read_all Kdump: loaded Tainted: [...]
Hardware name: Dell Inc. PowerEdge R7425/08V001, BIOS 1.12.2 11/15/2019
Call Trace:
dump_stack+0x9a/0xf0
ubsan_epilogue+0x9/0x7a
__ubsan_handle_out_of_bounds+0x13a/0x181
test_pages_in_a_zone+0x3c4/0x500
show_valid_zones+0x1fa/0x380
dev_attr_show+0x43/0xb0
sysfs_kf_seq_show+0x1c5/0x440
seq_read+0x49d/0x1190
vfs_read+0xff/0x300
ksys_read+0xb8/0x170
do_syscall_64+0xa5/0x4b0
entry_SYSCALL_64_after_hwframe+0x6a/0xdf
RIP: 0033:0x7f01f4439b52
We seem to stumble over a memmap that contains a garbage zone id. While
we could try inserting pfn_to_online_page() calls, it will just make
memory offlining slower, because we use test_pages_in_a_zone() to make
sure we're offlining pages that all belong to the same zone.
Let's just get rid of this PFN walker and determine the single zone of a
memory block -- if any -- for early memory blocks during boot. For memory
onlining, we know the single zone already. Let's avoid any additional
memmap scanning and just rely on the zone information available during
boot.
For memory hot(un)plug, we only really care about memory blocks that:
* span a single zone (and, thereby, a single node)
* are completely System RAM (IOW, no holes, no ZONE_DEVICE)
If one of these conditions is not met, we reject memory offlining.
Hotplugged memory blocks (starting out offline), always meet both
conditions.
There are three scenarios to handle:
(1) Memory hot(un)plug
A memory block with zone == NULL cannot be offlined, corresponding to
our previous test_pages_in_a_zone() check.
After successful memory onlining/offlining, we simply set the zone
accordingly.
* Memory onlining: set the zone we just used for onlining
* Memory offlining: set zone = NULL
So a hotplugged memory block starts with zone = NULL. Once memory
onlining is done, we set the proper zone.
(2) Boot memory with !CONFIG_NUMA
We know that there is just a single pgdat, so we simply scan all zones
of that pgdat for an intersection with our memory block PFN range when
adding the memory block. If more than one zone intersects (e.g., DMA and
DMA32 on x86 for the first memory block) we set zone = NULL and
consequently mimic what test_pages_in_a_zone() used to do.
(3) Boot memory with CONFIG_NUMA
At the point in time we create the memory block devices during boot, we
don't know yet which nodes *actually* span a memory block. While we could
scan all zones of all nodes for intersections, overlapping nodes complicate
the situation and scanning all nodes is possibly expensive. But that
problem has already been solved by the code that sets the node of a memory
block and creates the link in the sysfs --
do_register_memory_block_under_node().
So, we hook into the code that sets the node id for a memory block. If
we already have a different node id set for the memory block, we know
that multiple nodes *actually* have PFNs falling into our memory block:
we set zone = NULL and consequently mimic what test_pages_in_a_zone() used
to do. If there is no node id set, we do the same as (2) for the given
node.
Note that the call order in driver_init() is:
-> memory_dev_init(): create memory block devices
-> node_dev_init(): link memory block devices to the node and set the
node id
So in summary, we detect if there is a single zone responsible for this
memory block and we consequently store the zone in that case in the
memory block, updating it during memory onlining/offlining.
Link: https://lkml.kernel.org/r/20220210184359.235565-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Rafael Parra <rparrazo@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rafael Parra <rparrazo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
succeeded
If register_memory() fails, we freed the memory block but already added
the memory block to the group list, not good. Let's defer adding the
block to the memory group to after registering the memory block device.
We do handle it properly during unregister_memory(), but that's not
called when the registration fails.
Link: https://lkml.kernel.org/r/20220128144540.153902-1-david@redhat.com
Fixes: 028fc57a1c36 ("drivers/base/memory: introduce "memory groups" to logically group memory blocks")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the hwpoison page meets the filter conditions, it should not be
regarded as successful memory_failure() processing for mce handler, but
should return a distinct value, otherwise mce handler regards the error
page has been identified and isolated, which may lead to calling
set_mce_nospec() to change page attribute, etc.
Here memory_failure() return -EOPNOTSUPP to indicate that the error
event is filtered, mce handler should not take any action for this
situation and hwpoison injector should treat as correct.
Link: https://lkml.kernel.org/r/20220223082135.2769649-1-luofei@unicloud.com
Signed-off-by: luofei <luofei@unicloud.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge more updates from Andrew Morton:
"147 patches, based on 7d2a07b769330c34b4deabeed939325c77a7ec2f.
Subsystems affected by this patch series: mm (memory-hotplug, rmap,
ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
selftests, ipc, and scripts"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
scripts: check_extable: fix typo in user error message
mm/workingset: correct kernel-doc notations
ipc: replace costly bailout check in sysvipc_find_ipc()
selftests/memfd: remove unused variable
Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
configs: remove the obsolete CONFIG_INPUT_POLLDEV
prctl: allow to setup brk for et_dyn executables
pid: cleanup the stale comment mentioning pidmap_init().
kernel/fork.c: unexport get_{mm,task}_exe_file
coredump: fix memleak in dump_vma_snapshot()
fs/coredump.c: log if a core dump is aborted due to changed file permissions
nilfs2: use refcount_dec_and_lock() to fix potential UAF
nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
nilfs2: fix NULL pointer in nilfs_##name##_attr_release
nilfs2: fix memory leak in nilfs_sysfs_create_device_group
trap: cleanup trap_init()
init: move usermodehelper_enable() to populate_rootfs()
...
|
|
policy
Currently, the "auto-movable" online policy does not allow for hotplugged
KERNEL (ZONE_NORMAL) memory to increase the amount of MOVABLE memory we
can have, primarily, because there is no coordiantion across memory
devices and we don't want to create zone-imbalances accidentially when
unplugging memory.
However, within a single memory device it's different. Let's allow for
KERNEL memory within a dynamic memory group to allow for more MOVABLE
within the same memory group. The only thing we have to take care of is
that the managing driver avoids zone imbalances by unplugging MOVABLE
memory first, otherwise there can be corner cases where unplug of memory
could result in (accidential) zone imbalances.
virtio-mem is the only user of dynamic memory groups and recently added
support for prioritizing unplug of ZONE_MOVABLE over ZONE_NORMAL, so we
don't need a new toggle to enable it for dynamic memory groups.
We limit this handling to dynamic memory groups, because:
* We want to keep the runtime overhead for collecting stats when
onlining a single memory block small. We tend to have only a handful of
dynamic memory groups, but we can have quite some static memory groups
(e.g., 256 DIMMs).
* It doesn't make too much sense for static memory groups, as we try
onlining all applicable memory blocks either completely to ZONE_MOVABLE
or not. In ordinary operation, we won't have a mixture of zones within
a static memory group.
When adding memory to a dynamic memory group, we'll first online memory to
ZONE_MOVABLE as long as early KERNEL memory allows for it. Then, we'll
online the next unit(s) to ZONE_NORMAL, until we can online the next
unit(s) to ZONE_MOVABLE.
For a simple virtio-mem device with a MOVABLE:KERNEL ratio of 3:1, it will
result in a layout like:
[M][M][M][M][M][M][M][M][N][M][M][M][N][M][M][M]...
^ movable memory due to early kernel memory
^ allows for more movable memory ...
^-----^ ... here
^ allows for more movable memory ...
^-----^ ... here
While the created layout is sub-optimal when it comes to contiguous zones,
it gives us the maximum flexibility when dynamically growing/shrinking a
device; we can grow small VMs really big in small steps, and still shrink
reliably to e.g., 1/4 of the maximum VM size in this example, removing
full memory blocks along with meta data more reliably.
Mark dynamic memory groups in the xarray such that we can efficiently
iterate over them when collecting stats. In usual setups, we have one
virtio-mem device per NUMA node, and usually only a small number of NUMA
nodes.
Note: for now, there seems to be no compelling reason to make this
behavior configurable.
Link: https://lkml.kernel.org/r/20210806124715.17090-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use memory groups to improve our "auto-movable" onlining policy:
1. For static memory groups (e.g., a DIMM), online a memory block MOVABLE
only if all other memory blocks in the group are either MOVABLE or could
be onlined MOVABLE. A DIMM will either be MOVABLE or not, not a mixture.
2. For dynamic memory groups (e.g., a virtio-mem device), online a
memory block MOVABLE only if all other memory blocks inside the
current unit are either MOVABLE or could be onlined MOVABLE. For a
virtio-mem device with a device block size with 512 MiB, all 128 MiB
memory blocks wihin a 512 MiB unit will either be MOVABLE or not, not
a mixture.
We have to pass the memory group to zone_for_pfn_range() to take the
memory group into account.
Note: for now, there seems to be no compelling reason to make this
behavior configurable.
Link: https://lkml.kernel.org/r/20210806124715.17090-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's track all present pages in each memory group. Especially, track
memory present in ZONE_MOVABLE and memory present in one of the kernel
zones (which really only is ZONE_NORMAL right now as memory groups only
apply to hotplugged memory) separately within a memory group, to prepare
for making smart auto-online decision for individual memory blocks within
a memory group based on group statistics.
Link: https://lkml.kernel.org/r/20210806124715.17090-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In our "auto-movable" memory onlining policy, we want to make decisions
across memory blocks of a single memory device. Examples of memory
devices include ACPI memory devices (in the simplest case a single DIMM)
and virtio-mem. For now, we don't have a connection between a single
memory block device and the real memory device. Each memory device
consists of 1..X memory block devices.
Let's logically group memory blocks belonging to the same memory device in
"memory groups". Memory groups can span multiple physical ranges and a
memory group itself does not contain any information regarding physical
ranges, only properties (e.g., "max_pages") necessary for improved memory
onlining.
Introduce two memory group types:
1) Static memory group: E.g., a single ACPI memory device, consisting
of 1..X memory resources. A memory group consists of 1..Y memory
blocks. The whole group is added/removed in one go. If any part
cannot get offlined, the whole group cannot be removed.
2) Dynamic memory group: E.g., a single virtio-mem device. Memory is
dynamically added/removed in a fixed granularity, called a "unit",
consisting of 1..X memory blocks. A unit is added/removed in one go.
If any part of a unit cannot get offlined, the whole unit cannot be
removed.
In case of 1) we usually want either all memory managed by ZONE_MOVABLE or
none. In case of 2) we usually want to have as many units as possible
managed by ZONE_MOVABLE. We want a single unit to be of the same type.
For now, memory groups are an internal concept that is not exposed to user
space; we might want to change that in the future, though.
add_memory() users can specify a mgid instead of a nid when passing the
MHP_NID_IS_MGID flag.
Link: https://lkml.kernel.org/r/20210806124715.17090-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.
I. Goal
The goal of this series is improving in-kernel auto-online support. It
tackles the fundamental problems that:
1) We can create zone imbalances when onlining all memory blindly to
ZONE_MOVABLE, in the worst case crashing the system. We have to know
upfront how much memory we are going to hotplug such that we can
safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
via "online_movable". This is far from practical and only applicable in
limited setups -- like inside VMs under the RHV/oVirt hypervisor which
will never hotplug more than 3 times the boot memory (and the
limitation is only in place due to the Linux limitation).
2) We see more setups that implement dynamic VM resizing, hot(un)plugging
memory to resize VM memory. In these setups, we might hotplug a lot of
memory, but it might happen in various small steps in both directions
(e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
primary driver of this upstream right now, performing such dynamic
resizing NUMA-aware via multiple virtio-mem devices.
Onlining all hotplugged memory to ZONE_NORMAL means we basically have
no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
easily run into zone imbalances when growing a VM. We want a mixture,
and we want as much memory as reasonable/configured in ZONE_MOVABLE.
Details regarding zone imbalances can be found at [1].
3) Memory devices consist of 1..X memory block devices, however, the
kernel doesn't really track the relationship. Consequently, also user
space has no idea. We want to make per-device decisions.
As one example, for memory hotunplug it doesn't make sense to use a
mixture of zones within a single DIMM: we want all MOVABLE if
possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
block the whole DIMM from getting hotunplugged.
As another example, virtio-mem operates on individual units that span
1..X memory blocks. Similar to a DIMM, we want a unit to either be all
MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
all units of a virtio-mem device logically belong together and are
managed (added/removed) by a single driver. We want as much memory of
a virtio-mem device to be MOVABLE as possible.
4) We want memory onlining to be done right from the kernel while adding
memory, not triggered by user space via udev rules; for example, this
is reqired for fast memory hotplug for drivers that add individual
memory blocks, like virito-mem. We want a way to configure a policy in
the kernel and avoid implementing advanced policies in user space.
The auto-onlining support we have in the kernel is not sufficient. All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online). This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.
II. Approach
This series does 3 things:
1) Introduces the "auto-movable" online policy that initially operates on
individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
to make a decision whether a memory block will be onlined to
ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
memory does not allow for more MOVABLE memory (details in the
patches). CMA memory is treated like MOVABLE memory.
2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
groups and uses group information to make decisions in the
"auto-movable" online policy across memory blocks of a single memory
device (modeled as memory group). More details can be found in patch
#3 or in the DIMM example below.
3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
allowing ZONE_NORMAL memory within a dynamic memory group to allow for
more ZONE_MOVABLE memory within the same memory group. The target use
case is dynamic VM resizing using virtio-mem. See the virtio-mem
example below.
I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).
For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.
III. Target Usage
The target usage will be:
1) Linux boots with "mhp_default_online_type=offline"
2) User space (e.g., systemd unit) configures memory onlining (according
to a config file and system properties), for example:
* Setting memory_hotplug.online_policy=auto-movable
* Setting memory_hotplug.auto_movable_ratio=301
* Setting memory_hotplug.auto_movable_numa_aware=true
3) User space enabled auto onlining via "echo online >
/sys/devices/system/memory/auto_online_blocks"
4) User space triggers manual onlining of all already-offline memory
blocks (go over offline memory blocks and set them to "online")
IV. Example
For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-79: Movable (DIMM 0)
Memory block 80-111: Movable (DIMM 1)
Memory block 112-143: Movable (DIMM 2)
Memory block 144-275: Normal (DIMM 3)
Memory block 176-207: Normal (DIMM 4)
... all Normal
(-> hotplugged Normal memory does not allow for more Movable memory)
For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-143: Movable (virtio-mem, first 12 GiB)
Memory block 144: Normal (virtio-mem, next 128 MiB)
Memory block 145-147: Movable (virtio-mem, next 384 MiB)
Memory block 148: Normal (virtio-mem, next 128 MiB)
Memory block 149-151: Movable (virtio-mem, next 384 MiB)
... Normal/Movable mixture as above
(-> hotplugged Normal memory allows for more Movable memory within
the same device)
Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.
V. Doc Update
I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.
VI. Future Work
1) Use memory groups for ppc64 dlpar
2) Being able to specify a portion of (early) kernel memory that will be
excluded from the ratio. Like "128 MiB globally/per node" are excluded.
This might be helpful when starting VMs with extremely small memory
footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
the first hotplugged units getting onlined to ZONE_MOVABLE. One
alternative would be a trigger to not consider ZONE_DMA memory
in the ratio. We'll have to see if this is really rrequired.
3) Indicate to user space that MOVABLE might be a bad idea -- especially
relevant when memory ballooning without support for balloon compaction
is active.
This patch (of 9):
For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages. Let's track these pages per zone.
Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.
It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early". add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.
Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With CONFIG_SPARSEMEM_EXTREME enabled, __section_nr() which converts
mem_section to section_nr could be costly since it iterates all section
roots to check if the given mem_section is in its range.
On the other hand, __nr_to_section() which converts section_nr to
mem_section can be done in O(1).
Let's pass section_nr instead of mem_section ptr to find_memory_block() in
order to reduce needless iterations.
Link: https://lkml.kernel.org/r/20210707150212.855-3-ohoono.kwon@samsung.com
Signed-off-by: Ohhoon Kwon <ohoono.kwon@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We need the driver core fix in here as well.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
aarch64
offline_pages() properly checks for memory holes and bails out.
However, we do a page_zone(pfn_to_page(start_pfn)) before calling
offline_pages() when offlining a memory block.
We should not unconditionally call page_zone(pfn_to_page(start_pfn)) on
aarch64 in offlining code, otherwise we can trigger a BUG when hitting a
memory hole:
kernel BUG at include/linux/mm.h:1383!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in: loop processor efivarfs ip_tables x_tables ext4 mbcache jbd2 dm_mod igb nvme i2c_algo_bit mlx5_core i2c_core nvme_core firmware_class
CPU: 13 PID: 1694 Comm: ranbug Not tainted 5.12.0-next-20210524+ #4
Hardware name: MiTAC RAPTOR EV-883832-X3-0001/RAPTOR, BIOS 1.6 06/28/2020
pstate: 60000005 (nZCv daif -PAN -UAO -TCO BTYPE=--)
pc : memory_subsys_offline+0x1f8/0x250
lr : memory_subsys_offline+0x1f8/0x250
Call trace:
memory_subsys_offline+0x1f8/0x250
device_offline+0x154/0x1d8
online_store+0xa4/0x118
dev_attr_store+0x44/0x78
sysfs_kf_write+0xe8/0x138
kernfs_fop_write_iter+0x26c/0x3d0
new_sync_write+0x2bc/0x4f8
vfs_write+0x718/0xc88
ksys_write+0xf8/0x1e0
__arm64_sys_write+0x74/0xa8
invoke_syscall.constprop.0+0x78/0x1e8
do_el0_svc+0xe4/0x298
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb8
el0_sync+0x178/0x180
Kernel panic - not syncing: Oops - BUG: Fatal exception
SMP: stopping secondary CPUs
Kernel Offset: disabled
CPU features: 0x00000251,20000846
Memory Limit: none
If nr_vmemmap_pages is set, we know that we are dealing with hotplugged
memory that doesn't have any holes. So call
page_zone(pfn_to_page(start_pfn)) only when really necessary -- when
nr_vmemmap_pages is set and we actually adjust the present pages.
Link: https://lkml.kernel.org/r/20210526075226.5572-1-david@redhat.com
Fixes: a08a2ae34613 ("mm,memory_hotplug: allocate memmap from the added memory range")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Qian Cai (QUIC) <quic_qiancai@quicinc.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These are only used by putting their address in an array of pointers to
const struct attribute_group (either directly or via the
__ATTRIBUTE_GROUP macro). Make them const to allow the compiler to place
them in read-only memory.
Signed-off-by: Rikard Falkeborn <rikard.falkeborn@gmail.com>
Link: https://lore.kernel.org/r/20210528213408.20067-1-rikard.falkeborn@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section. Currently, alloc_pages_node() is used
for those allocations.
This has some disadvantages:
a) an existing memory is consumed for that purpose
(eg: ~2MB per 128MB memory section on x86_64)
This can even lead to extreme cases where system goes OOM because
the physically hotplugged memory depletes the available memory before
it is onlined.
b) if the whole node is movable then we have off-node struct pages
which has performance drawbacks.
c) It might be there are no PMD_ALIGNED chunks so memmap array gets
populated with base pages.
This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.
Vmemap page tables can map arbitrary memory. That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables. This implementation uses the beginning of the hotplugged memory
for that purpose.
There are some non-obviously things to consider though.
Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed. This means that the reserved physical range is not
online although it is used. The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns. The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined. For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g. vmemmap
page tables).
The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory). That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.
As per above, the functions that are introduced are:
- mhp_init_memmap_on_memory:
Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
fully span.
- mhp_deinit_memmap_on_memory:
Offlines as many sections as vmemmap pages fully span, removes the
range from zhe zone by remove_pfn_range_from_zone(), and calls
kasan_remove_zero_shadow() for the range.
The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages(). Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory(). Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.
On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages(). This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty. If offline_pages() fails, we account back
vmemmap pages. If it succeeds, we call mhp_deinit_memmap_on_memory().
Hot-remove:
We need to be careful when removing memory, as adding and
removing memory needs to be done with the same granularity.
To check that this assumption is not violated, we check the
memory range we want to remove and if a) any memory block has
vmemmap pages and b) the range spans more than a single memory
block, we scream out loud and refuse to proceed.
If all is good and the range was using memmap on memory (aka vmemmap pages),
we construct an altmap structure so free_hugepage_table does the right
thing and calls vmem_altmap_free instead of free_pagetable.
Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Allocate memmap from hotadded memory (per device)", v10.
The primary goal of this patchset is to reduce memory overhead of the
hot-added memory (at least for SPARSEMEM_VMEMMAP memory model). The
current way we use to populate memmap (struct page array) has two main
drawbacks:
a) it consumes an additional memory until the hotadded memory itself is
onlined and
b) memmap might end up on a different numa node which is especially
true for movable_node configuration.
c) due to fragmentation we might end up populating memmap with base
pages
One way to mitigate all these issues is to simply allocate memmap array
(which is the largest memory footprint of the physical memory hotplug)
from the hot-added memory itself. SPARSEMEM_VMEMMAP memory model allows
us to map any pfn range so the memory doesn't need to be online to be
usable for the array. See patch 4 for more details. This feature is
only usable when CONFIG_SPARSEMEM_VMEMMAP is set.
[Overall design]:
Implementation wise we reuse vmem_altmap infrastructure to override the
default allocator used by vmemap_populate. memory_block structure gains a
new field called nr_vmemmap_pages, which accounts for the number of
vmemmap pages used by that memory_block. E.g: On x86_64, that is 512
vmemmap pages on small memory bloks and 4096 on large memory blocks (1GB)
We also introduce new two functions: memory_block_{online,offline}. These
functions take care of initializing/unitializing vmemmap pages prior to
calling {online,offline}_pages, so the latter functions can remain totally
untouched.
More details can be found in the respective changelogs.
This patch (of 8):
This is a preparatory patch that introduces two new functions:
memory_block_online() and memory_block_offline().
For now, these functions will only call online_pages() and offline_pages()
respectively, but they will be later in charge of preparing the vmemmap
pages, carrying out the initialization and proper accounting of such
pages.
Since memory_block struct contains all the information, pass this struct
down the chain till the end functions.
Link: https://lkml.kernel.org/r/20210421102701.25051-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210421102701.25051-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No need to store the value for each and every memory block, as we can
easily query the value at runtime. Reshuffle the members to optimize the
memory layout. Also, let's clarify what the interface once was used for
and why it's legacy nowadays.
"phys_device" was used on s390x in older versions of lsmem[2]/chmem[3],
back when they were still part of s390x-tools. They were later replaced
by the variants in linux-utils. For example, RHEL6 and RHEL7 contain
lsmem/chmem from s390-utils. RHEL8 switched to versions from util-linux
on s390x [4].
"phys_device" was added with sysfs support for memory hotplug in commit
3947be1969a9 ("[PATCH] memory hotplug: sysfs and add/remove functions") in
2005. It always returned 0.
s390x started returning something != 0 on some setups (if sclp.rzm is set
by HW) in 2010 via commit 57b552ba0b2f ("memory hotplug/s390: set
phys_device").
For s390x, it allowed for identifying which memory block devices belong to
the same storage increment (RZM). Only if all memory block devices
comprising a single storage increment were offline, the memory could
actually be removed in the hypervisor.
Since commit e5d709bb5fb7 ("s390/memory hotplug: provide
memory_block_size_bytes() function") in 2013 a memory block device spans
at least one storage increment - which is why the interface isn't really
helpful/used anymore (except by old lsmem/chmem tools).
There were once RFC patches to make use of "phys_device" in ACPI context;
however, the underlying problem could be solved using different interfaces
[1].
[1] https://patchwork.kernel.org/patch/2163871/
[2] https://github.com/ibm-s390-tools/s390-tools/blob/v2.1.0/zconf/lsmem
[3] https://github.com/ibm-s390-tools/s390-tools/blob/v2.1.0/zconf/chmem
[4] https://bugzilla.redhat.com/show_bug.cgi?id=1504134
Link: https://lkml.kernel.org/r/20210201181347.13262-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Tom Rix <trix@redhat.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This renames all 'memhp' instances to 'mhp' except for memhp_default_state
for being a kernel command line option. This is just a clean up and
should not cause a functional change. Let's make it consistent rater than
mixing the two prefixes. In preparation for more users of the 'mhp'
terminology.
Link: https://lkml.kernel.org/r/1611554093-27316-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We soon want to pass flags, e.g., to mark added System RAM resources.
mergeable. Prepare for that.
This patch is based on a similar patch by Oscar Salvador:
https://lkml.kernel.org/r/20190625075227.15193-3-osalvador@suse.de
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com> # Xen related part
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Julien Grall <julien@xen.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Link: https://lkml.kernel.org/r/20200911103459.10306-5-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Change additional instances that could use sysfs_emit and sysfs_emit_at
that the coccinelle script could not convert.
o macros creating show functions with ## concatenation
o unbound sprintf uses with buf+len for start of output to sysfs_emit_at
o returns with ?: tests and sprintf to sysfs_emit
o sysfs output with struct class * not struct device * arguments
Miscellanea:
o remove unnecessary initializations around these changes
o consistently use int len for return length of show functions
o use octal permissions and not S_<FOO>
o rename a few show function names so DEVICE_ATTR_<FOO> can be used
o use DEVICE_ATTR_ADMIN_RO where appropriate
o consistently use const char *output for strings
o checkpatch/style neatening
Signed-off-by: Joe Perches <joe@perches.com>
Link: https://lore.kernel.org/r/8bc24444fe2049a9b2de6127389b57edfdfe324d.1600285923.git.joe@perches.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
strcat is no longer necessary for sysfs_emit and sysfs_emit_at uses.
Convert the strcat uses to sysfs_emit calls and neaten other block
uses of direct returns to use an intermediate const char *.
Signed-off-by: Joe Perches <joe@perches.com>
Link: https://lore.kernel.org/r/5d606519698ce4c8f1203a2b35797d8254c6050a.1600285923.git.joe@perches.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert the various sprintf fmaily calls in sysfs device show functions
to sysfs_emit and sysfs_emit_at for PAGE_SIZE buffer safety.
Done with:
$ spatch -sp-file sysfs_emit_dev.cocci --in-place --max-width=80 .
And cocci script:
$ cat sysfs_emit_dev.cocci
@@
identifier d_show;
identifier dev, attr, buf;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
return
- sprintf(buf,
+ sysfs_emit(buf,
...);
...>
}
@@
identifier d_show;
identifier dev, attr, buf;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
return
- snprintf(buf, PAGE_SIZE,
+ sysfs_emit(buf,
...);
...>
}
@@
identifier d_show;
identifier dev, attr, buf;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
return
- scnprintf(buf, PAGE_SIZE,
+ sysfs_emit(buf,
...);
...>
}
@@
identifier d_show;
identifier dev, attr, buf;
expression chr;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
return
- strcpy(buf, chr);
+ sysfs_emit(buf, chr);
...>
}
@@
identifier d_show;
identifier dev, attr, buf;
identifier len;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
len =
- sprintf(buf,
+ sysfs_emit(buf,
...);
...>
return len;
}
@@
identifier d_show;
identifier dev, attr, buf;
identifier len;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
len =
- snprintf(buf, PAGE_SIZE,
+ sysfs_emit(buf,
...);
...>
return len;
}
@@
identifier d_show;
identifier dev, attr, buf;
identifier len;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
len =
- scnprintf(buf, PAGE_SIZE,
+ sysfs_emit(buf,
...);
...>
return len;
}
@@
identifier d_show;
identifier dev, attr, buf;
identifier len;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
<...
- len += scnprintf(buf + len, PAGE_SIZE - len,
+ len += sysfs_emit_at(buf, len,
...);
...>
return len;
}
@@
identifier d_show;
identifier dev, attr, buf;
expression chr;
@@
ssize_t d_show(struct device *dev, struct device_attribute *attr, char *buf)
{
...
- strcpy(buf, chr);
- return strlen(buf);
+ return sysfs_emit(buf, chr);
}
Signed-off-by: Joe Perches <joe@perches.com>
Link: https://lore.kernel.org/r/3d033c33056d88bbe34d4ddb62afd05ee166ab9a.1600285923.git.joe@perches.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
memory_block may have a larger granularity than section, this is why we
have base_section_nr. But base_memory_block_id seems a little
misleading, since there is no larger granularity concept which groups
several memory_block.
What we need here is the exact memory_block_id to a section_nr. Let's
rename it to make it more precise.
Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Link: https://lore.kernel.org/r/20200623025701.2016-2-richard.weiyang@linux.alibaba.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The first parameter of init_memory_block() is intended to retrieve the
memory_block initiated. But now, we never use it.
Drop it for now.
Signed-off-by: Wei Yang <richard.weiyang@linux.alibaba.com>
Link: https://lore.kernel.org/r/20200623025701.2016-1-richard.weiyang@linux.alibaba.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Searching for a particular memory block by id is an O(n) operation because
each memory block's underlying device is kept in an unsorted linked list
on the subsystem bus.
We can cut the lookup cost to O(log n) if we cache each memory block
in an xarray. This time complexity improvement is significant on
systems with many memory blocks. For example:
1. A 128GB POWER9 VM with 256MB memblocks has 512 blocks. With this
change memory_dev_init() completes ~12ms faster and walk_memory_blocks()
completes ~12ms faster.
Before:
[ 0.005042] memory_dev_init: adding memory blocks
[ 0.021591] memory_dev_init: added memory blocks
[ 0.022699] walk_memory_blocks: walking memory blocks
[ 0.038730] walk_memory_blocks: walked memory blocks 0-511
After:
[ 0.005057] memory_dev_init: adding memory blocks
[ 0.009415] memory_dev_init: added memory blocks
[ 0.010519] walk_memory_blocks: walking memory blocks
[ 0.014135] walk_memory_blocks: walked memory blocks 0-511
2. A 256GB POWER9 LPAR with 256MB memblocks has 1024 blocks. With
this change memory_dev_init() completes ~88ms faster and
walk_memory_blocks() completes ~87ms faster.
Before:
[ 0.252246] memory_dev_init: adding memory blocks
[ 0.395469] memory_dev_init: added memory blocks
[ 0.409413] walk_memory_blocks: walking memory blocks
[ 0.433028] walk_memory_blocks: walked memory blocks 0-511
[ 0.433094] walk_memory_blocks: walking memory blocks
[ 0.500244] walk_memory_blocks: walked memory blocks 131072-131583
After:
[ 0.245063] memory_dev_init: adding memory blocks
[ 0.299539] memory_dev_init: added memory blocks
[ 0.313609] walk_memory_blocks: walking memory blocks
[ 0.315287] walk_memory_blocks: walked memory blocks 0-511
[ 0.315349] walk_memory_blocks: walking memory blocks
[ 0.316988] walk_memory_blocks: walked memory blocks 131072-131583
3. A 32TB POWER9 LPAR with 256MB memblocks has 131072 blocks. With
this change we complete memory_dev_init() ~37 minutes faster and
walk_memory_blocks() at least ~30 minutes faster. The exact timing
for walk_memory_blocks() is missing, though I observed that the
soft lockups in walk_memory_blocks() disappeared with the change,
suggesting that lower bound.
Before:
[ 13.703907] memory_dev_init: adding blocks
[ 2287.406099] memory_dev_init: added all blocks
[ 2347.494986] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2527.625378] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2707.761977] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 2887.899975] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3068.028318] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3248.158764] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3428.287296] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3608.425357] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3788.554572] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 3968.695071] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
[ 4148.823970] [c000000014c5bb60] [c000000000869af4] walk_memory_blocks+0x94/0x160
After:
[ 13.696898] memory_dev_init: adding blocks
[ 15.660035] memory_dev_init: added all blocks
(the walk_memory_blocks traces disappear)
There should be no significant negative impact for machines with few
memory blocks. A sparse xarray has a small footprint and an O(log n)
lookup is negligibly slower than an O(n) lookup for only the smallest
number of memory blocks.
1. A 16GB x86 machine with 128MB memblocks has 132 blocks. With this
change memory_dev_init() completes ~300us faster and walk_memory_blocks()
completes no faster or slower. The improvement is pretty close to noise.
Before:
[ 0.224752] memory_dev_init: adding memory blocks
[ 0.227116] memory_dev_init: added memory blocks
[ 0.227183] walk_memory_blocks: walking memory blocks
[ 0.227183] walk_memory_blocks: walked memory blocks 0-131
After:
[ 0.224911] memory_dev_init: adding memory blocks
[ 0.226935] memory_dev_init: added memory blocks
[ 0.227089] walk_memory_blocks: walking memory blocks
[ 0.227089] walk_memory_blocks: walked memory blocks 0-131
[david@redhat.com: document the locking]
Link: http://lkml.kernel.org/r/bc21eec6-7251-4c91-2f57-9a0671f8d414@redhat.com
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rick Lindsley <ricklind@linux.vnet.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200121231028.13699-1-cheloha@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For now, distributions implement advanced udev rules to essentially
- Don't online any hotplugged memory (s390x)
- Online all memory to ZONE_NORMAL (e.g., most virt environments like
hyperv)
- Online all memory to ZONE_MOVABLE in case the zone imbalance is taken
care of (e.g., bare metal, special virt environments)
In summary: All memory is usually onlined the same way, however, the
kernel always has to ask user space to come up with the same answer.
E.g., Hyper-V always waits for a memory block to get onlined before
continuing, otherwise it might end up adding memory faster than
onlining it, which can result in strange OOM situations. This waiting
slows down adding of a bigger amount of memory.
Let's allow to specify a default online_type, not just "online" and
"offline". This allows distributions to configure the default online_type
when booting up and be done with it.
We can now specify "offline", "online", "online_movable" and
"online_kernel" via
- "memhp_default_state=" on the kernel cmdline
- /sys/devices/system/memory/auto_online_blocks
just like we are able to specify for a single memory block via
/sys/devices/system/memory/memoryX/state
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-9-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
... and rename it to memhp_default_online_type. This is a preparation
for more detailed default online behavior.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's use a simple array which we can reuse soon. While at it, move the
string->mmop conversion out of the device hotplug lock.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Historically, we used the value -1. Just treat 0 as the special case now.
Clarify a comment (which was wrong, when we come via device_online() the
first time, the online_type would have been 0 / MEM_ONLINE). The default
is now always MMOP_OFFLINE. This removes the last user of the manual
"-1", which didn't use the enum value.
This is a preparation to use the online_type as an array index.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/memory_hotplug: allow to specify a default online_type", v3.
Distributions nowadays use udev rules ([1] [2]) to specify if and how to
online hotplugged memory. The rules seem to get more complex with many
special cases. Due to the various special cases,
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE cannot be used. All memory hotplug
is handled via udev rules.
Every time we hotplug memory, the udev rule will come to the same
conclusion. Especially Hyper-V (but also soon virtio-mem) add a lot of
memory in separate memory blocks and wait for memory to get onlined by
user space before continuing to add more memory blocks (to not add memory
faster than it is getting onlined). This of course slows down the whole
memory hotplug process.
To make the job of distributions easier and to avoid udev rules that get
more and more complicated, let's extend the mechanism provided by
- /sys/devices/system/memory/auto_online_blocks
- "memhp_default_state=" on the kernel cmdline
to be able to specify also "online_movable" as well as "online_kernel"
=== Example /usr/libexec/config-memhotplug ===
#!/bin/bash
VIRT=`systemd-detect-virt --vm`
ARCH=`uname -p`
sense_virtio_mem() {
if [ -d "/sys/bus/virtio/drivers/virtio_mem/" ]; then
DEVICES=`find /sys/bus/virtio/drivers/virtio_mem/ -maxdepth 1 -type l | wc -l`
if [ $DEVICES != "0" ]; then
return 0
fi
fi
return 1
}
if [ ! -e "/sys/devices/system/memory/auto_online_blocks" ]; then
echo "Memory hotplug configuration support missing in the kernel"
exit 1
fi
if grep "memhp_default_state=" /proc/cmdline > /dev/null; then
echo "Memory hotplug configuration overridden in kernel cmdline (memhp_default_state=)"
exit 1
fi
if [ $VIRT == "microsoft" ]; then
echo "Detected Hyper-V on $ARCH"
# Hyper-V wants all memory in ZONE_NORMAL
ONLINE_TYPE="online_kernel"
elif sense_virtio_mem; then
echo "Detected virtio-mem on $ARCH"
# virtio-mem wants all memory in ZONE_NORMAL
ONLINE_TYPE="online_kernel"
elif [ $ARCH == "s390x" ] || [ $ARCH == "s390" ]; then
echo "Detected $ARCH"
# standby memory should not be onlined automatically
ONLINE_TYPE="offline"
elif [ $ARCH == "ppc64" ] || [ $ARCH == "ppc64le" ]; then
echo "Detected" $ARCH
# PPC64 onlines all hotplugged memory right from the kernel
ONLINE_TYPE="offline"
elif [ $VIRT == "none" ]; then
echo "Detected bare-metal on $ARCH"
# Bare metal users expect hotplugged memory to be unpluggable. We assume
# that ZONE imbalances on such enterpise servers cannot happen and is
# properly documented
ONLINE_TYPE="online_movable"
else
# TODO: Hypervisors that want to unplug DIMMs and can guarantee that ZONE
# imbalances won't happen
echo "Detected $VIRT on $ARCH"
# Usually, ballooning is used in virtual environments, so memory should go to
# ZONE_NORMAL. However, sometimes "movable_node" is relevant.
ONLINE_TYPE="online"
fi
echo "Selected online_type:" $ONLINE_TYPE
# Configure what to do with memory that will be hotplugged in the future
echo $ONLINE_TYPE 2>/dev/null > /sys/devices/system/memory/auto_online_blocks
if [ $? != "0" ]; then
echo "Memory hotplug cannot be configured (e.g., old kernel or missing permissions)"
# A backup udev rule should handle old kernels if necessary
exit 1
fi
# Process all already pluggedd blocks (e.g., DIMMs, but also Hyper-V or virtio-mem)
if [ $ONLINE_TYPE != "offline" ]; then
for MEMORY in /sys/devices/system/memory/memory*; do
STATE=`cat $MEMORY/state`
if [ $STATE == "offline" ]; then
echo $ONLINE_TYPE > $MEMORY/state
fi
done
fi
=== Example /usr/lib/systemd/system/config-memhotplug.service ===
[Unit]
Description=Configure memory hotplug behavior
DefaultDependencies=no
Conflicts=shutdown.target
Before=sysinit.target shutdown.target
After=systemd-modules-load.service
ConditionPathExists=|/sys/devices/system/memory/auto_online_blocks
[Service]
ExecStart=/usr/libexec/config-memhotplug
Type=oneshot
TimeoutSec=0
RemainAfterExit=yes
[Install]
WantedBy=sysinit.target
=== Example modification to the 40-redhat.rules [2] ===
: diff --git a/40-redhat.rules b/40-redhat.rules-new
: index 2c690e5..168fd03 100644
: --- a/40-redhat.rules
: +++ b/40-redhat.rules-new
: @@ -6,6 +6,9 @@ SUBSYSTEM=="cpu", ACTION=="add", TEST=="online", ATTR{online}=="0", ATTR{online}
: # Memory hotadd request
: SUBSYSTEM!="memory", GOTO="memory_hotplug_end"
: ACTION!="add", GOTO="memory_hotplug_end"
: +# memory hotplug behavior configured
: +PROGRAM=="grep online /sys/devices/system/memory/auto_online_blocks", GOTO="memory_hotplug_end"
: +
: PROGRAM="/bin/uname -p", RESULT=="s390*", GOTO="memory_hotplug_end"
:
: ENV{.state}="online"
===
[1] https://github.com/lnykryn/systemd-rhel/pull/281
[2] https://github.com/lnykryn/systemd-rhel/blob/staging/rules/40-redhat.rules
This patch (of 8):
The name is misleading and it's not really clear what is "kept". Let's
just name it like the online_type name we expose to user space ("online").
Add some documentation to the types.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Yumei Huang <yuhuang@redhat.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: http://lkml.kernel.org/r/20200319131221.14044-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200317104942.11178-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
pages_correctly_probed() is a leftover from ancient times. It dates back
to commit 3947be1969a9 ("[PATCH] memory hotplug: sysfs and add/remove
functions"), where Pg_reserved checks were added as a sfety net:
/*
* The probe routines leave the pages reserved, just
* as the bootmem code does. Make sure they're still
* that way.
*/
The checks were refactored quite a bit over the years, especially in
commit b77eab7079d9 ("mm/memory_hotplug: optimize probe routine"), where
checks for present, valid, and online sections were added.
Hotplugged memory is added via add_memory(), which will create the full
memmap for the hotplugged memory, and mark all sections valid and present.
Only full memory blocks are onlined/offlined, so we also cannot have an
inconsistency in that regard (especially, memory blocks with some sections
being online and some being offline).
1. Boot memory always starts online. Since commit c5e79ef561b0
("mm/memory_hotplug.c: don't allow to online/offline memory blocks with
holes") we disallow to offline any memory with holes. Therefore, we
never online memory with holes. Present and validity checks are
superfluous.
2. Only complete memory blocks are onlined/offlined (and especially,
the state - online or offline - is stored for whole memory blocks).
Besides the core, only arch/powerpc/platforms/powernv/memtrace.c
manually calls offline_pages() and fiddels with memory block states.
But it also only offlines complete memory blocks.
3. To make any of these conditions trigger, something would have to be
terribly messed up in the core. (e.g., online/offline only some
sections of a memory block).
4. Memory unplug properly makes sure that all sysfs attributes were
removed (and therefore, that all threads left the sysfs handlers). We
don't have to worry about zombie devices at this point.
5. The valid_section_nr(section_nr) check is actually dead code, as it
would never have been reached due to the WARN_ON_ONCE(!pfn_valid(pfn)).
No wonder we haven't seen any of these errors in a long time (or even
ever, according to my search). Let's just get rid of them. Now, all
checks that could hinder onlining and offlining are completely
contained in online_pages()/offline_pages().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200127110424.5757-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: drop superfluous section checks when onlining/offlining".
Let's drop some superfluous section checks on the onlining/offlining path.
This patch (of 3):
Since commit c5e79ef561b0 ("mm/memory_hotplug.c: don't allow to
online/offline memory blocks with holes") we have a generic check in
offline_pages() that disallows offlining memory blocks with holes.
Memory blocks with missing sections are just another variant of these type
of blocks. We can stop checking (and especially storing) present
sections. A proper error message is now printed why offlining failed.
section_count was initially introduced in commit 07681215975e ("Driver
core: Add section count to memory_block struct") in order to detect when
it is okay to remove a memory block. It was used in commit 26bbe7ef6d5c
("drivers/base/memory.c: prohibit offlining of memory blocks with missing
sections") to disallow offlining memory blocks with missing sections. As
we refactored creation/removal of memory devices and have a proper check
for holes in place, we can drop the section_count.
This also removes a leftover comment regarding the mem_sysfs_mutex, which
was removed in commit 848e19ad3c33 ("drivers/base/memory.c: drop the
mem_sysfs_mutex").
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200127110424.5757-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We see multiple issues with the implementation/interface to compute
whether a memory block can be offlined (exposed via
/sys/devices/system/memory/memoryX/removable) and would like to simplify
it (remove the implementation).
1. It runs basically lockless. While this might be good for performance,
we see possible races with memory offlining that will require at
least some sort of locking to fix.
2. Nowadays, more false positives are possible. No arch-specific checks
are performed that validate if memory offlining will not be denied
right away (and such check will require locking). For example, arm64
won't allow to offline any memory block that was added during boot -
which will imply a very high error rate. Other archs have other
constraints.
3. The interface is inherently racy. E.g., if a memory block is detected
to be removable (and was not a false positive at that time), there is
still no guarantee that offlining will actually succeed. So any
caller already has to deal with false positives.
4. It is unclear which performance benefit this interface actually
provides. The introducing commit 5c755e9fd813 ("memory-hotplug: add
sysfs removable attribute for hotplug memory remove") mentioned
"A user-level agent must be able to identify which sections
of memory are likely to be removable before attempting the
potentially expensive operation."
However, no actual performance comparison was included.
Known users:
- lsmem: Will group memory blocks based on the "removable" property. [1]
- chmem: Indirect user. It has a RANGE mode where one can specify
removable ranges identified via lsmem to be offlined. However,
it also has a "SIZE" mode, which allows a sysadmin to skip the
manual "identify removable blocks" step. [2]
- powerpc-utils: Uses the "removable" attribute to skip some memory
blocks right away when trying to find some to offline+remove.
However, with ballooning enabled, it already skips this
information completely (because it once resulted in many false
negatives). Therefore, the implementation can deal with false
positives properly already. [3]
According to Nathan Fontenot, DLPAR on powerpc is nowadays no longer
driven from userspace via the drmgr command (powerpc-utils). Nowadays
it's managed in the kernel - including onlining/offlining of memory
blocks - triggered by drmgr writing to /sys/kernel/dlpar. So the
affected legacy userspace handling is only active on old kernels. Only
very old versions of drmgr on a new kernel (unlikely) might execute
slower - totally acceptable.
With CONFIG_MEMORY_HOTREMOVE, always indicating "removable" should not
break any user space tool. We implement a very bad heuristic now.
Without CONFIG_MEMORY_HOTREMOVE we cannot offline anything, so report
"not removable" as before.
Original discussion can be found in [4] ("[PATCH RFC v1] mm:
is_mem_section_removable() overhaul").
Other users of is_mem_section_removable() will be removed next, so that
we can remove is_mem_section_removable() completely.
[1] http://man7.org/linux/man-pages/man1/lsmem.1.html
[2] http://man7.org/linux/man-pages/man8/chmem.8.html
[3] https://github.com/ibm-power-utilities/powerpc-utils
[4] https://lkml.kernel.org/r/20200117105759.27905-1-david@redhat.com
Also, this patch probably fixes a crash reported by Steve.
http://lkml.kernel.org/r/CAPcyv4jpdaNvJ67SkjyUJLBnBnXXQv686BiVW042g03FUmWLXw@mail.gmail.com
Reported-by: "Scargall, Steve" <steve.scargall@intel.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Nathan Fontenot <ndfont@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Karel Zak <kzak@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200128093542.6908-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The callers are only interested in the actual zone, they don't care about
boundaries. Return the zone instead to simplify.
Link: http://lkml.kernel.org/r/20200110183308.11849-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/memory_hotplug: pass in nid to online_pages()".
Simplify onlining code and get rid of find_memory_block(). Pass in the
nid from the memory block we are trying to online directly, instead of
manually looking it up.
This patch (of 2):
No need to lookup the memory block, we can directly pass in the nid.
Link: http://lkml.kernel.org/r/20200113113354.6341-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Luckily, we have no users left, so we can get rid of it. Cleanup
set_migratetype_isolate() a little bit.
Link: http://lkml.kernel.org/r/20191114131911.11783-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The mem_sysfs_mutex isn't really helpful. Also, it's not really clear
what the mutex protects at all.
The device lists of the memory subsystem are protected separately. We
don't need that mutex when looking up. creating, or removing
independent devices. find_memory_block_by_id() will perform locking on
its own and grab a reference of the returned device.
At the time memory_dev_init() is called, we cannot have concurrent
hot(un)plug operations yet - we're still fairly early during boot. We
don't need any locking.
The creation/removal of memory block devices should be protected on a
higher level - especially using the device hotplug lock to avoid
documented issues (see Documentation/core-api/memory-hotplug.rst) - or
if that is reworked, using similar locking.
Protecting in the context of these functions only doesn't really make
sense. Especially, if we would have a situation where the same memory
blocks are created/deleted at the same time, there is something horribly
going wrong (imagining adding/removing a DIMM at the same time from two
call paths) - after the functions succeeded something else in the
callers would blow up (e.g., create_memory_block_devices() succeeded but
there are no memory block devices anymore).
All relevant call paths (except when adding memory early during boot via
ACPI, which is now documented) hold the device hotplug lock when adding
memory, and when removing memory. Let's document that instead.
Add a simple safety net to create_memory_block_devices() in case we
would actually remove memory blocks while adding them, so we'll never
dereference a NULL pointer. Simplify memory_dev_init() now that the
lock is gone.
Link: http://lkml.kernel.org/r/20190925082621.4927-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently soft_offline_page() receives struct page, and its sibling
memory_failure() receives pfn. This discrepancy looks weird and makes
precheck on pfn validity tricky. So let's align them.
Link: http://lkml.kernel.org/r/20191016234706.GA5493@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_offline_node() is pretty much broken right now:
- The node span is updated when onlining memory, not when adding it. We
ignore memory that was mever onlined. Bad.
- We touch possible garbage memmaps. The pfn_to_nid(pfn) can easily
trigger a kernel panic. Bad for memory that is offline but also bad
for subsection hotadd with ZONE_DEVICE, whereby the memmap of the
first PFN of a section might contain garbage.
- Sections belonging to mixed nodes are not properly considered.
As memory blocks might belong to multiple nodes, we would have to walk
all pageblocks (or at least subsections) within present sections.
However, we don't have a way to identify whether a memmap that is not
online was initialized (relevant for ZONE_DEVICE). This makes things
more complicated.
Luckily, we can piggy pack on the node span and the nid stored in memory
blocks. Currently, the node span is grown when calling
move_pfn_range_to_zone() - e.g., when onlining memory, and shrunk when
removing memory, before calling try_offline_node(). Sysfs links are
created via link_mem_sections(), e.g., during boot or when adding
memory.
If the node still spans memory or if any memory block belongs to the
nid, we don't set the node offline. As memory blocks that span multiple
nodes cannot get offlined, the nid stored in memory blocks is reliable
enough (for such online memory blocks, the node still spans the memory).
Introduce for_each_memory_block() to efficiently walk all memory blocks.
Note: We will soon stop shrinking the ZONE_DEVICE zone and the node span
when removing ZONE_DEVICE memory to fix similar issues (access of
garbage memmaps) - until we have a reliable way to identify whether
these memmaps were properly initialized. This implies later, that once
a node had ZONE_DEVICE memory, we won't be able to set a node offline -
which should be acceptable.
Since commit f1dd2cd13c4b ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") memory that is added is not
assoziated with a zone/node (memmap not initialized). The introducing
commit 60a5a19e7419 ("memory-hotplug: remove sysfs file of node")
already missed that we could have multiple nodes for a section and that
the zone/node span is updated when onlining pages, not when adding them.
I tested this by hotplugging two DIMMs to a memory-less and cpu-less
NUMA node. The node is properly onlined when adding the DIMMs. When
removing the DIMMs, the node is properly offlined.
Masayoshi Mizuma reported:
: Without this patch, memory hotplug fails as panic:
:
: BUG: kernel NULL pointer dereference, address: 0000000000000000
: ...
: Call Trace:
: remove_memory_block_devices+0x81/0xc0
: try_remove_memory+0xb4/0x130
: __remove_memory+0xa/0x20
: acpi_memory_device_remove+0x84/0x100
: acpi_bus_trim+0x57/0x90
: acpi_bus_trim+0x2e/0x90
: acpi_device_hotplug+0x2b2/0x4d0
: acpi_hotplug_work_fn+0x1a/0x30
: process_one_work+0x171/0x380
: worker_thread+0x49/0x3f0
: kthread+0xf8/0x130
: ret_from_fork+0x35/0x40
[david@redhat.com: v3]
Link: http://lkml.kernel.org/r/20191102120221.7553-1-david@redhat.com
Link: http://lkml.kernel.org/r/20191028105458.28320-1-david@redhat.com
Fixes: 60a5a19e7419 ("memory-hotplug: remove sysfs file of node")
Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visiable after d0dc12e86b319
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
soft_offline_page_store()
Uninitialized memmaps contain garbage and in the worst case trigger kernel
BUGs, especially with CONFIG_PAGE_POISONING. They should not get touched.
Right now, when trying to soft-offline a PFN that resides on a memory
block that was never onlined, one gets a misleading error with
CONFIG_PAGE_POISONING:
:/# echo 5637144576 > /sys/devices/system/memory/soft_offline_page
[ 23.097167] soft offline: 0x150000 page already poisoned
But the actual result depends on the garbage in the memmap.
soft_offline_page() can only work with online pages, it returns -EIO in
case of ZONE_DEVICE. Make sure to only forward pages that are online
(iow, managed by the buddy) and, therefore, have an initialized memmap.
Add a check against pfn_to_online_page() and similarly return -EIO.
Link: http://lkml.kernel.org/r/20191010141200.8985-1-david@redhat.com
Fixes: f1dd2cd13c4b ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b319]
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Each memory block spans the same amount of sections/pages/bytes. The size
is determined before the first memory block is created. No need to store
what we can easily calculate - and the calculations even look simpler now.
Michal brought up the idea of variable-sized memory blocks. However, if
we ever implement something like this, we will need an API compatibility
switch and reworks at various places (most code assumes a fixed memory
block size). So let's cleanup what we have right now.
While at it, fix the variable naming in register_mem_sect_under_node() -
we no longer talk about a single section.
Link: http://lkml.kernel.org/r/20190809110200.2746-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's validate the memory block size early, when initializing the memory
device infrastructure. Fail hard in case the value is not suitable.
As nobody checks the return value of memory_dev_init(), turn it into a
void function and fail with a panic in all scenarios instead. Otherwise,
we'll crash later during boot when core/drivers expect that the memory
device infrastructure (including memory_block_size_bytes()) works as
expected.
I think long term, we should move the whole memory block size
configuration (set_memory_block_size_order() and
memory_block_size_bytes()) into drivers/base/memory.c.
Link: http://lkml.kernel.org/r/20190806090142.22709-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
removable/phys_index/block_size_bytes
Let's rephrase to memory block terminology and add some further
clarifications.
Link: http://lkml.kernel.org/r/20190806080826.5963-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We don't allow to offline memory block devices that belong to multiple
numa nodes. Therefore, such devices can never get removed. It is
sufficient to process a single node when removing the memory block. No
need to iterate over each and every PFN.
We already have the nid stored for each memory block. Make sure that the
nid always has a sane value.
Please note that checking for node_online(nid) is not required. If we
would have a memory block belonging to a node that is no longer offline,
then we would have a BUG in the node offlining code.
Link: http://lkml.kernel.org/r/20190719135244.15242-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No longer needed, let's remove it. Also, drop the "hint" parameter
completely from "find_memory_block_by_id", as nobody needs it anymore.
[david@redhat.com: v3]
Link: http://lkml.kernel.org/r/20190620183139.4352-7-david@redhat.com
[david@redhat.com: handle zero-length walks]
Link: http://lkml.kernel.org/r/1c2edc22-afd7-2211-c4c7-40e54e5007e8@redhat.com
Link: http://lkml.kernel.org/r/20190614100114.311-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's move walk_memory_blocks() to the place where memory block logic
resides and simplify it. While at it, add a type for the callback
function.
Link: http://lkml.kernel.org/r/20190614100114.311-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Block ids are just shifted section numbers, so let's also use "unsigned
long" for them, too.
Link: http://lkml.kernel.org/r/20190614100114.311-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: Further memory block device cleanups", v1.
Some further cleanups around memory block devices. Especially, clean up
and simplify walk_memory_range(). Including some other minor cleanups.
This patch (of 6):
We are using a mixture of "int" and "unsigned long". Let's make this
consistent by using "unsigned long" everywhere. We'll do the same with
memory block ids next.
While at it, turn the "unsigned long i" in removable_show() into an int
- sections_per_block is an int.
[akpm@linux-foundation.org: s/unsigned long i/unsigned long nr/]
[david@redhat.com: v3]
Link: http://lkml.kernel.org/r/20190620183139.4352-2-david@redhat.com
Link: http://lkml.kernel.org/r/20190614100114.311-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's factor out removing of memory block devices, which is only
necessary for memory added via add_memory() and friends that created
memory block devices. Remove the devices before calling
arch_remove_memory().
This finishes factoring out memory block device handling from
arch_add_memory() and arch_remove_memory().
Link: http://lkml.kernel.org/r/20190527111152.16324-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Only memory to be added to the buddy and to be onlined/offlined by user
space using /sys/devices/system/memory/... needs (and should have!)
memory block devices.
Factor out creation of memory block devices. Create all devices after
arch_add_memory() succeeded. We can later drop the want_memblock
parameter, because it is now effectively stale.
Only after memory block devices have been added, memory can be onlined
by user space. This implies, that memory is not visible to user space
at all before arch_add_memory() succeeded.
While at it
- use WARN_ON_ONCE instead of BUG_ON in moved unregister_memory()
- introduce find_memory_block_by_id() to search via block id
- Use find_memory_block_by_id() in init_memory_block() to catch
duplicates
Link: http://lkml.kernel.org/r/20190527111152.16324-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|